Мэвs y =1/3 s полн, а сечение Я. р. s з= 1/ 3s полн. Т. о., ядро ведёт себя не как абсолютно поглощающая среда (в этом случае s y= s p). Угловые распределения упруго рассеянных частиц сходны с дифракционной картиной, имеется ярко выраженная направленность вперёд.
     Большая энергия налетающей частицы может распределиться между многими нуклонами ядра. При этом часть из них приобретает энергию, достаточную, чтобы покинуть ядро. При взаимодействии частицы высокой энергии с ядром может развиться внутриядерный каскад, в результате которого испускается несколько энергичных частиц, а оставшаяся часть оказывается сильно возбуждённым составным ядром, которое, распадаясь, испускает частицы малых энергий. Среднее число испускаемых частиц растет с увеличением энергии первичной частицы. В ходе Я. р., кроме нуклонов, могут (с меньшей вероятностью) испускаться более тяжёлые ядерные осколки (дейтроны, тритоны, a-частицы). Я. р., в которой испускается множество заряженных частиц, образует в ядерной фотографической эмульсии многолучевую звезду. В таких Я. р. образуется большое число разнообразных радиоактивных продуктов, для исследования которых применяются методы радиохимии.
     Под действием быстрых частиц наблюдают и более простые Я. р.: неупругое рассеяние (p, p'), Я. р. «перезарядки» (p, n), Я. р. «подхвата» (p, d), Я. р. «выбивания» (p, 2p) и др. Вклад этих процессов в полное сечение Я. р. невелик ( ~ 10—20%). Реакция выбивания протона (p, 2p) оказалась очень удобной для исследования структуры ядер. Измеряя энергию вылетающих протонов, можно определить потерю энергии в Я. р. и энергию связи выбитого протона. В распределении по энергиям остаточных ядер наблюдаются максимумы, соответствующие возбуждённым уровням остаточного ядра. Энергия возбуждения этих уровней достигает 50—70 Мэв, и они соответствуют дырочным возбуждениям глубоких оболочек (см. Ядро атомное ).
      Кулоновское возбуждение ядер.Протоны и более тяжёлые ионы, движущиеся слишком медленно, для того чтобы преодолеть кулоновский барьер, приближаясь к ядру, создают относительно медленно меняющееся электрическое поле, которое действует на протоны ядра. В этих случаях ядро, поглощая электромагнитную энергию, переходит в возбуждённое состояние, а налетающий ион теряет часть своей энергии. Кулоновское возбуждение — одно из основных средств изучения низколежащих коллективных состояний ядер.
      Я. р. под действием фогоноа и электронов.Возбуждения ядра с помощью электромагнитного поля ( фотоядерные реакции ) могут осуществляться при бомбардировке их g-квантамн. При малых энергиях g-кванты могут испытывать только упругое рассеяние. При энергиях, больших энергий отделения нуклонов от ядра, основным процессом становится поглощение g-кванта и испускание ядром нуклонов. При поглощении g-квантов с энергиями в десятки Мэв, как правило, образуется составное ядро. При взаимодействии ядра с более энергичными g-квантами большую роль начинают играть прямые процессы. Величина эффективных сечений фотоядерных реакций — десятки и сотни мбарн.
     Электроны, взаимодействуя с протонами ядра, могут испытывать упругое и неупругое рассеяние, а также выбивать протоны из ядра. Исследование упругого рассеяния электронов позволило получить детальные данные о распределении электрического заряда в ядре.
     Я. р. с участием мезонов, гиперонов и античастиц.В Я. р. под действием нуклонов, энергия которых больше порога рождения мезонов, возможно испускание мезонов, которые могут также вызывать Я. р. и участвовать в развитии внутриядерного каскада. Наиболее изучены Я. р. на p -мезонах. Многие Я. р., вызываемые пионами, похожи на соответствующие Я. р. под действием нуклонов, например неупругое рассеяние (p,p '), перезарядка (p +,p °), (p -,p°) и выбивание [(p,pp), (p,p n), (p - ,pd)] и др. Однако есть др. Я. р. с участием пионов, не имеющие аналогов в нуклоно-ядерном взаимодействии. К ним относится реакция двойной перезарядки пионов (p -,p +), Я. р. поглощения пионов (p +, 2p), (p -, 2n). Изучение этих Я. р. позволяет исследовать корреляции нуклонов в ядре.
      Я. р. с тяжёлыми ионами.Для тяжёлых ионов (Z> 2) в качестве налетающих частиц потенциальный кулоновский барьер x 0в Zраз больше, чем для протонов, и поэтому необходимо, чтобы энергия иона, приходящаяся на 1 нуклон ядра, превышала несколько Мэв(тем больше, чем больше Z мишени). Эффективное сечение Я. р. с тяжёлыми ионами, обладающими энергией x>1,2x 0, даётся выражением: s =p R 2( 1-x 0/x), где
    .
     Это соответствует классическим представлениям о соударении двух заряженных чёрных шаров радиусом R.При энергиях x < x 0Я. р. осуществляются за счёт туннельного просачивания через барьер (см. Туннельный эффект ) .В этом случае
    ,
     где R 0сумма радиусов взаимодействующих ядер, w 0— кривизна барьера. Налетающие ионы могут и не вызвать Я. р., а испытать упругое рассеяние в поле кулоновских и ядерных сил. Угловое распределение ионов при упругом рассеянии (при  иона порядка расстояния макс. сближения с ядром) имеет дифракционный характер. При меньших  дифракционная структура исчезает. Энергетическая зависимость эффективных сечений для Я. р. тяжёлыми ионами носит, как правило, нерезонансный характер. Исключение составляет упругое рассеяние. В энергетической зависимости эффективного сечения упругого рассеяния 6Li на 6Li, 12C на 12C, 14N на 14N, 16O на 14N и др. в интервале энергии (x 0 ~ 5—35 Мэвнаблюдаются резонансы с шириной порядка нескольких Мэви более тонкая структура.
     Я. р. с тяжёлыми ионами характеризуются большим числом выходных каналов. Например, при бомбардировке 235Th ионами 40Аг с энергией 379 Мэвобразуются ядра Ca, Ar, S, Si, Mg и Ne.
     В случае Я. р. с тяжёлыми ионами различают: реакции передачи нуклонов, реакции передачи более сложных частиц и реакции слияния (образования составного ядра). Я. р., при которых происходит передача малого числа частиц или малой части энергии, называются мягкими соударениями. Их теория имеет много общего с теорией прямых реакций. Я. р., в которых происходит передача значительной массы или энергии, называются жёсткими соударениями или глубоко неупругими передачами. Угловые распределения продуктов этих Я. р. резко асимметричны; лёгкие продукты вылетают преимущественно под малыми углами к ионному пучку. Энергетическое распределение продуктов Я. р. имеет широкий максимум. Кинетическая энергия продуктов Я. р. близка к высоте выходных кулоновских барьеров и практически не зависит от энергии ионов.
     При глубоко неупругих столкновениях ядер образуется короткоживущая промежуточная система. Несмотря на обмен массой и энергией, ядра промежуточной системы сохраняют индивидуальность за счёт прочно связанных сердцевин. В результате жёстких соударений образуется много новых нуклидов. В таких Я. р. могут возникать составные ядра с большими энергиями возбуждения (~100 Мэв) и угловыми моментами ~50. Я. р. с образованием составного ядра служат для синтеза трансурановых элементов (слияние ядер мишений из Pb и Bi с ионами 40Ar, 50Ti, 54Cr, 55Mn, 58Fe). Например, с помощью Я. р. 204Pb( , 2n)  был осуществлен синтез фермия.
   
