рис. 4 ) или стержень из пьезоэлектрического материала с металлическими электродами, к которым прикладывается переменное электрическое напряжение. В диапазоне УНЧ широкое распространение получили составные пьезоизлучатели, в которых пьезокерамическая пластинка зажимается между металлическими блоками. Как правило, для увеличения амплитуды колебаний и излучаемой в среду мощности применяются колебания магнитострикционных и пьезоэлектрических элементов на их собственной резонансной частоте.

  Предельная интенсивность излучения У. определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации У. в области УСЧ чрезвычайно широк: интенсивности от 10 -14-10 -15 вт/см 2до 0,1 вт/см 2считаются малыми. Для многих целей необходимо получить гораздо большие интенсивности, чем те, которые могут быть получены с поверхности излучателя. В этих случаях можно воспользоваться фокусировкой У. Так, в фокусе параболоида, внутренние стенки которого выполнены из мозаики кварцевых пластинок или из пьезокерамики титаната бария, на частоте 0,5 мгцудаётся получать в воде интенсивности У. большие, чем 10 5 вт/см 2.Для увеличения амплитуды колебаний твёрдых тел в диапазоне УНЧ часто пользуются стержневыми ультразвуковыми концентраторами (см. Концентратор акустический ) ,позволяющими получать амплитуды смещения до 10 -4 см.

 Выбор метода генерации У. зависит от области частот У., характера среды (газ, жидкость, твёрдое тело), типа упругих волн и необходимой интенсивности излучения.

  Приём и обнаружение ультразвука.Вследствие обратимости пьезоэффекта он широко применяется и для приёма У. Изучение ультразвукового поля может производиться и оптическими методами: У., распространяясь в какой-либо среде, вызывает изменение её оптического показателя преломления, благодаря чему его можно визуализировать, если среда прозрачна для света. Смежная область акустики и оптики (акустооптика) получила большое развитие, в особенности после появления газовых лазеров непрерывного действия; развились исследования по дифракции света на У. и её различным применениям.

  Применения ультразвука.Применения У. чрезвычайно разнообразны. У. служит мощным методом исследования различных явлений во многих областях физики. Так, например, ультразвуковые методы применяются в физике твёрдого тела и физике полупроводников; возникла целая новая область физики - акусто-электроника, на основе достижений которой разрабатываются различные приборы для обработки сигнальной информации в микроэлектронике. У. играет большую роль в изучении вещества. Наряду с методами молекулярной акустики для жидкостей и газов, в области изучения твёрдых тел измерение скорости с  и коэффициента поглощения a используются для определения модулей упругости и диссипативных характеристик вещества. Получила развитие квантовая акустика, изучающая взаимодействие квантов упругих возмущений - фононов-с электронами, магнонами и др. квазичастицами и элементарными возбуждениями в твёрдых телах. У. широко применяется в технике, а также ультразвуковые методы всё больше проникают в биологию и медицину.

  Применение У. в технике. По данным измерений с  и a ,во многих технических задачах осуществляется контроль за протеканием того или иного процесса (контроль концентрации смеси газов, состава различных жидкостей и т.д.). Используя явление отражения У. на границе различных сред, конструируют ультразвуковые приборы для измерения размеров изделий (например, ультразвуковые толщиномеры), для определения уровня жидкости в больших, недоступных для прямого измерения ёмкостях. У. сравнительно малой интенсивности (до ~0,1 вт/см 2) широко используется для целей неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качественного проката и т.д.) (см. Дефектоскопия ) .Быстро развивается направление дефектоскопии, получившее название акустической эмиссии, которая состоит в том, что при приложении механического напряжения к образцу (конструкции) твёрдого тела он «потрескивает» (подобно тому, как при изгибе «потрескивает» оловянный стержень). Это объясняется тем, что в образце возникает движение дислокаций,которые при определённых условиях (до конца ещё пока не выясненных) становятся источниками (так же, как и совокупность дислокаций и субмикроскопических трещин) акустических импульсов со спектром, содержащим частоты У. При помощи акустической эмиссии удаётся обнаружить образование и развитие трещины, а также определить её местонахождение в ответственных деталях различных конструкций. При помощи У. осуществляется звуковидение:преобразуя ультразвуковые колебания в электрические, а последние - в световые, оказывается возможным при помощи У. видеть те или иные предметы в непрозрачной для света среде. На частотах УЗВЧ диапазона создан ультразвуковой микроскоп - прибор, аналогичный обычному микроскопу, преимущество которого перед оптическим состоит и том, что при биологических исследованиях не требуется предварительного окрашивания предмета ( рис. 5 ). Развитие голографии привело к определённым успехам в области ультразвуковой голографии.

