К ст. Фторкаучуки.

пластических масс , представляющих собой гомополимеры фторпроизводных этилена и сополимеры их, например с др. фторпроизводными олефинами, олефинами, перфторалкилвиниловыми эфирами. Наибольшее значение имеют политетрафторэтилен (85% мирового производства всех Ф.) и политрифторхлорэтилен — кристаллические полимеры белого цвета, отличающиеся высокой химической стойкостью, термо-, морозо- и атмосферостойкостью, ценным комплексом физических свойств, негорючестью.
     Политетрафторэтилен, [—CF 2—CF 2—] n , молекулярная масса 5·10 5—2·10 6, плотность около 2,2 г/см 3(20°С). Превосходит по химической стойкости платину, кварц, графит и все синтетические материалы; устойчив к действию сильных окислителей, восстановителей, кислот, щелочей, органических растворителей, разрушается лишь расплавленными или растворёнными в жидком аммиаке щелочными металлами, а также газообразным фтором и трёхфтористым хлором (при температурах около 150°С). В полифторированных углеводородах начинает набухать при температуре выше 327°С. Политетрафторэтилен характеризуется прочностью при растяжении 14—35 Мн/м 2, или 140—350 кгс/см 2, относительным удлинением 250—500%, исключительно высокими диэлектрическими свойствами (тангенс угла диэлектрических потерь при 60 гц— 1 Мгц0,0002—0,00025), почти не зависящими от частоты и температуры, высокой дугостойкостью (250 сек). Он не изменяется в воде, жидких топливах и маслах, устойчив в тропическом климате, к действию грибков; физиологически инертен. Сохраняет определённую эластичность при температурах до — 269°С; обладает хладотекучестью под нагрузкой и низкой адгезией, нестоек к радиации. При плавлении (327°С) полимер становится прозрачным и, не переходя в вязкотекучее состояние, разлагается при 415°С.
     Политрифторхлорэтилен, [—CF2—CFCI—] n , молекулярная масса 56000—360000, плотность при 25°С 2,09—2,16 г/см 3(закристаллизованных образцов). Химически стоек к действию окислителей, щелочей, сильных кислот, набухает в ряде эфиров и галогенопроизводных углеводородов, растворяется в ароматических углеводородах при температурах выше их температур кипения. Политрифторхлорэтилен характеризуется прочностью при сжатии до 500 Мн/м 2, или 5000 кгс/см 2(для обожжённых образцов), хорошими диэлектрическими свойствами при низких частотах (тангенс угла диэлектрических потерь при 1 кгц0,024), высокой дугостойкостью (>360 сек), низкими хладотекучестью, влаго- и газопроницаемостью. Плавится при 210°С, причём при 240—270°С переходит в вязкотекучее состояние. Разлагается при 270°С, но уже при 170—200°С механические свойства полимера резко ухудшаются.
     Интервал температур эксплуатации от — 196 до 130—190°С.
     Сополимеры тетрафторэтилена с гексафторпропиленом, а также с перфторпропилвиниловым эфиром сочетают высокую химическую и термическую стойкость с хорошей перерабатываемостью; благодаря высокой текучести расплава второй сополимер пригоден в качестве высокотемпературного клея для фторопластов. Сополимеры тетрафторэтилена с перфторолефинами, содержащими сульфогруппу, — термически и химически устойчивые катионообменные смолы, превосходящие по кислотности все др. твёрдые ионообменные смолы ; успешно используются в качестве мембраны для топливных элементов. Сополимеры тетрафторэтилена с этиленом, винилиденфторидом (а также поливинилфторид и поливинилиденфторид) уступают рассмотренным выше гомополимерам по химической стойкости, но обладают рядом др. ценных качеств, в том числе высокой прочностью и хорошими технологическими свойствами.
     Получают Ф. радикальной полимеризацией или сополимеризацией соответствующих мономеров. Перерабатывают методами, принятыми для термопластов, например литьём под давлением , экструзией , за исключением политетрафторэтилена, который перерабатывают холодным таблетированием порошка под давлением 25—35 Мн/м 2, или 250—350 кгс/см 2, с последующим спеканием при 360—380°С. Из Ф. получают плёнки, транспортёрные ленты, антифрикционные материалы для подшипников и сальников, работающих без смазки, волокна и ткани, лабораторную посуду, химически стойкие покрытия, металлопласты. Низкомолекулярный политрифторхлорэтилен используют как химически стойкую смазку. Изделия из Ф. применяют в электро- и радиотехнике, авиации и ракетной технике, машиностроении, химической и атомной промышленности, в криогенной технике, пищевой промышленности и медицине.
     В СССР Ф. выпускают под название фторлон: политетрафторэтилен — фторлон-4, политрифторхлорэтилен — фторлон-3, в США — под название тефлон и кель-F соответственно.
     Лит.:Фторполимеры, пер, с англ., М., 1975; Энциклопедия полимеров, т. 3, М., 1977.
      С. В. Соколов.

