рис. 1 ). По мере роста деревьев внутренняя, наиболее старая Д. ствола отмирает. Проводящие элементы Д. постепенно закупориваются: сосуды - так называемыми тиллами, трахеиды - торусами их окаймлённых пор. Проводящая и запасающая системы перестают функционировать, содержание в Д. воды, крахмала, отчасти жиров уменьшается, количество смол, дубильных веществ повышается. У ядровых пород (сосна, лиственница, дуб) центральная часть Д. отличается по окраске и называется ядром, периферическая зона называется . У спелодревесных пород (ель, липа) периферическая часть отличается от центральной меньшей влажностью (такая Д. называется спелой). У заболонных пород (клён, берёза) центральная часть ничем не отличается от периферической. Иногда у заболонных и спелодревесных пород центральная часть ствола окрашивается темнее (главным образом под влиянием грибов) и образуется так называемое ложное ядро.

  В Д. большинства двудольных и всех хвойных растений можно различить кольца прироста, или , и радиальные, или сердцевинные, лучи. Внутри одного кольца прироста различают раннюю (весеннюю) и позднюю (летнюю) зоны, часто называющиеся соответственно ранней и поздней Д. По радиальным лучам питательные вещества передвигаются в места их отложения. Размеры и соотношение элементов, слагающих Д., изменяются в зависимости от условий произрастания и положения Д. в стебле. В неблагоприятных условиях (избыточное увлажнение, недостаток воды в почве, сильное затенение, объедание листьев насекомыми) образуются узкие слои прироста. Д. двудольных растений слагается из следующих типов клеток: члеников сосудов (трахей), , механических волокон ( ), древесинной и ряда др. элементов - переходных форм между ними ( рис. 2 ). Комбинации в размерах и расположении элементов Д. (например, диаметр сосудов у различных пород варьируют от 0,0015 мму самшита и аралии до 0,5 мму дуба) создают разнообразие её структуры ( рис. 3 ): рассеянно-сосудистая - по всему кольцу прироста сосуды почти равного диаметра, число их в ранней и поздней зонах почти одинаково (берёза, клён); кольцесосудистая - диаметр сосудов в ранней зоне кольца значительно больший, чем в поздней (дуб, вяз, маклюра). Сосуды могут быть расположены одиночно (дуб) или группами (ясень, берёза, осина), образуя в этом случае в местах соприкосновения окаймлённые поры. Трахеиды в этом случае утрачивают в процессе эволюции водопроводящую функцию и заменяются волокнами либриформа (Д. ясеня, например, состоит из сосудов, древесинной и лучевой паренхимы и волокон либриформа). Д. различается также по характеру соединения члеников сосудов, форме перфорации (простая, лестничная и т.д.), её расположению, форме членика, высоте и ширине сердцевинного луча и форме его клеток. Д. голосеменных, в том числе хвойных, состоит только из трахеид (сосуды отсутствуют), небольшого количества древесинной паренхимы и сердцевинных лучей. У одних родов (кипарис, можжевельник) сердцевинные лучи (гомогенные) состоят из одинаковых паренхимных клеток; у др. (сосна, ель, лиственница) в гетерогенных лучах имеются также и лучевые трахеиды, проходящие вдоль луча ( рис. 4 ). Строение луча, форма клеток, число и размеры их пор имеют важное значение при определении породы дерева. У некоторых родов (сосна, ель, дугласова пихта и лиственница) в Д. имеются смоляные ходы.

  Химический состав Д.Абсолютно сухая Д. всех пород в среднем содержит (в %): 49,5 углерода; 6,3 водорода; 44,1 кислорода; 0,1 азота. В Д. на долю оболочек клеток приходится около 95% массы. Главные составные части оболочек - целлюлоза (43-56%) и лигнин (19-30%), остальные: гемицеллюлозы, пектиновые вещества, минеральные вещества (главным образом соли кальция), небольшое количество жиров, эфирных масел, алкалоидов, гликозидов и т.п. Для всех клеток Д. характерно одревеснение - пропитывание оболочек лигнином. Существует более 70 реакций на одревеснение (например, флороглюцин с концентрированной соляной кислотой даёт малиновое окрашивание). Д. некоторых деревьев содержит дубильные вещества (квебрахо), красители (кампешевое дерево, сандал), бальзамы, смолы, камфору и т.д.