  Весьма важную роль У. играет в гидроакустике,поскольку упругие волны являются единственным видом волн, хорошо распространяющимся в морской воде. На принципе отражения ультразвуковых импульсов от препятствий, возникающих на пути их распространения, строится работа таких приборов, как эхолот, гидролокатор.

 У. большой интенсивности (главным образом диапазон УНЧ) оказывает воздействие на протекание тех или иных технологических процессов (см. Ультразвуковая обработка ) посредством нелинейных эффектов - кавитации, акустических потоков и др. Так, при помощи мощного У. ускоряется ряд процессов тепло- и массообмена в металлургии. Воздействие ультразвуковых колебаний непосредственно на расплавы позволяет получить более мелкокристаллическую и однородную структуру металла. Ультразвуковая кавитация широко используется для очистки от загрязнений как мелких (часовое производство, приборостроение, электронная техника), так и крупных производственных деталей (трансформаторное железо, прокат и др.). С помощью У. удаётся осуществить пайку алюминиевых изделий. В микроэлектронике и полупроводниковой технике используется ультразвуковая приварка тонких проводников к напылённым металлическим плёнкам и непосредственно к полупроводникам. С помощью ультразвуковой сварки соединяют пластмассовые детали, полимерные плёнки, синтетические ткани и др. Во всех этих случаях ту или иную роль играет процесс ультразвуковой очистки, локальное нагревание под действием У., ускорение процессов диффузии, изменение состояния полимера. У. позволяет обрабатывать хрупкие детали (например, стекло, керамику), а также детали сложной конфигурации ( рис. 6 ). В этих процессах основную роль играют удары ультразвукового инструмента по частицам абразивной суспензии.

  В. А. Красильников.

  У. в биологии - биологическое действие У. При действии У. на биологические объекты в облучаемых органах и тканях на расстояниях, равных половине длины волны, могут возникать разности давлений от единиц до десятков атмосфер. Столь интенсивные воздействия приводят к разнообразным биологическим эффектам, физическая природа которых определяется совместным действием механических, тепловых и физико-химических явлений, сопутствующих распространению У. в среде. Биологическое действие У., то есть изменения, вызываемые в жизнедеятельности и структурах биологических объектов при воздействии на них У., определяется главным образом интенсивностью У. и длительностью облучения и может оказывать как положительное, так и отрицательное влияние на жизнедеятельность организмов. Так, возникающие при сравнительно небольших интенсивностях У. (до 1-2 вт/см 2) механические колебания частиц производят своеобразный микро-массаж тканей, способствующий лучшему обмену веществ и лучшему снабжению тканей кровью и лимфой. Повышение интенсивности У. может привести к возникновению в биологических средах акустической кавитации, сопровождающейся механическим разрушением клеток и тканей (кавитационными зародышами служат имеющиеся в биологических средах газовые пузырьки).

  При поглощении У. в биологических объектах происходит преобразование акустической энергии в тепловую. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биологических объектов, повышая интенсивность процессов обмена веществ. Однако более интенсивные и длительные воздействия могут привести к перегреву биологических структур и их разрушению (денатурация белков и др.).