      Лит.:Блатт Дж., Вайскопф В., Теоретическая ядерная физика, М., 1954; Лейн А., Томас Р., Теория ядерных реакций при низких энергиях, М., 1960; Давыдов А. С., Теория атомного ядра, М., 1958; Мухин К. Н., Введение в ядерную физику, 2 изд., М., 1965; Волков В. В., в кн.: Тр. Международной конференции по избранным вопросам структуры ядра, т. 2, Дубна, 1976, с. 45—65.
     И. Я. Барит.

Сильные взаимодействия ) .Я. с. являются короткодействующими (радиус их действия ~ 10 -13 см, подробнее см. Ядро атомное ) .

урана и некоторых трансурановых элементов (например, 239Pu) под действием нейтронов. После открытия (1939) немецкими учёными О. Ганом и Ф. Штрасманом деления ядер нейтронами (см. Ядра атомного деление ) Ф. Жолио-Кюри с сотрудниками, Э. Ферми , У. Зинн и Л. Силард (США) и Г. Н. Флёров показали, что при делении ядра вылетает больше 1 нейтрона:
     n+U® А+В+u. (1)
     Здесь А и В— осколки деления с массовыми числами A от 90 до 150, u > 1 — число вторичных нейтронов. Я. ц. р. впервые была осуществлена Э. Ферми (1942).
     Пусть только часть fобщего числа вторичных нейтронов может быть использована для продолжения реакции деления. Тогда на 1 нейтрон первого поколения, вызвавший деление, придется К =u fнейтронов следующего поколения, которые вызовут деление, и если К, называемый коэффициентом размножения нейтронов, больше 1, то число таких нейтронов будет возрастать во времени tпо закону: n= n ue (K-1) t/ t, где t — время жизни поколения нейтронов. Если К — 1 = 1, то число делений в единицу времени постоянно, и может быть осуществлена самоподдерживающаяся Я. ц. р., Устройство, в котором происходит регулируемая самоподдерживающаяся Я. ц. р., называется ядерным реактором.При достаточно больших значениях К —1 реакция перестаёт быть регулируемой и может привести к ядерному взрыву.
     Рассмотрим Я. ц. р. на природном уране, содержащем практически 2 изотопа: 238U (99,29%) и 235U (0,71%), содержание 234U ничтожно. Ядро 238U делится только под действием быстрых нейтронов с энергией (x >1 Мэви малым эффективным поперечным сечением s д= 0,3 барна.Напротив, ядро 235U делится под действием нейтронов любых энергий, причём с уменьшением x сечение его деления орезко возрастает. При делении 238U или 235U быстрым нейтроном вылетает u~2,5 нейтрона с энергией от 0,1 Мэвдо 14 Мэв.Это означает, что при отсутствии потерь Я. ц. р. могла бы развиться в природном уране. Однако потери есть: ядро 238U могут захватывать нейтроны (см. Радиационный захват ) с образованием 239U. Кроме того, при столкновении нейтронов с ядром 238U происходит неупругое рассеяние, при котором энергия нейтронов становится ниже 1 Мэв, и они уже не могут вызвать деление 238U. Бо'льшая часть таких нейтронов испытывает радиационный захват или вылетает наружу. В результате в этих условиях не может развиться Я. ц. р.
     Для возбуждения Я. ц. р. в естественном уране используется замедление нейтронов при их столкновении с лёгкими ядрами ( 2H, 12C и др. замедлители). Оказалось, что сечение деления 235U на тепловых нейтронах (s д (5) =582 барна, сечение радиационного захвата в 235U (с образованием 236U) s д (5) =100 барн, а в 238Us p (8) =2,73 барна.При делении тепловыми нейтронами n = 2,44. Отсюда следует, что число нейтронов h, которые могут вызвать деление 235U, приходящееся на 1 поглощённый тепловой нейтрон предыдущего поколения, равно:
      (2)
     Здесь r 8/r 5отношение концентраций 238U и 235U Это означает возможность развития Я. ц. р. в смеси природного урана с замедлителем.
