Местр ) ,видевшие в централизованной церковной организации (во главе с папой) действенное орудие против революции. Программа У. нашла воплощение в «Силлабусе» (1864) и решениях 1-го Ватиканского собора 1869-70. В эпоху империализма идеи У., приспособленные к новым историческим условиям, стали знаменем клерикальных сил в их борьбе против рабочего движения и социализма.

Ультраосновные горные породы

Ультраосновны'е го'рные поро'ды,ультрабазиты, гипербазиты, горные породы, сложенные главным образом магнезиально-железистыми силикатами - оливином и пироксеном- снебольшой примесью второстепенных минералов (хромита, магнезита и др.). В химическом отношении У. г. п. относительно бедны SiO 2(менее 45%) и богаты Mg (более 42% MgO). Среди У. г. п. выделяют большое число различных типов, в том числе наиболее важные - дуниты и оливиниты (в которых вместо хлорита присутствует магнетит), перидотиты и пироксениты.Для У. г. п. характерен полный или частичный переход оливина и пироксена в серпентиновые минералы (хризотил, антигорит, лизардит) с образованием серпентинитов.У. г. п. широко распространены в виде массивов или тектонических отторженцев во всех областях развития магматических горных пород; они встречены в областях срединно-океанических хребтов. У. г. п. часто ассоциируют с габбро, щелочными породами и карбонатитами. В начале 1970-х гг. в Австралии были изучены лавовые потоки У. г. п. Эффузивные У. г. п. обнаружены в Сибири (маймечиты) и на Камчатке.

  Условия образования У. г. п. окончательно не выяснены. Большинство геологов-тектонистов (А. В. Пейве, А. Л. Книппер, В. Г. Казьмин и др.) считает У. г. п. тектоническими отторженцами пород, слагающих верхнюю мантию Земли, тогда как многие петрографы (в частности, В. Н. Лодочников, американские учёные Х. Тейлор и П. Уилли) продолжают развивать представления о магматическом генезисе У. г. п.

  С У. г. п. связаны месторождения многих видов полезных ископаемых (месторождения платиновых, хромитовых, силикатных, никелевых и легированных железных руд, асбеста, нефрита и др.). См. также Магматические горные породы.

  Лит.:Пейве А. В., Океаническая кора геологического прошлого, «Геотектоника», 1969. № 4; Wyllie P. J., The origin of the ultramafic and ultrabasic rocks, «Tectonophysics», 1969, v. 7, № 5-6.

  В. П. Петров.

Ультрасферические многочлены

Ультрасфери'ческие многочле'ны,многочлены Гегенбауэра, специальная система многочленов последовательно возрастающих степеней. Для n= 0, 1, 2,... У. м. P n l ( х) степени nявляются коэффициентами при a nв разложении в степенной ряд функции

 

  У. м. ортогональны (см. Ортогональные многочлены ) на отрезке [-1; + 1] относительно веса . У. м. - частный случай Якоби многочленов.

Ультратом

Ультрато'м,то же, что ультрамикротом.

Ультрафильтрация

Ультрафильтра'ция(от ультра... и фильтрация ) ,продавливание жидкости через полупроницаемую мембрану - проницаемую для малых молекул и ионов, но непроницаемую для макромолекул и коллоидных частиц. У. растворов, содержащих молекулы высокомолекулярных соединений, в отличие от У. золей,иногда называют молекулярной фильтрацией. У. можно рассматривать как диализ под давлением или как обратный осмос,если мембрана пропускает только молекулы растворителя. В последнем случае процесс часто называют гиперфильтрацией; при его осуществлении внешнее давление должно превышать осмотическое давление раствора.

  Мембраны для ультрафильтров, обычно в виде пластин (листов) или цилиндрических патронов («свечей»), изготавливают из микропористых неорганических материалов, продуктов животного происхождения, но чаще из искусственных и синтетических полимеров (эфиров целлюлозы, полиамидов и др.). Максимальный размер проходящих через мембрану частиц (молекул) лежит в пределах от нескольких мкмдо сотых долей мкм.Разделяющая способность (селективность) мембран зависит от их структуры и физико-химических свойств, а также от давления, температуры, состава фильтруемой жидкости и прочих внешних факторов.