  В основе биологического действия У. могут лежать также вторичные физико-химические эффекты. Так, при образовании акустических потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и др. жизненно важных соединениях и к развитию окислительно-восстановительных реакций. У. повышает проницаемость биологических мембран,вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Все перечисленные факторы в реальных условиях действуют на биологические объекты в том или ином сочетании совместно, и поэтому трудно, а подчас невозможно раздельно исследовать процессы, имеющие различную физическую природу.

  Л. Р. Гаврилов.

 У. в медицине. У. используется для диагностики, терапевтического и хирургического лечения в различных областях клинической медицины. Способность У. без существенного поглощения проникать в мягкие ткани организма и отражаться от акустических неоднородностей используется для исследования внутренних органов. Ультразвуковые методы диагностики в ряде случаев позволяют более тонко различать структуру тканей, чем рентгеновские. Так, с помощью У. обнаруживаются опухоли мягких тканей, часто не различимые др. способами. У. применяют в акушерстве для диагностического исследования плода ( рис. 7 ) и беременной женщины, в нейрохирургии - для распознавания опухолей в головном мозге ( эхоэнцефалография ) ,в кардиологии - для изучения гемодинамики, выявления гипертрофии мышцы сердца. Микромассаж тканей, активация процессов обмена и локальное нагревание тканей под действием У. используются в медицине для терапевтических целей (см. Ультразвуковая терапия ) .

 Ультразвуковая хирургия подразделяется на две разновидности, одна из которых связана с разрушением тканей собственно звуковыми колебаниями, а вторая - с наложением ультразвуковых колебаний на хирургический инструмент. В первом случае применяется фокусированный У. с частотами порядка 10 6- 10 7 гц,во втором - колебания на частотах 20-75 кгцс амплитудой 10-50 мкм.Ультразвуковые инструменты применяются для рассечения мягких и костных тканей, позволяя при этом существенно уменьшать усилие резания, кровопотери и болевые ощущения. В травматологии и ортопедии У. используют для сварки сломанных костей: при этих операциях костной стружкой, смешанной с жидкой пластмассой, заполняют пространство между костными отломками; под действием У. образуется их соединение.

  У. применяется также в биологической и медицинской лабораторной практике, в частности - для диспергирования биологических структур, для относительно тонких воздействий на структуру клеток, при стерилизации инструментов и лекарственных веществ, для изготовления аэрозолей, а также в бактериологии, иммунологии и т.д. для получения ферментов и антигенов из бактерий и вирусов, изучения морфологических особенностей и антигенной активности бактериальных клеток и др.

  У. в природе. Целый ряд животных способен воспринимать и излучать частоты упругих волн значительно выше 20 кгц.Так, птицы болезненно реагируют на ультразвуковые частоты более 25 кгц,что используется, например, для отпугивания чаек от водоёмов с питьевой водой. Мелкие насекомые при своём полёте создают ультразвуковые волны. Летучие мыши, имея совсем слабое зрение, или вовсе не имея его, ориентируются в полёте и ловят добычу методом ультразвуковой локации. Они излучают своим голосовым аппаратом ультразвуковые импульсы ( рис. 8 ) с частотой повторения несколько гци несущей частотой 50-60 кгц.Дельфины излучают и воспринимают У. до частот 170 кгц;метод ультразвуковой локации у них развит, по-видимому, ещё совершеннее, чем у летучей мыши.

  Изучением У. и его применением занимается большое количество различных институтов и лабораторий как в нашей стране, так и за рубежом. Такие лаборатории имеются в Акустическом институте АН СССР, институте радиотехники и электроники АН СССР, на физических факультетах МГУ, ЛГУ и др. университетов СССР, в Калифорнийском, Станфордском, Брауновском и др. университетах США, в лабораториях фирмы «Белл систем» в США, в институтах и университетских лабораториях Англии, Японии, Франции, ФРГ, Италии и др. Основные работы по У. печатаются в Акустическом журнале АН СССР, журнале Американского Акустического общества, европейских журналах «Ultrasonics» и «Acustica», а также во многих других физических и технических журналах.