     Однако при делении на тепловых нейтронах рождаются быстрые нейтроны , которые, прежде чем замедлиться до тепловой энергии, могут поглотиться. Сечение радиационного захвата 238U имеет резонансный характер, т. е. достигает очень больших значений в определённых узких интервалах энергии. Роль резонансного поглощения в Я. ц. р. на тепловых нейтронах в однородных (гомогенных) смесях урана и замедлителей была впервые исследована Я. Б. Зельдовичем и Ю. Б. Харитоном в 1940. В однородной смеси вероятность резонансного поглощения слишком велика, чтобы Я. ц. р. на тепловых нейтронах могла осуществиться. Эту трудность обходят, располагая уран в замедлителе дискретно, в виде блоков, образующих правильную решётку. Резонансное поглощение нейтронов в такой гетерогенной системе резко уменьшается по 2 причинам: 1) сечение резонансного поглощения столь велико, что нейтроны, попадая в блок, поглощаются в поверхностном слое, поэтому внутренняя часть блока экранирована и значительная часть атомов урана не принимает участия в резонансном поглощении: 2) нейтроны резонансной энергии, образовавшиеся в замедлителе, могут не попасть в уран, а, замедляясь при рассеянии на ядрах замедлителя, «уйти» из опасного интервала энергии. При поглощении теплового нейтрона в блоке рождается h вторичных быстрых нейтронов, каждый из которых до выхода из блока вызовет небольшое количество делений 238U. В результате число быстрых нейтронов, вылетающих из блока в замедлитель, равно eh, где e — коэффициент размножения на быстрых нейтронах. Если j — вероятность избежать резонансного поглощения, то только ehj нейтронов замедлится до тепловой энергии. Часть тепловых нейтронов поглотится в замедлителе. Пусть q — вероятность того, что тепловой нейтрон поглотится в уране (коэффициент теплового использования нейтронов). В гомогенной системе:
     ,
     в гетерогенной системе:
     .
     Здесь r uи r 3— концентрации урана и замедлителя, s п соответствующие сечения поглощения, Ф — потоки нейтронов. В результате на 1 тепловой нейтрон первого поколения, совершающий деление, получается К эф= ehjq нейтронов след. поколения, которые могут вызвать деление. К Ґ коэффициент размножения нейтронов в бесконечной гетерогенной системе. Если К Ґ 1 > 0, то реакция деления в бесконечной решётке будет нарастать экспоненциально.
     Если система имеет ограниченные размеры, то часть нейтронов может покинуть среду. Обозначим долю нейтронов, вылетающих наружу, через 1—Р, тогда для продолжения реакции деления остаётся К эф= К~Рнейтронов, и если К эф >1, то число делении растет экспоненциально и реакция является саморазвивающейся. Т. к. число делений и, следовательно, число вторичных нейтронов в размножающей среде пропорционально её объёму, а их вылет (утечка) пропорционален поверхности окружающей среды, то Я. ц. р. возможна только в среде достаточно больших размеров. Например, для шара радиуса  отношение объёма к поверхности равно R/3, и, следовательно, чем больше радиус шара, тем меньше утечка нейтронов. Если радиус размножающей среды становится достаточно большим, чтобы в системе проходила стационарная Я. ц. р., т. е. R —1 =0, то такую систему называют критической, а её радиус критическим радиусом.
     Для осуществления Я. ц. р. в природном уране на тепловых нейтронах используют в качестве замедлителя вещества с малыми сечением радиационного захвата (графит или тяжёлую воду D 2О). В замедлителе из обыкновенной воды Я. ц. р. на природном уране невозможна из-за большого поглощения нейтронов в водороде.
     Чтобы интенсивность Я. ц. р. можно было регулировать, время жизни одного поколения нейтронов должно быть достаточно велико. Время жизни t 0тепловых нейтронов мало (t 0= 10 -3 сек) .Однако наряду с нейтронами, вылетающими из ядра мгновенно (за время 10 -16 сек), существует небольшая доля m. т. н. запаздывающих нейтронов, вылетающих после b-распада осколков деления со средним временем жизни t 3= 14,4 сек.Для запаздывающих нейтронов при делении 235U m»0,75-10 -2. Если К эф>1+m, то время Т«разгона» Я. ц. р. (равное времени, за которое число деления увеличивается в eраз) определяется соотношением:
    
