Мэвs
y
=1/3 s
полн, а сечение Я. р. s
з=
1/
3s
полн. Т. о., ядро ведёт себя не как абсолютно поглощающая среда (в этом случае s
y= s
p). Угловые распределения упруго рассеянных частиц сходны с дифракционной картиной, имеется ярко выраженная направленность вперёд.
Большая энергия налетающей частицы может распределиться между многими нуклонами ядра. При этом часть из них приобретает энергию, достаточную, чтобы покинуть ядро. При взаимодействии частицы высокой энергии с ядром может развиться внутриядерный каскад, в результате которого испускается несколько энергичных частиц, а оставшаяся часть оказывается сильно возбуждённым составным ядром, которое, распадаясь, испускает частицы малых энергий. Среднее число испускаемых частиц растет с увеличением энергии первичной частицы. В ходе Я. р., кроме нуклонов, могут (с меньшей вероятностью) испускаться более тяжёлые ядерные осколки (дейтроны, тритоны, a-частицы). Я. р., в которой испускается множество заряженных частиц, образует в ядерной фотографической эмульсии многолучевую звезду. В таких Я. р. образуется большое число разнообразных радиоактивных продуктов, для исследования которых применяются методы радиохимии.
Под действием быстрых частиц наблюдают и более простые Я. р.: неупругое рассеяние (p, p'), Я. р. «перезарядки» (p, n), Я. р. «подхвата» (p, d), Я. р. «выбивания» (p, 2p) и др. Вклад этих процессов в полное сечение Я. р. невелик ( ~ 10—20%). Реакция выбивания протона (p, 2p) оказалась очень удобной для исследования структуры ядер. Измеряя энергию вылетающих протонов, можно определить потерю энергии в Я. р. и энергию связи выбитого протона. В распределении по энергиям остаточных ядер наблюдаются максимумы, соответствующие возбуждённым уровням остаточного ядра. Энергия возбуждения этих уровней достигает 50—70 Мэв, и они соответствуют дырочным возбуждениям глубоких оболочек (см. Ядро атомное ).
Кулоновское возбуждение ядер.Протоны и более тяжёлые ионы, движущиеся слишком медленно, для того чтобы преодолеть кулоновский барьер, приближаясь к ядру, создают относительно медленно меняющееся электрическое поле, которое действует на протоны ядра. В этих случаях ядро, поглощая электромагнитную энергию, переходит в возбуждённое состояние, а налетающий ион теряет часть своей энергии. Кулоновское возбуждение — одно из основных средств изучения низколежащих коллективных состояний ядер.
Я. р. под действием фогоноа и электронов.Возбуждения ядра с помощью электромагнитного поля ( фотоядерные реакции ) могут осуществляться при бомбардировке их g-квантамн. При малых энергиях g-кванты могут испытывать только упругое рассеяние. При энергиях, больших энергий отделения нуклонов от ядра, основным процессом становится поглощение g-кванта и испускание ядром нуклонов. При поглощении g-квантов с энергиями в десятки Мэв, как правило, образуется составное ядро. При взаимодействии ядра с более энергичными g-квантами большую роль начинают играть прямые процессы. Величина эффективных сечений фотоядерных реакций — десятки и сотни мбарн.
Электроны, взаимодействуя с протонами ядра, могут испытывать упругое и неупругое рассеяние, а также выбивать протоны из ядра. Исследование упругого рассеяния электронов позволило получить детальные данные о распределении электрического заряда в ядре.
Я. р. с участием мезонов, гиперонов и античастиц.В Я. р. под действием нуклонов, энергия которых больше порога рождения мезонов, возможно испускание мезонов, которые могут также вызывать Я. р. и участвовать в развитии внутриядерного каскада. Наиболее изучены Я. р. на p -мезонах. Многие Я. р., вызываемые пионами, похожи на соответствующие Я. р. под действием нуклонов, например неупругое рассеяние (p,p '), перезарядка (p +,p °), (p -,p°) и выбивание [(p,pp), (p,p n), (p - ,pd)] и др. Однако есть др. Я. р. с участием пионов, не имеющие аналогов в нуклоно-ядерном взаимодействии. К ним относится реакция двойной перезарядки пионов (p -,p +), Я. р. поглощения пионов (p +, 2p), (p -, 2n). Изучение этих Я. р. позволяет исследовать корреляции нуклонов в ядре.