  Историческая справка.Первые работы по У. были сделаны ещё в 19 в. Французский учёный Ф. Савар (1830) пытался установить верхний предел по частоте слышимости уха человека; изучением У. занимались английский учёный Ф. Гальтон (1883), немецкий физик В. Вин (1903), русский физик П. Н. Лебедев и его ученики (1905). Существенный вклад был сделан французским физиком П. Ланжевеном (1916), который впервые использовал пьезоэлектрические свойства кварца для излучения и приёма У. при обнаружении подводных лодок и измерениях глубин моря. Г. В. Пирс в США (1925) создал прибор для измерения с большой точностью скорости и поглощения У. в газах и жидкостях (так называемый интерферометр Пирса). Р. Вуд (США) (1927) добился рекордных для своего времени интенсивностей У. в жидкости, наблюдал ультразвуковой фонтан и исследовал влияние У. на живые организмы. Советский учёный С. Я. Соколов в 1928 положил начало ультразвуковой дефектоскопии металлических изделий, предложив использовать У. для обнаружения трещин, раковин и др. дефектов в твёрдых телах.

  В 1932 Р. Люка и П. Бикар во Франции, П. Дебай и Ф. В. Сирс в Германии обнаружили явление дифракции света на ультразвуковых волнах, которое далее начинает играть большую роль в изучении структуры жидких и твёрдых тел, а также в ряде технических приложений. В начале 30-х гг. Х. О. Кнезером в Германии было открыто аномальное поглощение и дисперсия У. в многоатомных газах; далее это явление было также обнаружено в ряде сложных (например, органических) жидкостей. Правильное теоретическое объяснение этим релаксационным явлениям было дано в общей форме советскими учёными Л. И. Мандельштамом и М. А. Леонтовичем (1937). Релаксационная теория явилась впоследствии основой молекулярной акустики.

  В 50-60-х гг. широкое развитие получают различные промышленные технологические применения У., в разработку физических основ которых в СССР был сделан большой вклад Л. Д. Розенбергом и его сотрудниками. Получение всё больших интенсивностей У. обусловило изучение особенностей распространения мощных волн У. в газах, жидкостях, твёрдых телах; быстро развивается нелинейная акустика, в становлении которой большую роль сыграли работы советских учёных Н. Н. Андреева, В. А. Красильникова, Р. В. Хохлова и др., а также американских и английских учёных.

  В 70-х гг., в особенности после работы Хадсона, Мак-Фи и Уайта (США) (1961), обнаруживших явление усиления и генерации У. в пьезополупроводниках, быстро развивается акустоэлектроника.

  Лит.:Бергман Л., Ультразвук, пер. с нем., М., 1956; Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1-7, М., 1966-74; Физика и техника мощного ультразвука, под ред. Л. Д. Розенберга, т. 1-3, 1967-69; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Викторов И. А., Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике, М., 1966; Методы неразрушающих испытаний, под ред. Р. Шарпа, пер. с англ., М., 1972; Ультразвуковое резание, М., 1962; Ультразвуковая технология, под ред. Б. А. Аграната, М., 1974; Эльпинер И. Е. Биофизика ультразвука, М., 1973; Байер В., Дернер Э., Ультразвук в биологии и медицине, пер. с нем., Л., 1958; Interaction of ultrasound and biological tissues. Proceedings of a workshop..., ed. by J. M. Reid and M. R. Sikov, Wash., 1972.

  В. А. Красильников.

Рис. 4. Излучение (приём) продольных волн L пластинкой, колеблющейся по толщине в твердое тело: 1 - кварцевая пластинка среза Х толщиной l/2, где l - длина волны в кварце; 2 - металлические электроды; 3 - жидкость (трансформаторное масло) для осуществления акустического контакта; 4 - генератор электрических колебаний; 5 - твёрдое тело.