  О. Н. Чистякова.

  Физические свойства Д.характеризуются её внешним видом (цвет, блеск, текстура), плотностью, влажностью, гигроскопичностью, теплоёмкостью и др. Д. как материал используют в натуральном виде ( , пиломатериалы), а также после специальной физико-химической обработки (см. ). Важное декоративное свойство и диагностический признак - цвет Д., характеристики которого изменяются в широких пределах (цветовой тон 578-585 нм, чистота цвета 30-60%, светлота 20-70%). Блеск наблюдается у Д. некоторых лиственных пород, особенно на радиальном разрезе. Текстура - рисунок Д., образующийся при перерезании анатомических элементов, - особенно эффектна у лиственных пород.

  Д. содержит свободную (в полостях клеток) и связанную (в оболочках клеток) влагу. Влажность Д.

где W- влажность в %, m- начальная масса образца, m 0- масса образца в абсолютно сухом состоянии. Пределом гигроскопичности (точкой насыщения волокна) называется состояние, при котором в Д. содержится максимальное количество связанной (гигроскопической) влаги, а свободная влага отсутствует. Влажность, соответствующая пределу гигроскопичности W пгпри t20°С, составляет в среднем 30%. На большинство свойств Д. оказывает влияние изменение содержания связанной влаги. При достаточно длительной выдержке Д. приобретает равновесную влажность W p, которая зависит от влажности j и температуры tокружающего воздуха ( рис. 5 ). Уменьшение содержания связанной влаги вызывает сокращение линейных размеров и объёма Д. - усушку. Усушка

где У w- усушка в %, а пг- размер (объём) образца при пределе гигроскопичности, a w- размер (объём) образца при данной влажности Wв диапазоне 0- W пг. Полная (при удалении всей связанной влаги) усушка в тангенциальном направлении для всех пород 6-10%, в радиальном направлении 3-5%, вдоль волокон 0,1-0,3%; полная объёмная усушка 12-15%.

  При увеличении содержания связанной влаги, а также поглощении Д. др. жидкостей происходит разбухание - явление, обратное усушке. Вследствие разницы значений радиальной и тангенциальной усушки при высыхании (или увлажнении) наблюдается поперечное коробление пиломатериалов и заготовок. Продольное коробление наиболее заметно у пиломатериалов с пороками строения Д. В процессе сушки Д. из-за неравномерного удаления влаги и усушки возникают внутренние напряжения, приводящие к растрескиванию пиломатериалов и круглых лесоматериалов. После камерной сушки из-за остаточных напряжений в Д. при механической обработке происходит изменение заданных размеров и формы деталей. Д. проницаема для жидкостей и газов, особенно лиственной породы по заболони и вдоль волокон.

  Плотность древесинного вещества у всех пород одинакова (т.к. одинаков их химический состав) и примерно в 1,5 раза больше плотности воды. Плотность Д. из-за наличия полостей меньше и колеблется в значительных пределах в зависимости от породы, условий роста, положения образца Д. в стволе. Плотность Д. при данной влажности

где m wи v w- масса и объём образца при данной влажности W. С повышением влажности плотность Д. увеличивается. Часто для расчётов используют показатель, не зависящий от влажности, - условную плотность:

где m 0- масса образца при W= 0, v max- объём при W> W пг.

  Удельная теплоёмкость Д. практически не зависит от породы и может быть найдена по диаграмме ( рис. 6 ). Коэффициент теплопроводности l зависит от температуры, влажности, породы (плотности), направления теплового потока и определяется по формуле l = l номЧ k rЧ k x, где l ном- номинальное значение коэффициента теплопроводности, а к rи k x- коэффициенты, учитывающие значение условной плотности r усли направление теплового потока в образце. l номопределяется по диаграмме ( рис. 7 ), а некоторые значения коэффициентов k rи k xприведены в таблицах 1 и 2. Температурные деформации Д. значительно меньше усушки и разбухания и обычно в расчётах не учитываются.

