Страница:
Преобразование Лоренца оставляет неизменным взаимное расстояние между двумя точками в четырехмерном мире, т е., как говорят, расстояние между двумя мировыми точкам. Поэтому преобразование Лоренца можно рассматривать просто как поворот системы координат в четырехмерном пространстве и все физические законы записать в виде некоторых уравнений для четырехмерных тензоров.
Каждый наблюдатель по-своему выкраивает из четырехмерного мира свое пространство и свое время, и формулы преобразований Лоренца немедленно следуют из того, что два по-разному равномерно движущихся наблюдателя разными Способами отделяют пространство от времени.
Таким образом, мы видим, что теория относительности позволяет в каком-то смысле объединить временную координату и пространственные координаты в единое четырехмерное многообразие. Однако из этого, разумеется, вовсе не следует делать вывод, что в теории относительности полностью стирается физическое различие между временем и пространством и они становятся совершенно равноправными. Они целиком сохраняют там свой существенно различный физический смысл. Более того, различие их находит с вое отражение также в математической записи уравнении,;в которые время входит иным образом, чем координаты. Так, если потребовать, чтобы указанное четырехмерное пространство было эвклидовым (в геометрическом смысле), то в качестве четвертой координаты необходимо выбрать, не само время, а произведение его на мнимую единицу. В этом и проявляется существенное различие между временем и пространством.
0дно из основных свойств времени – это его способность изменяться только в одном направлении. Отсюда вытекает своего рода неизотропность четырехмерного пространства: выделенный характер положительного направления вдоль оси времени. Каждому положению материальной точки в некоторый момент времени будет соответствовать точка в четырехмерном пространстве. Совокупность таких мировых точек, соответствующих различным положениям материальной точки для различных моментов времени, определяет некоторую кривую в четырехмерном пространстве, называемую мировой линией этой материальной точки. На каждой такой мировой линии имеется выделенное направление от прошедшего к будущему, и эта неравнозначность направлений также связана с различием между временной и пространственными координатами.
И тем не менее, несмотря на столь различный физический смысл, время и пространство в теории относительности оказываются тесно связанными и введение четырехмерного мира является математическим отражением этой связи.
Мы не будем дальше задерживаться на этом вопросе, более глубокое изучение которого требует привлечения соответствующего математического аппарата, а посмотрим теперь, к каким изменениям в законах классической механики привела теория Эйнштейна.
3. Релятивистская динамика
4. Общая теория относительности
Глава V. Появление квантов в физике
1. Классическая и квантовая физика
Каждый наблюдатель по-своему выкраивает из четырехмерного мира свое пространство и свое время, и формулы преобразований Лоренца немедленно следуют из того, что два по-разному равномерно движущихся наблюдателя разными Способами отделяют пространство от времени.
Таким образом, мы видим, что теория относительности позволяет в каком-то смысле объединить временную координату и пространственные координаты в единое четырехмерное многообразие. Однако из этого, разумеется, вовсе не следует делать вывод, что в теории относительности полностью стирается физическое различие между временем и пространством и они становятся совершенно равноправными. Они целиком сохраняют там свой существенно различный физический смысл. Более того, различие их находит с вое отражение также в математической записи уравнении,;в которые время входит иным образом, чем координаты. Так, если потребовать, чтобы указанное четырехмерное пространство было эвклидовым (в геометрическом смысле), то в качестве четвертой координаты необходимо выбрать, не само время, а произведение его на мнимую единицу. В этом и проявляется существенное различие между временем и пространством.
0дно из основных свойств времени – это его способность изменяться только в одном направлении. Отсюда вытекает своего рода неизотропность четырехмерного пространства: выделенный характер положительного направления вдоль оси времени. Каждому положению материальной точки в некоторый момент времени будет соответствовать точка в четырехмерном пространстве. Совокупность таких мировых точек, соответствующих различным положениям материальной точки для различных моментов времени, определяет некоторую кривую в четырехмерном пространстве, называемую мировой линией этой материальной точки. На каждой такой мировой линии имеется выделенное направление от прошедшего к будущему, и эта неравнозначность направлений также связана с различием между временной и пространственными координатами.
