Найтовский сдвиг
)
.
Резонансная линия имеет ширину Dw = 2/ T 2( рис. 2 ). В сильных полях H 1наступает «насыщение» — увеличение ширины и уменьшение амплитуды линии при ½g½H 1 > ( T 1T 2) -1 /2. Насыщение сопровождается уменьшением ядерной намагниченности. Этому соответствует выравнивание населённостей уровней в результате переходов, вызванных полем H 1.Ширина линий в кристаллах определяется магнитным полем соседних ядер. Для многих кристаллов спин-спиновое взаимодействие ядер настолько велико, что приводит к расщеплению резонансной линии.
Большое влияние на времена релаксации, ширину и форму линий ЯМР оказывает взаимодействие электрического квадрупольного момента ядер Qс локальным электрическим полем в веществе. В жидкостях ЯМР для ядер с большим Qудаётся наблюдать только на веществах с симметричным строением молекул, исключающим появление квадрупольного взаимодействия (например, 73Ge в тетраэдрической молекуле GeCl 4). В кристаллах квадрупольное взаимодействие часто даёт расщепление уровней ЯМР»m Н 0. В этом случае поглощение энергии определяется ядерным квадрупольным резонансом.
Спектры ЯМР в подвижных жидкостях для ядер со спином I = 1/ 2 и Q= 0 отличаются узкими линиями (ЯМР высокого разрешения). Спектры высокого разрешения получаются для протонов, ядер 19F, 13C, 31P и некоторых других ядер. Одиночные линии в этом случае получаются только если наблюдается ЯМР ядер, занимающих химически эквивалентные положения (например, линии водорода в спектрах воды, бензола, циклогексана). Все соединения более сложного строения дают спектры из многих линий ( рис. 3 ), что связано с двумя эффектами. Первый, так называемый химический сдвиг, — результат взаимодействия окружающих ядро электронов с полем H 0.
Возмущение состояний электронов вызывает уменьшение постоянной составляющей поля, действующего на ядра, пропорциональное H 0 .Величина химического сдвига зависит от структуры электронных оболочек и, т. о., от характера химических связей, что позволяет судить о структуре молекул по спектру ЯМР. Вторым эффектом является непрямое спин-спиновое взаимодействие. Непосредственное магнитное взаимодействие ядер в подвижных жидкостях затруднено из-за броуновского движения молекул; непрямое спин-спиновое взаимодействие обусловлено поляризацией электронных оболочек полем ядерных моментов. Величина расщеплений в этом случае не зависит от H 0 .
Наблюдение спектров ЯМР осуществляется путём медленного изменения частоты со поля H 1 или напряжённости поля H 0. Часто применяется модуляция поля Нополем звуковой частоты. При исследованиях кристаллов лучшую чувствительность даёт метод «быстрой модуляции»: поле H 0модулируется звуковой частотой так, что процессы, определяемые временем релаксации T 1, не успевают завершиться за период модуляции, и состояние системы спинов нестационарно. Применяются также импульсные методы (воздействие поля H 1ограничено во времени короткими импульсами). Важнейшие из них — метод спинового эха и фурье-спектроскопия.
Эдс индукции пропорциональна H 2 0.Поэтому обычно эксперименты выполняют в сильном магнитном поле. Основным элементом радиочастотной аппаратуры, применяемой для наблюдения ЯМР, является настроенный на частоту прецессии контур, в катушку индуктивности которого помещается исследуемое вещество. Катушка выполняет 2 функции: создаёт действующее на исследуемое вещество радиочастотное магнитное поле H 1 и воспринимает эдс, наведённые прецессией ядерных моментов. Контур включается в радиочастотный мост или в генератор, работающий на пороге генерации.
Методом ЯМР были измерены моменты атомных ядер, впервые исследованы состояния с инверсной заселённостью уровней. Исследования релаксационных процессов, ширины и тонкой структуры линий ЯМР дали много сведений о структуре жидкостей и твёрдых тел. ЯМР высокого разрешения представляет собой наряду с инфракрасной спектроскопией стандартный метод определения строения органических молекул. Тесная связь формы сигналов с внутренним движением в веществе позволяет использовать ЯМР для исследования заторможенных вращений в молекулах и кристаллах. ЯМР используется также для изучения механизма и кинетики химических реакций. На ЯМР основаны приборы для прецизионного измерения и стабилизации магнитного поля (см. Квантовый магнитометр ) .За открытие и объяснение ЯМР (1946) Ф. Блоху и Э. Пёрселлу была присуждена Нобелевская премия по физике за 1952.