     т. е. запаздывающие нейтроны не участвуют в развитии Я. ц. р. Практически важен другой предельный случай: К эф— 1 << m, тогда:
    
     т. е. мгновенные нейтроны не играют роли в развитии реакции. Т. о., если К эф< 1 +m, то Я. ц. р. будет развиваться только при участии запаздывающих нейтронов за время порядка минут и будет хорошо регулируемой (роль запаздывающих нейтронов была впервые отмечена Зельдовичем и Харитоном в 1940).
     Я. ц. р. осуществляется также на уране, обогащенном 235U, и в чистом 235U. В этих случаях она идёт и на быстрых нейтронах. При поглощении нейтронов в 238U образуется 239Np, а из него после двух b-распадов — 239Pu, который делится под действием тепловых нейтронов, с n = 2,9. При облучении нейтронами 232Th образуется делящийся на тепловых нейтронах 233U. Кроме того, Я. ц. р. возможна в 231Puи изотопах Cm и Cf с нечётным массовым числом (см. Ядерное топливо ) .Из u нейтронов, образующихся в 1 акте деления, один идёт на продолжение Я. ц. р., и, если снизить потери, для воспроизводства ядерного горючего может сохраниться больше одного нейтрона, что может привести к расширенному воспроизводству горючего (см. Реактор-размножитель ) .
   
      Лит.:Галанин А. Д., Теория ядерных реакторов на тепловых нейтронах, 2 изд., М., 1959; Вейнберг А., Вигнер Е., Физическая теория ядерных реакторов, пер. с англ., М., 1961; Зельдович Я. Б., Харитон Ю. Б., «Журнал экспериментальной и теоретической физики», 1940, т. 10, в. 1, с. 29—36; в. 5, с. 477—82; Ферми Э., Научные труды, т. 2, М., 1972, с. 308.
      П. Э. Немировский.

взрыв , вызываемый высвобождением ядерной энергии.К возможности овладения ядерной энергией физики вплотную подошли в начале второй мировой войны 1939—45. Первая так называемая атомная бомба была создана в США объединёнными усилиями большой группы крупнейших учёных, многие из которых эмигрировали из Европы, спасаясь от гитлеровского режима. Первый испытательный Я. в. был произведён 16 июля 1945 близ Аламогордо (штат Нью-Мексико, США); 6 и 9 августа 1945 две американские атомные бомбы были сброшены на японские города Хиросима и Нагасаки (см. Ядерное оружие ) .Энергия первых Я. в. оценивалась примерно в 10 21 эрг(10 14 дж), что эквивалентно выделению энергии при взрыве около 20 тыс. т( кт) тротила (энергию Я. в. обычно характеризуют его тротиловым эквивалентом ) .В СССР первый атомный взрыв был осуществлен в августе 1949, а 12 августа 1953 в СССР было проведено первое испытание значительно более мощной водородной бомбы. В дальнейшем ядерные державы производили испытательные Я. в. с энергиями до десятков млн.