органической химии . Её развитие было обусловлено потребностями молодой атомной промышленности в материалах, стойких к фторирующему действию UF 6, который применяется для изотопов разделения урана. Известны фторпроизводные всех типов органических соединений.
     Номенклатура.Положение атома фтора в Ф. с. обозначают согласно правилам номенклатуры органических соединений (см. Номенклатура химическая ). Для построения название полифторзамещённых соединений удобнее пользоваться приставкой «пер». Так, полностью фторировнные углеводороды называются перфторуглеводородами (или фторуглеродами), например CF 3(CF 2) 5CF 3называется перфторгептаном. Частично фторированные соединения можно рассматривать как производные перфторуглеводородов, например CF 3CFH (CF 2) CF 2H называется 1,6-дигидроперфторгептаном. Очень часто в название Ф. с. сочетание «перфтор» заменяют греческой буквой j; в этом случае, например, перфторэтан называется j-этаном. Для обозначения полностью фторированных углеводородов используют также частицу «фор» (фтор), которую включают в наименование соответствующего углеводорода, например название CF 4— метфоран, C 2F 6— этфоран.
     Методы синтеза.Прямое фторирование, а также присоединение F 2по двойной связи — радикальные чрезвычайно экзотермические реакции:
   
   (1 ккал/моль= 4,19 кдж/моль)
     Т. к. тепловой эффект фторирования больше, чем разрыва С—С-связей (80—85 ккал/моль), возможна деструкция фторируемых соединений. Во избежание этого необходим эффективный отвод тепла и разбавление смеси реагирующих веществ азотом. Для отвода тепла в реакционное пространство (трубка) вводят медную сетку или медные стружки, покрытые Ag, Co, Ni или др.; на поверхности сетки (стружек) образуются высшие фториды металлов, которые и служат фторирующими агентами, роль фтора при этом сводится, по-видимому, к их регенерации.
     В металлофторидном процессе пары фторируемого вещества, сильно разбавленные азотом, пропускают через трубку с CoF 3:
    1/ 2(—CH 2—) + 2CoF з® 1/ 2(—CF 2—) + HF+ 2CoF 2+ 46 ккал/моль.
     Образующийся CoF 3действием фтора при 250°С превращают опять в CoF 3. Выходы перфторуглеводородов 80—85%.
     Важен метод электрохимического фторирования. Электролитом служит раствор фторируемого вещества в безводном фтористом водороде. В случае неэлектропроводных соединений обычно добавляют KF. Этим методом j-амины, j-окиси и др. Все рассмотренные выше процессы применяются в промышленности.
     Обмен атомов хлора на фтор — важный промышленный метод введения фтора (см. Свартса реакция ); может быть произведён безводным HF или фторидами (например, NH 4F, KF, CbF 3Cl 2, AgF 2, HgF 2. Лёгкость обмена зависит от строения хлорсодержащего соединения. Так, хлорангидриды кислот часто легко превращаются во фторангидриды путём растворения их в безводном HF. Атомы Cl в этиленхлоргидрине, хлоруксусной кислоте и её производных легко обмениваются на F при реакции с KF в полярных растворителях (например, этиленгликоле); в моногалогенуглеводородах — лишь действием AgF 2или HgF 2при 150°С. Легче замещаются на фтор атомы хлора в соединениях, содержащих трихлорметильную группу. В промышленности для такого обмена применяют обычно растворы SbF 3или SbF 3Cl 2в безводном HF. Этим способом из хлороформа CHCl 3получают дифторхлорметан, используемый для производства тетрафторэтилена, из CCl 4— дифтордихлорметан (один из важнейших фреонов ), из C 2Cl 6— трифтортрихлорэтан (исходное вещество для производства трифторхлорэтилена).
     Сравнительно легко на фтор обмениваются атомы хлора в гексахлорбензоле (действием KF при 450—530°С); C 6F 6и C 6F 5Cl при этом получаются с хорошими выходами. Аналогично реагируют и др. полихлорароматические и полихлоргетероциклические соединения.
     Диазометод получения фторароматических соединений основан на образовании борфторида выделяют в твёрдом при нагревании:
   