Лит.:Вloch F., «Physical Review», 1946, v. 70, № 7—8, p. 460; Bioembergen N., Purcell E.M., Pound R. V., там же, 1948, v. 73, № 7, p. 679; Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963; Александров И. В., Теория магнитной релаксации. Релаксация в жидкостях и твердых неметаллических парамагнетиках, М., 1975; Сликтер Ч., Основы теории магнитного резонанса с примерами из физики твердого тела, [пер.], М., 1967; Попл Д., Шнейдер В., Бернстейн Г., Спектры ядерного магнитного резонанса высокого разрешения, пер. с англ., М., 1962; Эмели Дж., Финей Дж., Сатклиф Л., Спектроскопия ядерного магнитного резонанса высокого разрешения, пер. с англ., т. 1—2, М., 1968—69; Фаррар Т., Беккер Э., Импульсная и фурье-спектроскопия ЯМР, пер. с англ., М., 1973.
К. В. Владимирский.
Рис. 3. Спектр ЯМР протонов в чистом этиловом спирте. Расщепление резонансных линий групп OH, CH 2и CH 3обусловлено непрямым спин-спиновым взаимодействием.
Рис. 2. Спектральная линия ЯМР.
Рис. 1. Прецессия магнитного момента m ядра в поле H 0; J — угол прецессии.
парамагнетизма.Я. п. впервые обнаружен в 1937 Л. В.
Шубниковым
и Б. Г. Лазаревым (СССР) в твёрдом водороде. Изучается методом
ядерного магнитного резонанса.
Резонансная линия имеет ширину Dw = 2/ T 2( рис. 2 ). В сильных полях H 1наступает «насыщение» — увеличение ширины и уменьшение амплитуды линии при ½g½H 1 > ( T 1T 2) -1 /2. Насыщение сопровождается уменьшением ядерной намагниченности. Этому соответствует выравнивание населённостей уровней в результате переходов, вызванных полем H 1.Ширина линий в кристаллах определяется магнитным полем соседних ядер. Для многих кристаллов спин-спиновое взаимодействие ядер настолько велико, что приводит к расщеплению резонансной линии.
Большое влияние на времена релаксации, ширину и форму линий ЯМР оказывает взаимодействие электрического квадрупольного момента ядер Qс локальным электрическим полем в веществе. В жидкостях ЯМР для ядер с большим Qудаётся наблюдать только на веществах с симметричным строением молекул, исключающим появление квадрупольного взаимодействия (например, 73Ge в тетраэдрической молекуле GeCl 4). В кристаллах квадрупольное взаимодействие часто даёт расщепление уровней ЯМР»m Н 0. В этом случае поглощение энергии определяется ядерным квадрупольным резонансом.
Спектры ЯМР в подвижных жидкостях для ядер со спином I = 1/ 2 и Q= 0 отличаются узкими линиями (ЯМР высокого разрешения). Спектры высокого разрешения получаются для протонов, ядер 19F, 13C, 31P и некоторых других ядер. Одиночные линии в этом случае получаются только если наблюдается ЯМР ядер, занимающих химически эквивалентные положения (например, линии водорода в спектрах воды, бензола, циклогексана). Все соединения более сложного строения дают спектры из многих линий ( рис. 3 ), что связано с двумя эффектами. Первый, так называемый химический сдвиг, — результат взаимодействия окружающих ядро электронов с полем H 0.
Возмущение состояний электронов вызывает уменьшение постоянной составляющей поля, действующего на ядра, пропорциональное H 0 .Величина химического сдвига зависит от структуры электронных оболочек и, т. о., от характера химических связей, что позволяет судить о структуре молекул по спектру ЯМР. Вторым эффектом является непрямое спин-спиновое взаимодействие. Непосредственное магнитное взаимодействие ядер в подвижных жидкостях затруднено из-за броуновского движения молекул; непрямое спин-спиновое взаимодействие обусловлено поляризацией электронных оболочек полем ядерных моментов. Величина расщеплений в этом случае не зависит от H 0 .