И тем не менее, несмотря на столь различный физический смысл, время и пространство в теории относительности оказываются тесно связанными и введение четырехмерного мира является математическим отражением этой связи.
Мы не будем дальше задерживаться на этом вопросе, более глубокое изучение которого требует привлечения соответствующего математического аппарата, а посмотрим теперь, к каким изменениям в законах классической механики привела теория Эйнштейна.
3. Релятивистская динамика
Классические уравнения ньютоновой механики инвариантны относительно преобразования Галилея. И если рассматривать это преобразование как соотношение, отражающее истинную связь между координатами, измеряемыми двумя наблюдателями, движущимися Друг относительно друга прямолинейно и равномерно, то отсюда однозначно следует, что уравнения Ньютона справедливы во всех системах координат, движущихся прямолинейно и равномерно относительно системы неподвижных звезд. Во всех этих системах координат механические явления будут подчиняться одним и тем же законам и, следовательно, никакие механические явления не могут позволить определить скорость системы отсчета, в которой производятся измерения относительно неподвижных звезд. В этом и состоит принцип относительности старой механики. Но с тех пор как Эйнштейн показал, что связь между координатами двух движущихся систем отсчета дается не преобразованием Галилея, а преобразованием Лоренца, положение совершенно изменилось. И, в частности, принцип относительности оказался применимым к оптическим и электромагнитным явлениям, что полностью согласуется с отрицательными результатами опыта Майкельсона и аналогичных ему других экспериментов. Но уравнения ньютоновой механики оказались неинвариантными относительно преобразования Лоренца, и, следовательно, принцип относительности оказался для механических явлений, строго говоря, уже несправедливым. Однако Эйнштейн считал этот вывод неправильным и исходил из предположения о том, что принцип относительности должен быть справедлив для всех физических явлений, в частности и для механических. Но тогда уравнения механики нужно было обобщить таким образом, чтобы они стали инвариантными относительно преобразования Лоренца. При этом новые уравнения должны совпадать в первом приближении со старыми уравнениями Ньютона во всех исследованных ранее случаях, где экспериментальные данные блестяще подтверждали эту теорию. Стало понятно, каким образом необходимо было обобщить основные уравнения механики, чтобы они оказались инвариантными относительно преобразования Лоренца. Уравнения Ньютона утверждают, что производная импульса по времени равна действующей силе. В динамике Эйнштейна это утверждение сохраняет свою силу с той лишь разницей, что импульс определяется там несколько иным образом. Под импульсом материальной точки релятивистская механика понимает не просто произведение массы материальной точки на ее скорость, а произведение массы на частное от деления скорости на некоторую функцию, зависящую от квадрата отношения скорости материальной точки к скорости света в пустоте. Поскольку в обычных условиях скорость материальных тел достаточно мала и квадрат отношения ее к скорости света пренебрежимо мал по сравнению с единицей, то эта функция без заметной ошибки может быть положена равной единице, и мы снова приходим к старым нерелятивистским уравнениям механики. Однако при скоростях, сравнимых со скоростью света, эта функция отлична от единицы и существенно зависит от величины скорости. Отсюда следует отличие релятивистских законов от нерелятивистских, которое тем более заметно, чем ближе скорость тела к скорости света. Кстати, из новых уравнений механики с очевидностью следует, что скорость материальной точки никогда не может достигнуть скорости света в пустоте. Таким образом, скорость света в пустоте оказывается верхним пределом скорости передачи энергии в пространстве. И так a posteriori оказывается оправданной одна из гипотез, сделанных Эйнштейном при анализе методов синхронизации часов.
Мы не в состоянии проводить здесь подробный анализ уравнений релятивистской механики. Достаточно заметить, что весь ее аппарат можно развить точно таким же путем, как это делалось в нерелятивистской классической механике. Например, все уравнения релятивистской динамики легко могут быть получены из некоторого принципа стационарного действия, из которого в свою очередь следуют уравнения Лагранжа и Гамильтона. Таким образом, мы снова приходим к теории Якоби и в случае статических силовых полей к принципу наименьшего действия Мопертюи. Однако между старой и новой механикой имеется большая разница. Подынтегральные выражения, стоящие в интеграле действия, в обоих этих случаях существенно отличаются друг от друга и практически совпадают лишь при достаточно малых скоростях, когда квадрат отношения скорости движения материального тела к скорости света в пустоте пренебрежимо мал по сравнению с единицей. Отсюда следует, что классическая нерелятивистская механика является приближением, справедливым в громадном большинстве практически интересных случаев.