Я. р. с тяжёлыми ионами.Для тяжёлых ионов (Z> 2) в качестве налетающих частиц потенциальный кулоновский барьер x 0в Zраз больше, чем для протонов, и поэтому необходимо, чтобы энергия иона, приходящаяся на 1 нуклон ядра, превышала несколько Мэв(тем больше, чем больше Z мишени). Эффективное сечение Я. р. с тяжёлыми ионами, обладающими энергией x>1,2x 0, даётся выражением: s =p R 2( 1-x 0/x), где
.
Это соответствует классическим представлениям о соударении двух заряженных чёрных шаров радиусом R.При энергиях x < x 0Я. р. осуществляются за счёт туннельного просачивания через барьер (см. Туннельный эффект ) .В этом случае
,
где R 0—сумма радиусов взаимодействующих ядер, w 0— кривизна барьера. Налетающие ионы могут и не вызвать Я. р., а испытать упругое рассеяние в поле кулоновских и ядерных сил. Угловое распределение ионов при упругом рассеянии (при иона порядка расстояния макс. сближения с ядром) имеет дифракционный характер. При меньших дифракционная структура исчезает. Энергетическая зависимость эффективных сечений для Я. р. тяжёлыми ионами носит, как правило, нерезонансный характер. Исключение составляет упругое рассеяние. В энергетической зависимости эффективного сечения упругого рассеяния 6Li на 6Li, 12C на 12C, 14N на 14N, 16O на 14N и др. в интервале энергии (x 0 ~ 5—35 Мэвнаблюдаются резонансы с шириной порядка нескольких Мэви более тонкая структура.
Я. р. с тяжёлыми ионами характеризуются большим числом выходных каналов. Например, при бомбардировке 235Th ионами 40Аг с энергией 379 Мэвобразуются ядра Ca, Ar, S, Si, Mg и Ne.
В случае Я. р. с тяжёлыми ионами различают: реакции передачи нуклонов, реакции передачи более сложных частиц и реакции слияния (образования составного ядра). Я. р., при которых происходит передача малого числа частиц или малой части энергии, называются мягкими соударениями. Их теория имеет много общего с теорией прямых реакций. Я. р., в которых происходит передача значительной массы или энергии, называются жёсткими соударениями или глубоко неупругими передачами. Угловые распределения продуктов этих Я. р. резко асимметричны; лёгкие продукты вылетают преимущественно под малыми углами к ионному пучку. Энергетическое распределение продуктов Я. р. имеет широкий максимум. Кинетическая энергия продуктов Я. р. близка к высоте выходных кулоновских барьеров и практически не зависит от энергии ионов.
При глубоко неупругих столкновениях ядер образуется короткоживущая промежуточная система. Несмотря на обмен массой и энергией, ядра промежуточной системы сохраняют индивидуальность за счёт прочно связанных сердцевин. В результате жёстких соударений образуется много новых нуклидов. В таких Я. р. могут возникать составные ядра с большими энергиями возбуждения (~100 Мэв) и угловыми моментами ~50. Я. р. с образованием составного ядра служат для синтеза трансурановых элементов (слияние ядер мишений из Pb и Bi с ионами 40Ar, 50Ti, 54Cr, 55Mn, 58Fe). Например, с помощью Я. р. 204Pb( , 2n) был осуществлен синтез фермия.
Лит.:Блатт Дж., Вайскопф В., Теоретическая ядерная физика, М., 1954; Лейн А., Томас Р., Теория ядерных реакций при низких энергиях, М., 1960; Давыдов А. С., Теория атомного ядра, М., 1958; Мухин К. Н., Введение в ядерную физику, 2 изд., М., 1965; Волков В. В., в кн.: Тр. Международной конференции по избранным вопросам структуры ядра, т. 2, Дубна, 1976, с. 45—65.