     Замена кислородсодержащих группировок в различных органических соединениях на фтор при помощи SF 4(например, в спиртах, альдегидах, кетонах, кислотах):
   
   (R — органический остаток).
     Присоединение безводного фтористого водорода к олефинам, галогенолефинам, окисям, изоцианатам, циклопарафинам и др., например:
   
     Сопряжённое присоединение фтора и др. атомов или групп к соединениям, содержащим кратные связи, легко происходит в избытке безводного HF, например фторнитрование:
   
     Методы получения фторолефинов. Дегалогенирование вицинальных дигалогенполифторалканов металлами (Zn, Mg и др.), например:
   CF 2Cl — CF 2Cl + Zn ® CF 2= CF 2+ ZnCl 2.
     Пиролиз политетрафторэтилена, приводящий к образованию перфторпропилена и перфторизобутилена наряду с тетрафторэтиленом, перфторбутиленом, фторциклобутаном и др.:
   [—CF 2—] n ® CF 3F = CF 2+ (CF 3) 2C = CF 2+ CF 2= CF 2+ CF 3CF 2CF = CF 2и др.
     В промышленности этим способом (а также пиролизом тетрафторэтилена) получают перфторпропилен — важный мономер для производства фторкаучуков.
     Пиролиз солей j-карбоновых кислот, например:
   
     Фторированные спирты получают обычными методами синтеза спиртов , например восстановлением эфиров j-карбоновых кислот, фторированных альдегидов и кетонов. Важный промышленный способ их получения — теломеризация тетрафторэтилена метанолом:
    nCF 2= CF 2+ CH 3OH ® Н [—CF2CF2—] n СН 2ОН.
     Свойства.Физические свойства. Низшие фторуглероды парафинового ряда (общая формула C n F 2 n+2) — газы, начиная с C 5— жидкости, высшие — твёрдые воскообразные соединения. Только первые четыре представителя этого ряда кипят несколько выше соответствующих углеводородных аналогов, все остальные — ниже.
     При замещении одного атома водорода в молекуле углеводорода на F температура кипения повышается, но меньше, чем при замене его на хлор. При полной замене атомов водорода на фтор у любых производных углеводородов температуры кипения очень сильно понижаются (см. табл.).
   Сравнение температур кипения некоторых соединений

Формула t кип, °С Формула t кип, °С
CH 3CN +78 CF 3CN -64
CH 3NO 2 +102 CF 3NO 2 -31
NC(CH 2) 4CN +265 NC(CF 2) 4CN +63
CH 3CH2NH 2 +19 CF 3CF 2NF 2 -34.3
CH 3COCH 3 +56 CF 3COCF 3 +29
+35 -28