  У. как метод концентрирования, очистки и фракционирования высокодисперсных систем и многокомпонентных растворов широко применяется в лабораторной практике, медицине, промышленности. Так, посредством У. очищают от ионных и не ионных примесей воду, органические растворители, жидкие топлива и масла; разделяют сложные смеси белков, алкалоидов и др. веществ; выделяют ферменты, витамины, вирусы; стерилизуют жидкости медицинского и фармацевтического назначения. У. используют в дисперсионном анализе,микробиологическом анализе, при анализе загрязнений воздушных бассейнов и природных водоёмов промышленными и бытовыми отходами.

  Лит.:Дытнерский Ю. И., Мембранные процессы разделения жидких смесей, М., 1975.

  Л. А. Шиц.

Ультрафиолетовая микроскопия

Ультрафиоле'товая микроскопи'я,метод микроскопического исследования в ультрафиолетовых лучах. Подробнее см. в ст. Микроскоп.

Ультрафиолетовая спектроскопия

Ультрафиоле'товая спектроскопи'я,УФ-спектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в УФ-области спектра от 400 нмдо 10 нм.Исследованием спектров в области 200-10 нмзанимается вакуумная спектроскопия (см. Ультрафиолетовое излучение ) .В области спектра 400-200 нмиспользуют приборы, построенные по тем же оптическим схемам, что и для видимой области спектра; отличие состоит лишь в замене стеклянных призм, линз и др. оптических деталей на кварцевые. При измерении интенсивности УФ-излучения в качестве эталонных применяют источники, имеющие в УФ-области спектра известное распределение спектральной яркости (ленточная вольфрамовая лампа, угольная дуга, а также синхротронное излучение ) ;стандартными приёмниками в этой области спектра являются термопара и градуированные фотоэлементы.

  У. с. применяется при исследовании атомов, ионов, молекул и твёрдых тел для изучения их уровней энергии, вероятностей переходов и др. характеристик. В УФ-области спектра лежат резонансные линии нейтральных, одно- и двукратно ионизованных атомов, а также спектральные линии, испускаемые возбуждёнными конфигурациями высокоионизованных атомов. Электронно-колебательно-вращательные полосы молекул в основном также располагаются в ближней УФ-области спектра. Здесь же сосредоточены полосы поглощения в спектрах большинства полупроводников, возникающие при прямых переходах из валентной зоны в зону проводимости. Многие химические соединения дают сильные полосы поглощения в УФ-области, что создаёт преимущества использования У. с. в спектральном анализе. У. с. имеет большое значение для внеатмосферной астрофизики при изучении Солнца, звёзд, туманностей и др.

  Лит.:Taffе' Н. Н., Orehin М., Theory and applications of ultraviolet spectroscopy, N. Y., [1962]. см. также лит. при ст. Ультрафиолетовое излучение .

  А. Н. Рябцев.

Ультрафиолетовое излучение

Ультрафиоле'товое излуче'ние(от ультра... и фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн l 400-10 нм.Вся область У. и. условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм) ;последнее название обусловлено тем, что У. и. этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

  Ближнее У. и. открыто в 1801 немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное У. и. обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885-1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм.Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал У. и. с длиной волны до 25 нм(1924). К 1927 был изучен весь промежуток между вакуумным У. и. и рентгеновским излучением.

  Спектр У. и. может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника У. и. (см. Спектры оптические ) .Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H 2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры ) .Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение ) .

  Оптические свойствавеществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при l< 320 нм;  в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые др. материалы. Наиболее далёкую границу прозрачности (105 нм) имеет фтористый литий. Для l<105 нмпрозрачных материалов практически нет. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала.Самую коротковолновую границу прозрачности имеет гелий - 50,4 нм.Воздух непрозрачен практически при l< 185 нмиз-за поглощения кислородом.

  Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Например, коэффициент отражения свеженапылённого алюминия, одного из лучших материалов для отражающих покрытий в видимой области спектра, резко уменьшается при l< 90 нм( рис. 1 ). Отражение алюминия значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области l< 80 нм  некоторые материалы имеют коэффициент отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при l< 40 нм  и их коэффициент отражения снижается до 1% и меньше.

  Источники У. и.Излучение накалённых до 3000 К твёрдых тел содержит заметную долю У. и. непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное У. и. испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений У. и. промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для У. и. материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником У. и. Интенсивное У. и. непрерывного спектра испускают электроны, ускоренные в синхротроне ( синхротронное излучение ) .Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы ( лазеры ) .Наименьшую длину волны имеет водородный лазер (109,8 нм) .