  Некоторые электрические и акустические свойства Д. приведены в таблице 3. Д. хвойных пород с малой плотностью (ель) обладает высокими резонансными свойствами и широко используется в музыкальной промышленности.

  Таблица 1. - Коэффициент k x

Направление теплового потока k x
Тангенциальное 1,0
Радиальное 1,05
Вдоль волокон   для кольцесосудистых лиственных пород 1,6
  для остальных 2,2

  Таблица 2. - Коэффициент к r

r усл, кг/ м 3 к r r усл, кг/ м 3 к r
340 1,98 500 1,22
360 1,00 600 1,56
400 1,05 650 1,86

  Механические свойства Д.наиболее высоки при действии нагрузок вдоль волокон; в плоскости поперёк волокон они резко снижаются. В таблице 4 даны средние показатели свойств Д. некоторых пород при W= 12%. С увеличением влажности до W пгпоказатели уменьшаются в 1,5-2 раза. Модуль упругости вдоль волокон составляет 10-15 Гн/м 2(100-150 тыс. кгс/см 2), а поперёк в 20-25 раз меньше. Коэффициент поперечной деформации для разных пород и структурных направлений находится в пределах от 0,02 до 0,8.

  Способность Д. деформироваться под нагрузкой во времени, характеризующая её реологические свойства, резко повышается с увеличением влажности и температуры. Прочность при длительных нагрузках снижается. Например, предел долговременного сопротивления при изгибе составляет 0,6-0,65 от предела прочности при стандартных испытаниях на статический изгиб. При многократных нагружениях наблюдается усталость Д., предел выносливости при изгибе равен в среднем 0,2 от статического предела прочности.

  Испытания Д. с целью определения показателей физико-механических и технологических свойств проводят на малых чистых (без пороков) образцах. Испытаниям подвергают серии образцов, а результаты опытов обрабатывают методами вариационной статистики. Все показатели приводят к единой влажности - 12%. На большинство методов испытаний разработаны стандарты, устанавливающие форму и размеры образцов Д., процедуру экспериментов, способы вычисления показателей её свойств. Д. отличается сильной изменчивостью свойств, поэтому при использовании Д. в качестве конструкционного материала особенно важно применение неразрушающих методов поштучного контроля прочности пиломатериалов, основанных, например, на связи между прочностью Д. и некоторыми её физическими свойствами. На свойства Д. влияют (сучки, гнили, наклон волокон, крень и др.).

  При оценке свойств Д. как конструкционного и поделочного материала учитывают её способность удерживать металлические крепления (гвозди, шурупы), износостойкость, способность к загибу некоторых лиственных пород.

  Д. имеет высокие значения коэффициента качества (отношение предела прочности к плотности), хорошо сопротивляется ударным и вибрационным нагрузкам, легко обрабатывается и позволяет изготовлять детали сложной конфигурации, надёжно соединяется в изделиях и конструкциях с помощью клея, обладает высокими декоративными свойствами. Однако наряду с положительными свойствами натуральная Д. обладает рядом недостатков: размеры и форма деталей изменяются при колебаниях влажности. При неблагоприятных условиях хранения и эксплуатации (повышенная влажность Д., умеренно высокая температура воздуха, контакт с влажной почвой, конденсация влаги на элементах конструкций и т.д.) Д. загнивает. Гниение представляет собой процесс разрушения Д. в результате жизнедеятельности поселяющихся на ней грибов. Для защиты от загнивания Д. пропитывают антисептиками (см. ). Д. может также повреждаться насекомыми, для защиты от которых используют . Ввиду сравнительно малой огнестойкости Д. при необходимости пропитывают .

  Народнохозяйственное значение Д.Как конструкционный материал Д. широко применяется в строительстве (деревянные конструкции, столярные детали), на ж.-д. транспорте и линиях связи [шпалы, опоры линий электропередач (ЛЭП)], в горной промышленности (крепь), в машино- и судостроении, в производстве мебели, музыкальных инструментов, спортинвентаря; как сырьё в целлюлозно-бумажной промышленности и для др. видов химической переработки (например, гидролиз, сухая перегонка), а также как топливо. О заготовке Д. см. в ст. .