   Фторуглероды — хорошие диэлектрики (удельное электрическое сопротивление около 10 14 ом( см; диэлектрическая проницаемость их значительно выше, чем у парафинов. Скорость распространения ультразвука во фторуглеродах необычайно низка (менее 800 м/сек).
     Химические свойства наиболее важных типов Ф. с. Фторуглероды парафинового и алициклических рядов характеризуются необычайно высокими химической инертностью и термостойкостью. Для них известно небольшое число реакций, осуществляемых лишь при высоких температурах. Так, пиролиз перфторэтана начинается около 1000°C, перфторгептана — около 800°C. Фторуглероды не реагируют в обычных условиях и при умеренном нагревании с концентрированными кислотами, сильными окислителями, металлами, щелочами и др.; реакция с металлическим натрием и перекисью натрия начинается при 400°C; Zn, Al, Fe и Sn в этих условиях реагируют очень медленно; Cu, Ag, Hg и некоторые др. в реакцию не вступают.
     Перфторбензол и некоторые др. перфторароматические соединения легко взаимодействуют с нуклеофильными реагентами, например с аммиаком, аминами, алкоголятами, сульфидом натрия и др. При этом после замены одного атома фтора замещается второй, находящийся в пара- положении к первому:
   
     Пентафторхлорбензол образует магнийорганическое соединение C 6F 5MgCl, широко используемое в органическом синтезе.
     Перфторолефины, в отличие от олефинов, являющихся нуклеофилами, резко электрофильны. Они легко реагируют с различными нуклеофилами (см. Нуклеофильные и электрофильные реагенты ), причём в зависимости от типа последних образуются продукты присоединения или замещения атома F в винильном ( а) или аллильном ( б) положении на остаток нуклеофила (Nu):
   
     Электрофильные соединения реагируют с фторолефинами значительно труднее, чем с их углеводородными аналогами. Однако фторолефины присоединяют галогены, смешанные галогены, серный ангидрид и др. сильные электрофильные реагенты. Перфторолефины легко вступают в радикальные реакции, например
   CF 2= CF 2+ N 2O 4® CF 2NO 2— CF 2NO 2+ CF 2NO 2— CF 2ONO,
   легко полимеризуются и сополимеризуются (см. Фторопласты , Фторкаучуки ). При окислении j-олефинов в щелочной среде образуются j-окиси (см. ниже).
     Монофторметанол — нестойкая жидкость, t kип51°C; ди- и трифторметанолы не получены, но известны производные трифторметанола: трифторметилгипофторит CF 3OF — газ, t kип— 95°C, и алкоголяты CF 3OK и CF 3OCs. Фторзамещённые спирты (b-, g-, но не a-) — устойчивые, легко перегоняющиеся жидкости. Кислотные свойства спиртов усиливаются по мере накопления атомов фтора.
     С увеличением содержания фтора в молекулах альдегидов и кетонов электрофильность карбонильного атома углерода резко усиливается. Перфторальдегиды и перфторкетоны, подобно хлоралю, образуют стойкие геминальные диолы, например CF 3—CH (OH) 2, CF 3—C (OH) 2—CF 3, и полуацетали; легче, чем их углеводородные аналоги, присоединяют NH 3, HCN, NH 2OH и др. нуклеофильные реагенты; легко подвергаются распаду с образованием фтороформа, например:
   CF 3COCF 3+ NaOH ® CF 3H + CF 3COONa.
     Частично фторированные кетоны и альдегиды характеризуются высоким содержанием енольных форм (см. Таутомерия ), склонных к образованию внутрикомплексных соединений; это свойство их используется для разделения редких и рассеянных элементов, например с помощью теноилтрифторацетона выделяют и очищают Be, Со, Hf, Zr, Ас, а также радиоактивные изотопы, образующиеся в ядерном реакторе.
     Фторзамещённые карбоновые кислоты сильнее незамещённых и соответствующих хлорзамещённых кислот. Однако n-фторбензойная кислота слабее хлорбензойной вследствие большей способности атома F к сопряжению.
   