Рис. 2. Акустическое течение, возникающее при распространении ультразвука частотой 5 Мгцв бензоле.

Рис. 6. Фасонные матрицы из твердого сплава, изготовленные ультразвуковым способом.

Рис. 1. Фокусировка ультразвукового пучка в воде плосковогнутой линзой из плексигласа (частота ультразвука 8 Мгц).

Рис. 5а. Красные кровяные тельца, полученные оптическим микроскопом.

Рис. 8. Ультразвуковой импульс летучей мыши на расстоянии 10 смот ее рта, сфотографированный с экрана осциллографа, частота ультразвука в импульсе 48 кгц.

Рис. 5б. Красные кровяные тельца, полученные ультразвуковым микроскопом.

Рис. 7. Звуковое изображение человеческого плода возраста 17 недель, полученное с помощью ультразвука частотой 5 Мгц.

Рис. 3. Фонтан жидкости, образующийся при падении ультразвукового пучка изнутри жидкости на её поверхность (частота ультразвука 1,5 Мгц, интенсивность 15 вт/ см 2).

Ультразвуковая дефектоскопия

Ультразвукова'я дефектоскопи'я,группа методов дефектоскопии,в которых используют проникающую способность упругих волн ультразвукового диапазона частот (иногда звукового). У. д. - один из наиболее универсальных способов неразрушающего контроля, методы которого позволяют обнаруживать поверхностные и глубинные дефекты - трещины, раковины, расслоения в металлических и неметаллических материалах (в том числе сварных и паяных швах, клеёных многослойных конструкциях), определять зоны коррозии металлов, измерять толщину (резонансный метод). См. также Дефектоскопия, Звуковидение.

Ультразвуковая обработка

Ультразвукова'я обрабо'тка,воздействие ультразвука (обычно с частотой 15-50 кгц) на вещества в технологических процессах. Для У. о. применяют технологические аппараты с электроакустическими излучателями либо аппараты в виде свистков и сирен.Основной элемент излучателя - электроакустический преобразователь (магнитострикционный или пьезоэлектрический) - соединён с согласующим устройством, которое осуществляет передачу акустической энергии от преобразователя в обрабатываемую среду, а также создаёт заданные техническими условиями размеры излучающей поверхности и интенсивность ультразвукового поля. В качестве согласующих устройств используют, как правило, волноводные концентраторы акустические-расширяющиеся (обычно при У. о. жидкостей) или сужающиеся (обычно при У. о. твёрдых веществ), резонансные (настроенные на определённую частоту) или нерезонансные пластины. Согласующее устройство, кроме того, может одновременно выполнять функции режущего или какого-либо др. инструмента (например, при сверлении, сварке, пайке). Иногда применяют преобразователи, работающие без согласующего устройства (например, кольцевые преобразователи, встроенные в трубопровод).

  У. о. твёрдых веществ используется в основном для сварки металлов, пластмасс и синтетических тканей (см. Ультразвуковая сварка ) ,при резании металлов, стекла, керамики, алмаза и т.п. (например, сверлении, точении, гравировании), а также при обработке металлов давлением (волочении, штамповке, прессовании и др.).

  Резание на ультразвуковых станках обеспечивает высокую точность, позволяет получать не только прямые круглые отверстия, но и вырезы сложных сечений, криволинейные каналы. Ультразвук, подведённый к инструменту обычного металлорежущего станка (например, сверлу, резцу), интенсифицирует обработку и улучшает дробление стружки (см. Вибрационное резание ) .При обработке металлов давлением ультразвуковые колебания улучшают условия деформирования и снижают необходимые усилия. При ультразвуковом поверхностном упрочнении повышаются микротвёрдость и износостойкость, снижается шероховатость поверхности. Во всех этих процессах ультразвук обычно подводят с помощью волноводного концентратора к рабочим органам машин (например, к сверлу, валкам прокатного стана, штампу пресса, фильере).