  Таблица 3. - Электрические и акустические свойства древесины

Показатели Порода Вдоль волокон Поперёк волокон
радиальное направ- ление тангенциа- льное нап- равление
Удельное объёмное электросопротивление при W=8%, 10 8ом·м Лиственница 3,8 19 14,5
Берёза 4,2 86  -
Пробивное напряжение при W=8-9%, кв/см Бук 14 41,5 52
Берёза 15 59,8 -
Диэлектрическая проницаемость при W=0и частоте 1000 гц Ель 3,06 1,91 1,98
Бук 3,18 2,40 2,20
Тангенс угла потерь Ель 0,0625 0,0310 0,0345
Бук 0,0585 0,0319 0,0298
Скорость распространения звука, м/ сек Сосна 5030 1450 850
Дуб 4175 1665 1400

  Таблица 4. - Плотность и механические свойства малых чистых (без пороков) образцов древесины при влажности 12%

Показатели Порода
Лиственница Сосна Ель Дуб Берёза Осина
Плотность, кг/м 3 660 500 445 690 630 495
Предел прочности вдоль волокон, Мн/м 2( кгс/см 2):  при сжатии 64,5 (645) 48,5 (485) 44,5 (445) 57,5 (575) 55,0(550) 42,5 (425)
  при статическом изгибе 111,5 (1115) 86,0 (860) 79,5 (795) 107,5 (1075) 109,5(1095) 78,0 (780)
при растяжении 125,0 (1250) 103,5(1035) 103,0(1030) 168,0(1680) 125,5(1255)
  при скалывании     радиальном 9,9 (99) 7,5 (75) 6,9 (69) 10,2(102) 9,3 (93) 6,3 (63)
    тангенциальном 9,4 (94) 7,3 (73) 6,8 (68) 12,2 (122) 11,2 (112) 8.6 (86)
Ударная вязкость, кдж/м 2( кгс·м/см 2) 52 (0,53) 41 (0,42) 39 (0,40) 77 (0,78) 93 (0,95) 84 (0,86)
Твёрдость, Мн/м 2( кгс/см 2):  торцовая..........….... 43,5 (435) 28,0 (285) 26,0 (260) 67,5 (675) 46,5 (465) 26,5 (265)
  боковая......……...... 29,0 (290) 24,0 (245) 18,0 (180) 52,5 (525) 35,0 (350) 20,0 (200)

  Лит.:Ванин С. И., Древесиноведение, 3 изд., М.-Л., 1949; Яценко-Хмелевский А. А., Основы и методы анатомических исследований древесины, М.-Л., 1954; Москалева В. Е., Строение древесины и её изменение при физических и механических воздействиях, М., 1957; Вихров В. Е., Диагностические признаки древесины главнейших лесохозяйственных и лесопромышленных пород СССР, М., 1959; Никитин Н. И., Химия древесины и целлюлозы, М.-Л., 1962; Древесина. Показатели физико-механических свойств, М., 1962; Уголев Б. Н., Испытания древесины и древесных материалов, М., 1965; Перелыгин Л. М., Древесиноведение, 2 изд., М., 1969; Леонтьев Н. Л., Техника испытаний древесины, М., 1970; Уголев Б. Н., Деформативность древесины и напряжения при сушке, М., 1971.

  Б. Н. Уголев.

Рис. 1. Основные части ствола и его главные разрезы: 1 - поперечный; 2 - радиальный; 3 - тангенциальный.

Рис. 2. Типы клеток, слагающих древесину: а - древесинная паренхима; б - трахеиды; в - членики сосудов (трахей); г - волокна либриформа; д - клетки гетерогенного сердцевинного луча хвойного дерева; е - клетки гетерогенного сердцевидного луча лиственного дерева.

Рис. 5. Зависимость равновесной влажности древесины W pот влажности j и температуры tвоздуха.

Рис. 4. Участки срезов древесины сосны: 1 - поперечного; 2 - радиального; 3 - тангенциального; а - граница годичного кольца; б - поздняя древесина; в - ранняя древесина: г - новый ряд вклинивающихся трахеид; д - гетерогенный сердцевинный луч, состоящий из лучевых трахеид (е) с мелкими окаймленными порами и паренхимных клеток с большими окновидными порами (ж); з - смоляной ход (хорошо видны выстилающие его эпителиальные клетки); и - клетки паренхимы, окружающие смоляной ход; к - окаймленные поры; л - сердцевинный луч с горизонтальным смоляным ходом.