     Под влиянием третичных аминов или ионов фтора j-окиси легко изомеризуются, а также полимеризуются, образуя исключительно стойкие к действию агрессивных сред масла.
     Первичные и вторичные перфторалкиламины типа CF 3NH 2и (CF 3) 2NH малоустойчивы, третичные — исключительно стойки к действию самых агрессивных сред; они лишены основных свойств вследствие сильного снижения электронной плотности на атоме азота.
   
     Разнообразные органические соединения, несущие группы — NF 2, являются сильными окислителями.
     Фторнитрозосоединения типа R FN = O устойчивы; в отличие от водородных аналогов, окрашены в интенсивно-синий цвет, например трифторнитрозометан — синий газ, t kип— 84°C. При сополимеризации последнего с тетрафторэтиленом получается один из наиболее химически стойких фторкаучуков, т. н. нитрозокаучук.
     Из Ф. с., содержащих серу, известны, например, фтормеркаптаны, сульфиды, ди- и полисульфиды, сульфоокиси, сульфоны, сульфоновые кислоты и их производные; промышленное применение нашли перфторсульфокислоты, в частности трифторметансульфокислота , и дифтортиофосген CF 2S (в синтезе эластомеров).
     Из фторалкильных соединений металлов и металлоидов наибольшее значение имеют соединения с Li, Mg, Hg, Si; сравнительно хорошо изучены соединения с Р, As, Sb. Перфтордиметилртуть (CF 3) 2Hg резко отличается от обычных ртутьорганических соединений. Это бесцветное кристаллическое вещество, t пл161°C, хорошо растворимо в воде; в отличие от (CH 3) 2Hg, практически не алкилирует. Диперфторвинилртуть — хороший перфторвинилирующий агент. Из соединений кремния наибольшее значение имеет CF 3CH 2CH 2SiCl 2((CH 3), применяемый для производства термостойкого фторсилоксанового эластомера (см. Кремнийорганические каучуки ).
      Применение.Ф. с. широко применяются во всех областях техники с её экстремальными условиями эксплуатации. Ф. с. используют для получения фторопластов, превосходящих благородные металлы по устойчивости к действию агрессивных сред; термостойких фторкаучуков; антикоррозионных покрытий; как негорючие, термостойкие и неокисляющиеся смазочные масла и гидравлические жидкости; поверхностно-активные и пламягасящие вещества, пропелленты и хладагенты (см. Фреоны ). Трифторуксусная кислота и её ангидрид применяются как промоторы этерификации; трифторнадуксусная кислота — специфический и удобный окислитель. В медицине Ф. с. применяют как лекарственные препараты и средства для наркоза (см. Фторотан ), как материалы для изготовления искусственных кровеносных сосудов, клапанов для сердца. Кроме того, на примере Ф. с. изучены фундаментальные вопросы теории: природа водородной связи, вандерваальсовы силы, механизмы реакций и др.
     Лит.:Кнунянц И. Л., Фокин А. В., Покорение неприступного элемента, М., 1963; Кнунянц И. Л., Сокольский Г. А., Электрохимическое фторирование, в кн.: Реакции и методы исследования органических соединений, кн. 6, М., 1957; Шеппард У., Шартс К., органическая химия фтора, пер. с англ., М., 1972; Успехи химии фтора, пер. с англ., т. 1—4, Л., 1964—70; Fluorine chemistry reviews, ed. P. Tarrant, v. 1—7, N. Y. — [a. o.], 1967—74; Chambers R. D., Fluorine in organic chemistry, N. Y. — [a. o.], 1973.
      И. Л. Кнунянц.

хлороформа , Ф. — инертное соединение, например устойчиво к действию щелочей. Получают из хлороформа обменной реакцией с SbF 3или HF, из трифторхлорметана (фреона-13) и Н 2, а также др. способами. Применяют как хладагент.