Наблюдение спектров ЯМР осуществляется путём медленного изменения частоты со поля H 1 или напряжённости поля H 0. Часто применяется модуляция поля Нополем звуковой частоты. При исследованиях кристаллов лучшую чувствительность даёт метод «быстрой модуляции»: поле H 0модулируется звуковой частотой так, что процессы, определяемые временем релаксации T 1, не успевают завершиться за период модуляции, и состояние системы спинов нестационарно. Применяются также импульсные методы (воздействие поля H 1ограничено во времени короткими импульсами). Важнейшие из них — метод спинового эха и фурье-спектроскопия.
Эдс индукции пропорциональна H 2 0.Поэтому обычно эксперименты выполняют в сильном магнитном поле. Основным элементом радиочастотной аппаратуры, применяемой для наблюдения ЯМР, является настроенный на частоту прецессии контур, в катушку индуктивности которого помещается исследуемое вещество. Катушка выполняет 2 функции: создаёт действующее на исследуемое вещество радиочастотное магнитное поле H 1 и воспринимает эдс, наведённые прецессией ядерных моментов. Контур включается в радиочастотный мост или в генератор, работающий на пороге генерации.
Методом ЯМР были измерены моменты атомных ядер, впервые исследованы состояния с инверсной заселённостью уровней. Исследования релаксационных процессов, ширины и тонкой структуры линий ЯМР дали много сведений о структуре жидкостей и твёрдых тел. ЯМР высокого разрешения представляет собой наряду с инфракрасной спектроскопией стандартный метод определения строения органических молекул. Тесная связь формы сигналов с внутренним движением в веществе позволяет использовать ЯМР для исследования заторможенных вращений в молекулах и кристаллах. ЯМР используется также для изучения механизма и кинетики химических реакций. На ЯМР основаны приборы для прецизионного измерения и стабилизации магнитного поля (см. Квантовый магнитометр ) .За открытие и объяснение ЯМР (1946) Ф. Блоху и Э. Пёрселлу была присуждена Нобелевская премия по физике за 1952.
Лит.:Вloch F., «Physical Review», 1946, v. 70, № 7—8, p. 460; Bioembergen N., Purcell E.M., Pound R. V., там же, 1948, v. 73, № 7, p. 679; Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963; Александров И. В., Теория магнитной релаксации. Релаксация в жидкостях и твердых неметаллических парамагнетиках, М., 1975; Сликтер Ч., Основы теории магнитного резонанса с примерами из физики твердого тела, [пер.], М., 1967; Попл Д., Шнейдер В., Бернстейн Г., Спектры ядерного магнитного резонанса высокого разрешения, пер. с англ., М., 1962; Эмели Дж., Финей Дж., Сатклиф Л., Спектроскопия ядерного магнитного резонанса высокого разрешения, пер. с англ., т. 1—2, М., 1968—69; Фаррар Т., Беккер Э., Импульсная и фурье-спектроскопия ЯМР, пер. с англ., М., 1973.
К. В. Владимирский.
Рис. 3. Спектр ЯМР протонов в чистом этиловом спирте. Расщепление резонансных линий групп OH, CH 2и CH 3обусловлено непрямым спин-спиновым взаимодействием.
Рис. 2. Спектральная линия ЯМР.
Рис. 1. Прецессия магнитного момента m ядра в поле H 0; J — угол прецессии.
парамагнетизма.Я. п. впервые обнаружен в 1937 Л. В.
Шубниковым
и Б. Г. Лазаревым (СССР) в твёрдом водороде. Изучается методом
ядерного магнитного резонанса.
радиоизотопный ракетный двигатель
,
термоядерный ракетный двигатель
и собственно ЯРД (используется энергия деления ядер). ЯРД состоит из реактора, реактивного сопла, турбонасосного агрегата (ТНА) для подачи рабочего тела в реактор из бака двигательной установки (где оно хранится в жидком состоянии), управляющих агрегатов и других элементов. В
ядерном реакторе
рабочее тело превращается в высокотемпературный газ, при истечении которого создаётся тяга. Газ для привода ТНА можно получить нагревом основного рабочего тела в реакторе. Сопло ТНА и многие другие агрегаты ЯРД аналогичны соответствующим элементам
жидкостных ракетных двигателей
(ЖРД). Принципиальное отличие ЯРД от ЖРД — в наличии ядерного реактора вместо камеры сгорания (разложения). Достоинство ЯРД — в их высоком удельном импульсе благодаря большой скорости истечения рабочего тела, достигающей 50
км/секи более. По удельному импульсу ЯРД значительно превосходят
химические ракетные двигатели
, у которых скорость истечения рабочего тела не превышает 4,5
км/сек.В стадии технической разработки (1977) экспериментальный американский ЯРД «Нерва-I» («Nerva-1»); при массе 11
тразвивает тягу свыше 300
кнпри удельном импульсе 8,1
км/сек.К 1978 созданы экспериментальные образцы радиоизотопных ЯРД с тягой до нескольких
н.Использование всех типов ЯРД предусматривается только в космосе.