Рис. 6. Зависимость удельной теплоёмкости древесины Сот температуры tи влажности W.

Рис. 3. Схема расположения сосудов древесины на поперечном сечении годичного кольца: 1 - клёна (рассеянно-сосудистая); 2 - вяза (кольцесосудистая).

Рис. 7. Зависимость коэффициента теплопроводности древесины l номот температуры tи влажности W.

Древесина модифицированная

Древеси'на модифици'рованная,древесина, обработанная каким-либо химическим веществом (синтетической смолой, аммиаком и др.) с целью повышения её механических свойств и придания водостойкости. В большинстве случаев пропитка древесины осуществляется под давлением, полимеризация или поликонденсация вводимых в древесину химических веществ ( , и др.) достигается термической обработкой, облучением рентгеновскими и a-, b-, g-лучами в присутствии . Д. м. по сравнению с натуральной обладает увеличенной прочностью на статический изгиб (на 75%); пониженными водопоглощением (в 3-5 раз) и абразивным износом (в 1,5-2 раза). Д. м. применяют для изготовления подшипников скольжения в узлах с.-х. машин, деталей, работающих в агрессивных средах, литейных моделей и копиров и др.

  Лит.:Роговин З. А., Химические превращения и модификация целлюлозы, М., 1967; Модификация древесины. [Сб. статей], Рига, 1967.

  А. Калниньш.

Древесина прессованная

Древеси'на прессо'ванная,конструкционный материал, древесина, подвергнутая сжатию перпендикулярно волокнам под давлением до 30 Мн/м 2(300 кгс/см 2). Плотность Д. п. 1200-1450 кг/м 3. В зависимости от способа прессования различают Д. п., получаемую односторонним, двусторонним и контурным уплотнением. Одностороннее уплотнение производится прессованием брусков древесины поперёк волокон в одном направлении, двустороннее - в двух направлениях. Вторым способом достигается более высокая плотность. Контурное уплотнение осуществляется вдавливанием цилиндрической заготовки древесины в металлический цилиндр меньшего диаметра. Предел прочности Д. п. при статическом изгибе, сжатии вдоль волокон, а также твёрдость торцевой поверхности выше, чем у натуральной древесины, в 2-3 раза. В промышленности она заменяет чёрные и цветные металлы, текстолит. Из Д. п. изготовляют погонялки ткацких станков, подшипники скольжения, работающие в абразивной среде, и др.

  Лит.:Хухрянский П. Н., Прессование древесины, 3 изд., М., 1964; Справочник фанерщика, М., 1968.

  А. Н. Кириллов.

Древесинники

Древеси'нники(Trypodendron), род жуков семейства . Тело (длиной 2,8-3,8 мм) голое глянцевитое, цилиндрическое, переднеспинка выпуклая, окраска чёрная, на надкрыльях обычно полоски. Обитают Д. в древесине, прогрызая в ней ходы. Безногие мягкие С-образные личинки питаются амброзией - гифами гриба, специально заносимого в ходы жуками. В СССР - 9 видов: полосатый Д. (Т. lineatus) вредит хвойным породам; дубовый Д. (Т. domesticus) - дубу и реже др. лиственным; лестничный Д. (Т. signatus) - разным лиственным породам.

Древесиноведение

Древесинове'дение,научная дисциплина, изучает строение и свойства древесины; содержит комплекс сведений о как материале, полученных на основе исследований методами биологии, химии, физики, механики и др. наук. Д. - учебная дисциплина для всех лесотехнических специальностей вузов и техникумов в СССР, включающая следующие разделы: строение древесины (макро- и микроскопическое); химические, физические и механические свойства древесины и влияние на них различных факторов; пороки древесины; стойкость; особенности древесины основных лесных пород СССР.