Изменения, вносимые теорией относительности в уравнения классической механики, сводятся к замене старого импульса произведением некоторой константы, характеризующей свойства материальной точки, на частное от деления ее скорости на функцию, также зависящую от скорости. При желании, однако, можно и в релятивистской механике определить импульс так же, как и в нерелявистской, т е. как произведение массы на скорость, с той лишь разницей, что в этом случае масса будет уже зависеть от скорости. Поскольку дополнительная функция, фигурирующая в релятивистском выражении для импульса, стремится к единице, когда скорость стремится к нулю, то отсюда следует, что константа должна быть положена равной массе покоя материальной точки, или, как иногда говорят, собственной массе. Последнее название связано с тем, что именно эту величину массы измерил бы наблюдатель, движущийся с той же скоростью, что и материальная точка. Как уже было отмечено, зависимость массы от скорости становится существенной лишь для достаточно больших скоростей, сравнимых со скоростью света.
Изменения, внесенные теорией относительности в определение импульса, привели, разумеется, к соответствующему изменению выражения для энергии. И это не удивительно, поскольку три компоненты вектора количества движения и энергия представляют собой четыре компоненты четырехмерного вектора, называемого вектором энергии импульса или четырех-вектором импульса.
Это новое выражение для энергии очень интересно тем, что при скорости, равной нулю, энергия не обращается в нуль, как это следовало из старого нерелятивистского выражения для энергии, а принимает постоянное значение, равное произведению массы покоя на квадрат скорости света в пустоте. Таким образом, всякая материальная точка, всякое тело, обладающее инерцией, имеет некоторую собственную энергию или энергию покоя, независящую от скорости. Если скорость тела отлична от нуля, то его энергия превышает энергию покоя. Разность между полной энергией движущегося тела и его энергией покоя характеризует скорость движения и может быть названа кинетической энергией тела. Анализ релятивистского выражения для кинетической энергии показывает, что при скоростях движения, много меньших скорости света, оно с точностью до малых поправок переходит в выражение для кинетической энергии, используемое в старой классической механике (половина произведения массы на квадрат скорости). Таким образом, мы снова видим, что ньютонова механика – первое приближение, справедливое при скоростях движения, много меньших скорости света.
Материальное тело, покоящееся относительно некоторого наблюдателя, обладает в системе координат, связанной с этим наблюдателем, энергией, равной произведению массы покоя на квадрат скорости света. Но если тело начинает двигаться, то его масса возрастает. При приближении скорости тела к скорости света она стремится к бесконечности. Это еще раз указывает на то, что никакому материальному телу с массой покоя, отличной от нуля, невозможно сообщить скорость, равную или тем более превышающую скорость света в пустоте. Эйнштейн обобщил этот результат, показав, что всякое материальное тело, обладающее некоторой массой (измеренной каким-либо наблюдателем), имеет, с точки зрения того же самого наблюдателя, энергию, равную произведению измеренной им массы на квадрат скорости света. Эйнштейн проиллюстрировал это утверждение многочисленными примерами. Так был установлен принцип эквивалентности массы и энергии, отражающий глубокую и общую связь между массой и энергией. Из него следует, что все тела, теряя энергию, теряют и массу, и, обратно, с увеличением энергии увеличивается масса тела. Так, например, масса атома уменьшается при излучении.
Установленный теорией относительности принцип эквивалентности массы и энергии сыграл большую роль во всей теоретической физике, начиная с астрофизики и кончая атомной и ядерной физикой. В частности, стало возможно написать баланс энергии для явлений ядерного распада и получить отсюда ряд весьма общих формул, описывающих эти явления. Однако эти вопросы уже не имеют к нашей теме прямого отношения, и мы их касаться не будем.