Лит.:Бассард Р. В., Де-Лауэр Р. Д., Ракета с атомным двигателем, пер. с англ., М., 1960; их же. Ядерные двигатели для самолётов и ракет, пер. с англ., М., 1967.
ядерная цепная реакция
, сопровождающаяся выделением энергии. Первый Я. р. построен в декабре 1942 в США под руководством Э.
Ферми.В Европе первый Я. р. пущен в декабре 1946 в Москве под руководством И. В.
Курчатова.К 1978 в мире работало уже около тысячи Я. р. различных типов. Составными частями любого Я. р. являются:
активная зона
с
ядерным топливом
, обычно окруженная отражателем нейтронов,
теплоноситель
, система регулирования цепной реакции, радиационная защита, система дистанционного управления (
рис. 1
). Основной характеристикой Я. р. является его мощность. Мощность в 1
Метсоответствует цепной реакции, в которой происходит 3·10
16актов деления в 1
сек.
В активной зоне Я. р. находится ядерное топливо, протекает цепная реакция ядерного деления и выделяется энергия. Состояние Я. р. характеризуется эффективным коэффициентом
Кэфразмножения нейтронов или реактивностью r:
r = (К
Ґ— 1)/К
эф. (1)
Если
К
эф>1, то цепная реакция нарастает во времени, Я. р. находится в надкритичном состоянии и его реактивность r
>0; если
К
эф< 1, то реакция затухает, реактор — подкритичен, r < 0; при
К
Ґ
=1, r = 0 реактор находится в критическом состоянии, идёт стационарный процесс и число делений постоянно во времени. Для инициирования цепной реакции при пуске Я. р. в активную зону обычно вносят источник нейтронов (смесь Ra и Be,
252Cf и др.), хотя это и не обязательно, т. к. спонтанное деление ядер урана и
космические лучи
дают достаточное число начальных нейтронов для развития цепной реакции при
К
эф>1.
В качестве делящегося вещества в большинстве Я. р. применяют
235U. Если активная зона, кроме ядерного топлива (природный или обогащенный уран), содержит замедлитель нейтронов (графит, вода и другие вещества, содержащие лёгкие ядра, см.
Замедление нейтронов
), то основная часть делений происходит под действием
тепловых нейтронов
(
тепловой реактор
)
.В Я. р. на тепловых нейтронах может быть использован природный уран, не обогащенный
235U (такими были первые Я. р.). Если замедлителя в активной зоне нет, то основная часть делений вызывается быстрыми нейтронами с энергией x
n> 10
кэв(
быстрый реактор
)
.Возможны также реакторы на промежуточных нейтронах с энергией 1—1000
эв.
По конструкции Я. р. делятся на
гетерогенные реакторы
, в которых ядерное топливо распределено в активной зоне дискретно в виде блоков, между которыми находится замедлитель нейтронов (
рис. 2
), и
гомогенные реакторы
, в которых ядерное топливо и замедлитель представляют однородную смесь (раствор или суспензия). Блоки с ядерным топливом в гетерогенном Я. р., называются
тепловыделяющими элементами
(ТВЭЛ'ами), образуют правильную решётку; объём, приходящийся на один ТВЭЛ, называется ячейкой. По характеру использования Я. р. делятся на энергетические реакторы и
исследовательские реакторы.Часто один Я. р. выполняет несколько функций (см.
Двухцелевой реактор
)
.