  В развитии отечественного Д. большую роль сыграли работы А. Е. Теплоухова, Д. И. Журавского, Д. М. Кайгородова, Н. М. Бурого, А. В. Гадолина, И. П. Бородина, Н. А. Белелюбского, Н. А. Филиппова, Л. А. Иванова, С. И. Ванина, Л. М. Перелыгина, А. Х. Певцова, Н. Н. Чулицкого и др.

  Д. как самостоятельная учебная дисциплина оформилась в СССР в 1932. В 30-х гг. были написаны первые учебники и руководства по Д. Тогда же были начаты работы по стандартизации методов физико-механических испытаний древесины, на основе которых в дальнейшем были определены показатели свойств древесины важнейших промышленных пород СССР. Большое внимание уделялось исследованию строения древесины и изучению её пороков. Были установлены зависимости свойств древесины от лесоводственных факторов; выявлено влияние на свойства древесины влажности, температуры, кислот, щелочей и др. Эти исследования обеспечили возможность широкого использования древесины в строительстве, авиастроении, судо- и вагоностроительной промышленности и др.

  С 50-х гг. проводятся широкие исследования фундаментальных свойств древесины: микроскопического и ультратонкого строения, реологических свойств, влажностных деформаций, внутренних напряжений, анизотропии, теплофизических, диэлектрических, пьезоэлектрических свойств, неразрушающих методов контроля прочности. Разрабатываются методы испытаний древесины, основанные на использовании инфракрасного, светового, ультрафиолетового, рентгеновского и ядерных излучений; проводятся испытания при звуковых и ультразвуковых колебаниях; объективными методами исследуются цвет и блеск; ведутся изыскания эффективных способов древесины. Строение и свойства древесины исследуются с целью усовершенствования существующих и разработки новых технологических процессов сушки, пропитки, механической обработки, склеивания, отделки и др.

  Лит.:Перелыгин Л. М., Древесиноведение, 2 изд., М., 1969.

  Б. Н. Уголев.

Древесная масса

Древе'сная ма'сса,волокнистая масса, получаемая при механическом истирании или щепы на вращающемся камне или на др. размалывающих аппаратах с применением воды; полуфабрикат в производстве бумаги, картона, древесноволокнистых плит. Впервые Д. м. получил немецкий ткач Ф. Г. Келлер в 40-х гг. 19 в. В зависимости от способа обработки различают Д. м. белую, бурую и химическую. Белую Д. м. получают из древесины без дополнительной обработки, бурую - из древесины, предварительно пропаренной в котлах под давлением, химическую - из древесины, обработанной растворами едкого натра, моносульфита или бикарбоната натрия (иногда под давлением и при нагреве до 150°С). Широкое применение Д. м. объясняется её дешевизной по сравнению с , тряпичной полумассой, а также способностью повышать печатные свойства бумаги (гладкость, непрозрачность, впитываемость красок и др.). Недостатки Д. м.: сравнительно низкая механическая прочность, недостаточная белизна, а также неустойчивость этих свойств при воздействии солнечного света, влаги и тепла.

  А. В. Васенко.

Древесная мука

Древе'сная мука',мелкий сыпучий продукт, получаемый сухим механическим размолом . Крупность частиц Д. м. определяется ситовым анализом и колеблется от 150 до 420 (номер Д. м. соответствует размеру отверстия сортировочного сита в мкм). Влажность Д. м. не выше 8%. Д. м. входит в состав взрывчатых веществ, , , и некоторых др. стройматериалов; применяется в производстве двуокиси титана, в мебельной промышленности и др. Д. м. используют также как шлифующий и полирующий материал. Д. м. получают в мельницах ударного действия, в жерновых поставах и в маятнико-роликовых мельницах. Отбор муки производится в ситовых машинах или в воздушных сепараторах.

Древесная смола

Древе'сная смола',древесный дёготь, продукт или газификации древесины. Различают отстойную смолу, отстаивающуюся от водного дистиллята термической переработки древесины; растворимую, находящуюся в этом дистилляте в растворённом виде, а также экстракционную, получаемую экстракцией из водного дистиллята. Отстойная смола - вязкая маслянистая жидкость от тёмно-бурого до чёрного цвета, с резким запахом; плотность от 1000 до 1150