 Естественные источники У. и. - Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть У. и. ( l> 290 нм) достигает земной поверхности. Более коротковолновое У. и. поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30-200 кмот поверхности Земли, что играет большую роль в атмосферных процессах. У. и. звёзд и др. космических тел, кроме поглощения в земной атмосфере, в интервале 91,2-20 нмпрактически полностью поглощается межзвёздным водородом.

  Приёмники У. и.Для регистрации У. и. при l>230 нмиспользуются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность У. и. вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры,счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей - каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм.Микроканаловые пластины позволяют получать фотоэлектрические изображения в У. и. и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании У. и. также используют различные люминесцирующие вещества, преобразующие У. и. в видимое. На этой основе созданы приборы для визуализации изображений в У. и.

  Применение У. и.Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия, Вакуумная спектроскопия) .На фотоэффекте, вызываемом У. и., основана фотоэлектронная спектроскопия.У. и. может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и т.д., см. Фотохимия ) . Люминесценцияпод действием У. и. используется при создании люминесцентных ламп,светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии.У. и. применяется в криминалистике для установления идентичности красителей, подлинности документов и т.п. В искусствоведении У. и. позволяет обнаружить на картинах не видимые глазом следы реставраций ( рис. 2 ). Способность многих веществ к избирательному поглощению У. и. используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

  Лит.:Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. - М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. - L. - Sydney, [1967]; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. - Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

  А. Н. Рябцев.

  Биологическое действие У. и.При действии на живые организмы У. и. поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия У. и. лежат химические изменения молекул биополимеров.Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и др. низкомолекулярных соединений.

  На человека и животных малые дозы У. и. оказывают благотворное действие - способствуют образованию витаминов группы D (см. Кальциферолы ) ,улучшают иммунобиологические свойства организма. Характерной реакцией кожи на У. и. является специфическое покраснение - эритема (максимальным эритемным действием обладает У. и. с l= 296,7 нми l= 253,7 нм) ,которая обычно переходит в защитную пигментацию ( загар ) .Большие дозы У. и. могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы У. и. в некоторых случаях могут оказывать канцерогенное действие на кожу.

  В растениях У. и. изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы У. и. Большие дозы У. и., несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

  На микроорганизмы и культивируемые клетки высших животных и растений У. и. оказывает губительное и мутагенное действие (наиболее эффективно У. и. с l в пределах 280-240 нм) .Обычно спектр летального и мутагенного действия У. и. примерно совпадает со спектром поглощения нуклеиновых кислот-ДНК и РНК ( рис. 3 , А), в некоторых случаях спектр биологического действия близок к спектру поглощения белков ( рис. 3 , Б). Основная роль в действии У. и. на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом тимин ) при поглощении квантов У. и. образуют димеры, которые препятствуют нормальному удвоению ( репликации ) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств ( мутациям ) .Определённое значение в летальном действии У. и. на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

  Большинство живых клеток может восстанавливаться от вызываемых У. и. повреждений благодаря наличию у них систем репарации.Способность восстанавливаться от повреждений, вызываемых У. и., возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

  По чувствительности к У. и. биологические объекты различаются очень сильно. Например, доза У. и., вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм 2 ,а для бактерий Micrococcus radiodurans - 7000 эрг/мм 2( рис. 4 , А и Б). Чувствительность клеток к У. и. в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к У. и. мутации некоторых генов.У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к У. и. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к У. и., известны и у высших организмов, в том числе у человека. Так, наследственное заболевание - пигментная ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

  Генетические последствия облучения У. и. пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид.Частота мутирования отдельных генов, при действии высоких доз У. и., может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием У. и. возникают относительно чаще, чем мутации хромосом.Благодаря сильному мутагенному эффекту У. и. широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие У. и. могло играть существенную роль в эволюции живых организмов. О применении У. и. в медицине см. Светолечение.

  Лит.:Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П,, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

  В. И. Корогодин.

Рис. 1. Зависимость коэффициента отражения rслоя алюминия от длины волны l, измеренная сразу после напыления в ультравысоком вакууме (1) и после хранения на открытом воздухе в течение года (2).