Условие критичности Я. р.имеет вид:
К
эф= К
ҐЧ
Р = 1, (1)
где 1 — Р — вероятность выхода (утечки) нейтронов из активной зоны Я. р.,
К
Ґ
—коэффициент размножения нейтронов в активной зоне бесконечно больших размеров, определяемый для тепловых Я. р. так называемой «формулой 4 сомножителей»:
К
Ґ= neju. (2)
Здесь n — среднее число вторичных (быстрых) нейтронов, возникающих при делении ядра
235U тепловыми нейтронами, e — коэффициент размножения на быстрых нейтронах (увеличение числа нейтронов за счёт деления ядер, главным образом ядер
238U, быстрыми нейтронами); j — вероятность того, что нейтрон не захватится ядром
238U в процессе замедления, u — вероятность того, что тепловой нейтрон вызовет деление. Часто пользуются величиной h = n/(l + a), где a — отношение сечения радиационного захвата s
рк сечению деления s
д.
Условие (1) определяет размеры Я. р. Например, для Я. р. из естественного урана и графита n
=2,4. e » 1,03, eju » 0,44, откуда
К
Ґ=1,08. Это означает, что для
К
Ґ
>1 необходимо Р<0,93, что соответствует (как показывает теория Я. р.) размерам активной зоны Я. р. ~ 5—10
м.Объём современного энергетического Я. р. достигает сотен
м
3и определяется главным образом возможностями теплосъёма, а не условиями критичности. Объём активной зоны Я. р. в критическом состоянии называется критическим объёмом Я. р., а масса делящегося вещества — критической массой. Наименьшей критической массой обладают Я. р. с топливом в виде растворов солей чистых делящихся изотопов в воде и с водяным отражателем нейтронов. Для
235U эта масса равна 0,8
кг, для
239
Pu
—0,5
кг.Наименьшей критической массой обладает
251Cf (теоретически 10 г). Критические параметры графитового Я. р. с естественным ураном: масса урана 45
т, объём графита 450
м
3.Для уменьшения утечки нейтронов активной зоне придают сферическую или близкую к сферической форму, например цилиндр с высотой порядка диаметра или куб (наименьшее отношение поверхности к объёму).
Величина n известна для тепловых нейтронов с точностью 0,3% (табл. 1). При увеличении энергии x
nнейтрона, вызвавшего деление, n растет по закону: n = n
t+ 0,15x
n(x
nв
Мэв), где n
tсоответствует делению тепловыми нейтронами.
Табл. 1. — Величины n и h) для тепловых нейтронов (по данным на 1977)
233U | 235U | 239Pu | 241Pu |
n 2,479 | 2,416 | 2,862 | 2,924 |
h 2,283 | 2,071 | 2,106 | 2,155 |
Величина (e—1) обычно составляет лишь несколько %, тем не менее роль размножения на быстрых нейтронах существенна, поскольку для больших Я. р. ( К Ґ —1) << 1 (графитовые Я. р. с естественным ураном, в которых впервые была осуществлена цепная реакция, невозможно было бы создать, если бы не существовало деления на быстрых нейтронах).
Максимально возможное значение J достигается в Я. р., который содержит только делящиеся ядра. Энергетические Я. р. используют слабо обогащенный уран (концентрация 235U ~ 3—5%), и ядра 238U поглощают заметную часть нейтронов. Так, для естественной смеси изотопов урана максимальное значение nJ =1,32. Поглощение нейтронов в замедлителе и конструкционных материалах обычно не превосходит 5—20% от поглощения всеми изотопами ядерного топлива. Из замедлителей наименьшим поглощением нейтронов обладает тяжёлая вода, из конструкционных материалов — Al и Zr.
Вероятность резонансного захвата нейтронов ядрами 238U в процессе замедления (1—j) существенно снижается в гетерогенных Я. р. Уменьшение (1 — j) связано с тем, что число нейтронов с энергией, близкой к резонансной, резко уменьшается внутри блока топлива и в резонансном поглощении участвует только внешний слой блока. Гетерогенная структура Я. р. позволяет осуществить цепной процесс на естественном уране. Она уменьшает величину О, однако этот проигрыш в реактивности существенно меньше, чем выигрыш из-за уменьшения резонансного поглощения.
Для расчёта тепловых Я. р. необходимо определить спектр тепловых нейтронов. Если поглощение нейтронов очень слабое и нейтрон успевает много раз столкнуться с ядрами замедлителя до поглощения, то между замедляющей средой и нейтронным газом устанавливается термодинамическое равновесие (термализация нейтронов), и спектр тепловых нейтронов описывается Максвелла распределением.В действительности поглощение нейтронов в активной зоне Я. р. достаточно велико. Это приводит к отклонению от распределения Максвелла — средняя энергия нейтронов больше средней энергии молекул среды. На процесс термализации влияют движения ядер, химические связи атомов и др.