И. Я. Барит.
Сильные взаимодействия
)
.Я. с. являются короткодействующими (радиус их действия ~ 10
-13
см, подробнее см.
Ядро атомное
)
.
Большая энергия налетающей частицы может распределиться между многими нуклонами ядра. При этом часть из них приобретает энергию, достаточную, чтобы покинуть ядро. При взаимодействии частицы высокой энергии с ядром может развиться внутриядерный каскад, в результате которого испускается несколько энергичных частиц, а оставшаяся часть оказывается сильно возбуждённым составным ядром, которое, распадаясь, испускает частицы малых энергий. Среднее число испускаемых частиц растет с увеличением энергии первичной частицы. В ходе Я. р., кроме нуклонов, могут (с меньшей вероятностью) испускаться более тяжёлые ядерные осколки (дейтроны, тритоны, a-частицы). Я. р., в которой испускается множество заряженных частиц, образует в ядерной фотографической эмульсии многолучевую звезду. В таких Я. р. образуется большое число разнообразных радиоактивных продуктов, для исследования которых применяются методы радиохимии.
Под действием быстрых частиц наблюдают и более простые Я. р.: неупругое рассеяние (p, p'), Я. р. «перезарядки» (p, n), Я. р. «подхвата» (p, d), Я. р. «выбивания» (p, 2p) и др. Вклад этих процессов в полное сечение Я. р. невелик ( ~ 10—20%). Реакция выбивания протона (p, 2p) оказалась очень удобной для исследования структуры ядер. Измеряя энергию вылетающих протонов, можно определить потерю энергии в Я. р. и энергию связи выбитого протона. В распределении по энергиям остаточных ядер наблюдаются максимумы, соответствующие возбуждённым уровням остаточного ядра. Энергия возбуждения этих уровней достигает 50—70 Мэв, и они соответствуют дырочным возбуждениям глубоких оболочек (см. Ядро атомное ).
Кулоновское возбуждение ядер.Протоны и более тяжёлые ионы, движущиеся слишком медленно, для того чтобы преодолеть кулоновский барьер, приближаясь к ядру, создают относительно медленно меняющееся электрическое поле, которое действует на протоны ядра. В этих случаях ядро, поглощая электромагнитную энергию, переходит в возбуждённое состояние, а налетающий ион теряет часть своей энергии. Кулоновское возбуждение — одно из основных средств изучения низколежащих коллективных состояний ядер.
Я. р. под действием фогоноа и электронов.Возбуждения ядра с помощью электромагнитного поля ( фотоядерные реакции ) могут осуществляться при бомбардировке их g-квантамн. При малых энергиях g-кванты могут испытывать только упругое рассеяние. При энергиях, больших энергий отделения нуклонов от ядра, основным процессом становится поглощение g-кванта и испускание ядром нуклонов. При поглощении g-квантов с энергиями в десятки Мэв, как правило, образуется составное ядро. При взаимодействии ядра с более энергичными g-квантами большую роль начинают играть прямые процессы. Величина эффективных сечений фотоядерных реакций — десятки и сотни мбарн.
Электроны, взаимодействуя с протонами ядра, могут испытывать упругое и неупругое рассеяние, а также выбивать протоны из ядра. Исследование упругого рассеяния электронов позволило получить детальные данные о распределении электрического заряда в ядре.
Я. р. с участием мезонов, гиперонов и античастиц.В Я. р. под действием нуклонов, энергия которых больше порога рождения мезонов, возможно испускание мезонов, которые могут также вызывать Я. р. и участвовать в развитии внутриядерного каскада. Наиболее изучены Я. р. на p -мезонах. Многие Я. р., вызываемые пионами, похожи на соответствующие Я. р. под действием нуклонов, например неупругое рассеяние (p,p '), перезарядка (p +,p °), (p -,p°) и выбивание [(p,pp), (p,p n), (p - ,pd)] и др. Однако есть др. Я. р. с участием пионов, не имеющие аналогов в нуклоно-ядерном взаимодействии. К ним относится реакция двойной перезарядки пионов (p -,p +), Я. р. поглощения пионов (p +, 2p), (p -, 2n). Изучение этих Я. р. позволяет исследовать корреляции нуклонов в ядре.