  У. о. в жидкостях (жидкостей) основана главным образом на возникновении кавитации.Некоторые эффекты кавитации (гидравлические удары при захлопывании пузырьков и микропотоки, возникающие в жидкости около пузырьков) используются при пайке и лужении, диспергировании, очистке деталей и т.д. Другие эффекты (разогрев паров внутри пузырька и их ионизация) используются для инициирования и ускорения химических реакций. Иногда для интенсификации У. о. процесс ведут при повышенном давлении.

  При пайке и лужении металлов, например алюминия, титана, молибдена, ультразвук разрушает окисные плёнки на поверхности деталей и облегчает течение процесса. С использованием ультразвука можно лудить, а затем паять керамику, стекло и др. неметаллические материалы. Ультразвук подводят волноводным концентратором к припою, помещенному в ванну или нанесённому на поверхность детали.

  Очистка ультразвуком поверхностей деталей от металлической пыли, стружки, нагаров, жировых и др. загрязнений обеспечивает более высокое, чем др. способы, качество - остаётся не более 0,5% загрязнений. Некоторые детали, имеющие сложную форму и труднодоступные места, можно очистить только при У. о. Очистку обычно осуществляют в ваннах со встроенными электроакустическими излучателями; в рабочую жидкость добавляют поверхностно-активные вещества. Для снятия заусенцев с деталей в жидкость вводят абразивные частицы, которые в несколько раз ускоряют обработку (см. Вибрационная обработка ) .

 Дегазацию (освобождение от газов) жидкостей осуществляют при малой (обычно ниже порога кавитации) интенсивности ультразвука. Мелкие газовые пузырьки, взвешенные в жидкости, сближаются друг с другом, слипаются (см. Коагуляция ) и всплывают на поверхность. Дегазации подвергают расплавы оптических стекол, жидкие алюминиевые сплавы (см. Газы в металлах) и др. жидкости. У. о. используют при обогащении ( флотации ) руд - газовые пузырьки оседают на поверхностях частичек минералов и всплывают вместе с ними.

  У. о. оказывает благоприятное влияние на процесс кристаллизации расплавов металлов при литье, что существенно улучшает структуру слитка и его механические свойства.

  Для образования эмульсий обычно используют ультразвуковые аппараты в виде свистков или сирен. Приготовление суспензий в основном ведут в аппаратах с магнитострикционными преобразователями,работающими при повышенном давлении (см. Диспергирование ) .

 Образование аэрозолей происходит при У. о. жидкости в тонком слое с помощью волноводного концентратора, который представляет собой распылительную насадку.

  При У. о. хорошо деполимеризуются в растворах высокомолекулярные соединения. Это свойство используется, например, при синтезе различных блок- и привитых сополимеров, для получения из природных полимеров ценных низкомолекулярных веществ (см. Механохимия полимеров ) .

 У. о. ускоряет многие массообменные процессы (растворение, экстрагирование, пропитку пористых тел и т.п.), ход которых ограничивается скоростью диффузии. Действие высоких температур внутри кавитационных пузырьков, уменьшение толщины пограничного слоя и его турбулизация интенсифицируют также протекающие совместно химические и массообменные процессы (например, хемосорбцию ) .

 У. о. в газах (газов) вызывает коагуляцию аэрозолей и пыли (укрупнение и осаждение взвешенных в газах мелких частиц) и применяется, например, в акустическом пылеуловителе.

 При возбуждении ультразвука в нагретом газе (сушильном агенте) интенсифицируется сушка пористых тел - ускоряется испарение со свободной поверхности жидкости, в капиллярах возникают акустические течения и т.п. Ультразвуковая сушка обычно применяется совместно с др. видами сушки, например инфракрасной, высокочастотной; в качестве источников ультразвука используют сирены.