Выгорание и воспроизводство ядерного топлива. В процессе работы Я. р. происходит изменение состава топлива, связанное с накоплением в нём осколков деления (см. Ядра атомного деление ) и с образованием трансурановых элементов , главным образом изотопов Pu. Влияние осколков деления на реактивность Я. р. называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных). Отравление обусловлено главным образом 135Xe который обладает наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период его полураспада T 1/2= 9,2 ч, выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135] ( Тц= 6,8 ч) .При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135Xe и наличие промежуточного изотопа 135I приводят к двум важным явлениям: 1) к увеличению концентрации 135Xe и, следовательно, к уменьшению реактивности Я. р. после его остановки или снижения мощности («йодная яма»). Это вынуждает иметь дополнительный запас реактивности в органах регулирования либо делает невозможным кратковременные остановки и колебания мощности. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 13нейтрон/см 2Ч секпродолжительность йодной ямы ~ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135Xe. 2) Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а значит — и мощности Я. р. Эти колебания возникают при Ф> 10 13нейтронов/см 2Ч сек и больших размерах Я. р. Периоды колебаний ~ 10 ч.
Число различных стабильных осколков, возникающих при делении ядер, велико. Различают осколки с большими и малыми сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация первых достигает насыщения в течение нескольких первых суток работы Я. р. (главным образом 149Sm, изменяющий К эфна 1%). Концентрация вторых и вносимая ими отрицательная реактивность возрастают линейно во времени.
Образование трансурановых элементов в Я. р. происходит по схемам:
Здесь з означает захват нейтрона, число под стрелкой — период полураспада.
Накопление 239Pu (ядерного горючего) в начале работы Я. р. происходит линейно во времени, причём тем быстрее (при фиксированном выгорании 235U), чем меньше обогащение урана. Затем концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238U и 239Pu .Характерное время установления равновесной концентрации 239 Pu ~ 3/Ф лет (Ф в ед. 10 13нейтронов/ см 2Чсек). Изотопы 240Pu, 241Pu достигают равновесной концентрации только при повторном сжигании горючего в Я. р. после регенерации ядерного топлива.
Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в Я. р. на 1 ттоплива. Для Я. р., работающих на естественном уране, максимальное выгорание ~ 10 ГвтЧ сут/т(тяжело-водные Я. р.). В Я. р. со слабо обогащенным ураном (2—3% 235U) достигается выгорание ~ 20—30 Гвт-сут/т.В Я. р. на быстрых нейтронах — до 100 Гвт-сут/т.Выгорание 1 Гвт-сут/тсоответствует сгоранию 0,1% ядерного топлива.
При выгорании ядерного топлива реактивность Я. р. уменьшается (в Я. р. на естественном уране при малых выгораниях происходит некоторый рост реактивности). Замена выгоревшего топлива может производиться сразу из всей активной зоны или постепенно по ТВЭЛ'ам так, чтобы в активной зоне находились ТВЭЛ'ы всех возрастов — режим непрерывной перегрузки (возможны промежуточные варианты). В первом случае Я. р. со свежим топливом имеет избыточную реактивность, которую необходимо компенсировать. Во втором случае такая компенсация нужна только при первоначально с запуске, до выхода в режим непрерывной перегрузки. Непрерывная перегрузка позволяет увеличить глубину выгорания, поскольку реактивность Я. р. определяется средними концентрациями делящихся нуклидов (выгружаются ТВЭЛ'ы с минимальной концентрацией делящихся нуклидов). В табл. 2 приведён состав извлекаемого ядерного топлива (в кг) в водо-водяном реакторе мощностью 3 Гвт.Выгружается одновременно вся активная зона после работы Я. р. в течение 3 лети «выдержки» 3 лет(Ф = 3Ч10 13нейтрон/см 2Чсек). Начальный состав: 238U — 77350, 235U — 2630, 234U — 20.
Табл. 2. — Состав выгружаемого топлива, кг
238U75400 | 235U 640 | 239Tu 420 | 236U 360 | 240Pu 170 |