Я. р. с тяжёлыми ионами.Для тяжёлых ионов (Z> 2) в качестве налетающих частиц потенциальный кулоновский барьер x 0в Zраз больше, чем для протонов, и поэтому необходимо, чтобы энергия иона, приходящаяся на 1 нуклон ядра, превышала несколько Мэв(тем больше, чем больше Z мишени). Эффективное сечение Я. р. с тяжёлыми ионами, обладающими энергией x>1,2x 0, даётся выражением: s =p R 2( 1-x 0/x), где
.
Это соответствует классическим представлениям о соударении двух заряженных чёрных шаров радиусом R.При энергиях x < x 0Я. р. осуществляются за счёт туннельного просачивания через барьер (см. Туннельный эффект ) .В этом случае
,
где R 0—сумма радиусов взаимодействующих ядер, w 0— кривизна барьера. Налетающие ионы могут и не вызвать Я. р., а испытать упругое рассеяние в поле кулоновских и ядерных сил. Угловое распределение ионов при упругом рассеянии (при иона порядка расстояния макс. сближения с ядром) имеет дифракционный характер. При меньших дифракционная структура исчезает. Энергетическая зависимость эффективных сечений для Я. р. тяжёлыми ионами носит, как правило, нерезонансный характер. Исключение составляет упругое рассеяние. В энергетической зависимости эффективного сечения упругого рассеяния 6Li на 6Li, 12C на 12C, 14N на 14N, 16O на 14N и др. в интервале энергии (x 0 ~ 5—35 Мэвнаблюдаются резонансы с шириной порядка нескольких Мэви более тонкая структура.
Я. р. с тяжёлыми ионами характеризуются большим числом выходных каналов. Например, при бомбардировке 235Th ионами 40Аг с энергией 379 Мэвобразуются ядра Ca, Ar, S, Si, Mg и Ne.
В случае Я. р. с тяжёлыми ионами различают: реакции передачи нуклонов, реакции передачи более сложных частиц и реакции слияния (образования составного ядра). Я. р., при которых происходит передача малого числа частиц или малой части энергии, называются мягкими соударениями. Их теория имеет много общего с теорией прямых реакций. Я. р., в которых происходит передача значительной массы или энергии, называются жёсткими соударениями или глубоко неупругими передачами. Угловые распределения продуктов этих Я. р. резко асимметричны; лёгкие продукты вылетают преимущественно под малыми углами к ионному пучку. Энергетическое распределение продуктов Я. р. имеет широкий максимум. Кинетическая энергия продуктов Я. р. близка к высоте выходных кулоновских барьеров и практически не зависит от энергии ионов.
При глубоко неупругих столкновениях ядер образуется короткоживущая промежуточная система. Несмотря на обмен массой и энергией, ядра промежуточной системы сохраняют индивидуальность за счёт прочно связанных сердцевин. В результате жёстких соударений образуется много новых нуклидов. В таких Я. р. могут возникать составные ядра с большими энергиями возбуждения (~100 Мэв) и угловыми моментами ~50. Я. р. с образованием составного ядра служат для синтеза трансурановых элементов (слияние ядер мишений из Pb и Bi с ионами 40Ar, 50Ti, 54Cr, 55Mn, 58Fe). Например, с помощью Я. р. 204Pb( , 2n) был осуществлен синтез фермия.
Лит.:Блатт Дж., Вайскопф В., Теоретическая ядерная физика, М., 1954; Лейн А., Томас Р., Теория ядерных реакций при низких энергиях, М., 1960; Давыдов А. С., Теория атомного ядра, М., 1958; Мухин К. Н., Введение в ядерную физику, 2 изд., М., 1965; Волков В. В., в кн.: Тр. Международной конференции по избранным вопросам структуры ядра, т. 2, Дубна, 1976, с. 45—65.
И. Я. Барит.