Рис. 2. Спектры действия ультрафиолетового излучения на некоторые биологические объекты: А - возникновение мутаций в пыльцевых зернах кукурузы (кружки) и спектр поглощения нуклеиновых кислот (сплошная кривая); Б - иммобилизация (прекращение движения) парамеций (кружки) и спектр поглощения альбумина (сплошная кривая).

Рис. 3. Зависимость выживаемости разных бактерий от дозы ультрафиолетового излучения: А - кишечная палочка, длина волны 253,7 нм; 1, 2 - мутантные штаммы; 3 - дикий тип; Б - M. radiodurans , длина волны 265,2 нм.

Ультрафиолетовое облучение

Ультрафиоле'товое облуче'ние,использование ультрафиолетовых лучей с лечебной целью и для обеззараживания воды, помещений и т.п. Об У. о. человека см. Светолечение.

 У. о. животных применяют для профилактики и лечения рахита и остеомаляции, лечения ран, повышения иммунологической реакций организма. С.-х. животные при моционах облучаются ультрафиолетовыми лучами солнца. В зимне-стойловый период проводят групповое облучение животных искусственными источниками ультрафиолетового излучения (бактерицидная, ртутно-кварцевая, эритемно-увиолевая лампы). Для каждого вида животных существуют свои нормы облучения, например доза облучения ( в/мэрЧ ч/м 2) для коровы 290-210, свиньи 100-70, курицы 25-20. Птиц при клеточном содержании облучают круглосуточно. Крупных животных облучают в фиксационных станках, на привязи; телят, жеребят - в клетках; пушных зверей и поросят - в специальных ящиках с сетками. Источник У. о. устанавливают на разном расстоянии - в зависимости от вида лампы, характера болезни, вида животного. У. о. противопоказано при туберкулёзе, лейкозе, остром гепатите, декомпенсированном пороке сердца.

  Лит.:Медведев И. Д., Физические методы лечения животных, 3 изд., М., 1964, с. 182-265.

Ультрахолодные нейтроны

Ультрахоло'дные нейтро'ны,очень медленные нейтроны,со скоростями Ј 5 м/сек.Термин «У. н.» объясняется тем, что примерно с такой же скоростью двигались бы молекулы газа при температуре ниже 10 -2К. У. н. обладают малой кинетической энергией (порядка 10 -7 эв) ,недостаточной для преодоления слабого отталкивания ядрами большинства химических элементов, и поэтому полностью отражаются от поверхности многих материалов. Величина отталкивающего потенциала равна:

  ,

  где h - Планка постоянная, m -масса нейтрона, N i-плотность ядер i-го сорта в веществе, a i-так называемая длина рассеяния нейтрона на этих ядрах. Для меди U =1,7Ч10 -7 эв,для стекла U= 10 -7 эв.Для ядер 1H, 7 Li, 48Ti и 186W U< 0 ,то есть У. н. притягиваются. Отражение У. н. в некоторой степени можно уподобить отражению света от металлических зеркал, оно может быть описано мнимым показателем преломления для нейтронной волны внутри отражающей среды (см. Нейтронная оптика ) .

 Полное отражение У. н. от стенок позволяет хранить их в течение нескольких минвнутри замкнутых вакуумированных объёмов. Впервые на эту особенность У. н. в 1959 указал Я. Б. Зельдович;первые эксперименты по обнаружению и хранению У. н. были выполнены Ф. Л. Шапиро с сотрудниками в 1968. Время хранения У. н. в замкнутых сосудах ограничено временем жизни свободного нейтрона до бета-распада,а также процессами захвата нейтронов ядрами и неупругого рассеяния нейтронов на ядрах в поверхностном слое толщиной (4p Na) -1/2 ~ 10 -6 см.У. н. могут течь по трубам произвольной формы (нейтроноводам) как разреженный газ. Изогнутые нейтроноводы используются для вывода У. н. из ядерных реакторов и выделения из потока тепловых нейтронов,в котором доля У. н. составляет лишь 10 -11. Поэтому реально получаемые плотности У. н. Ј1 нейтрон/ см 3. На движение У. н. существенно влияют магнитное и гравитационное поля. Свойства У. н. пока недостаточно изучены, но, по-видимому, они могут служить чувствительным инструментом для обнаружения возможного электрического заряда или электрического дипольного момента у нейтрона (см.