Мы не в состоянии проводить здесь подробный анализ уравнений релятивистской механики. Достаточно заметить, что весь ее аппарат можно развить точно таким же путем, как это делалось в нерелятивистской классической механике. Например, все уравнения релятивистской динамики легко могут быть получены из некоторого принципа стационарного действия, из которого в свою очередь следуют уравнения Лагранжа и Гамильтона. Таким образом, мы снова приходим к теории Якоби и в случае статических силовых полей к принципу наименьшего действия Мопертюи. Однако между старой и новой механикой имеется большая разница. Подынтегральные выражения, стоящие в интеграле действия, в обоих этих случаях существенно отличаются друг от друга и практически совпадают лишь при достаточно малых скоростях, когда квадрат отношения скорости движения материального тела к скорости света в пустоте пренебрежимо мал по сравнению с единицей. Отсюда следует, что классическая нерелятивистская механика является приближением, справедливым в громадном большинстве практически интересных случаев.
Изменения, вносимые теорией относительности в уравнения классической механики, сводятся к замене старого импульса произведением некоторой константы, характеризующей свойства материальной точки, на частное от деления ее скорости на функцию, также зависящую от скорости. При желании, однако, можно и в релятивистской механике определить импульс так же, как и в нерелявистской, т е. как произведение массы на скорость, с той лишь разницей, что в этом случае масса будет уже зависеть от скорости. Поскольку дополнительная функция, фигурирующая в релятивистском выражении для импульса, стремится к единице, когда скорость стремится к нулю, то отсюда следует, что константа должна быть положена равной массе покоя материальной точки, или, как иногда говорят, собственной массе. Последнее название связано с тем, что именно эту величину массы измерил бы наблюдатель, движущийся с той же скоростью, что и материальная точка. Как уже было отмечено, зависимость массы от скорости становится существенной лишь для достаточно больших скоростей, сравнимых со скоростью света.
Изменения, внесенные теорией относительности в определение импульса, привели, разумеется, к соответствующему изменению выражения для энергии. И это не удивительно, поскольку три компоненты вектора количества движения и энергия представляют собой четыре компоненты четырехмерного вектора, называемого вектором энергии импульса или четырех-вектором импульса.
Это новое выражение для энергии очень интересно тем, что при скорости, равной нулю, энергия не обращается в нуль, как это следовало из старого нерелятивистского выражения для энергии, а принимает постоянное значение, равное произведению массы покоя на квадрат скорости света в пустоте. Таким образом, всякая материальная точка, всякое тело, обладающее инерцией, имеет некоторую собственную энергию или энергию покоя, независящую от скорости. Если скорость тела отлична от нуля, то его энергия превышает энергию покоя. Разность между полной энергией движущегося тела и его энергией покоя характеризует скорость движения и может быть названа кинетической энергией тела. Анализ релятивистского выражения для кинетической энергии показывает, что при скоростях движения, много меньших скорости света, оно с точностью до малых поправок переходит в выражение для кинетической энергии, используемое в старой классической механике (половина произведения массы на квадрат скорости). Таким образом, мы снова видим, что ньютонова механика – первое приближение, справедливое при скоростях движения, много меньших скорости света.
Материальное тело, покоящееся относительно некоторого наблюдателя, обладает в системе координат, связанной с этим наблюдателем, энергией, равной произведению массы покоя на квадрат скорости света. Но если тело начинает двигаться, то его масса возрастает. При приближении скорости тела к скорости света она стремится к бесконечности. Это еще раз указывает на то, что никакому материальному телу с массой покоя, отличной от нуля, невозможно сообщить скорость, равную или тем более превышающую скорость света в пустоте. Эйнштейн обобщил этот результат, показав, что всякое материальное тело, обладающее некоторой массой (измеренной каким-либо наблюдателем), имеет, с точки зрения того же самого наблюдателя, энергию, равную произведению измеренной им массы на квадрат скорости света. Эйнштейн проиллюстрировал это утверждение многочисленными примерами. Так был установлен принцип эквивалентности массы и энергии, отражающий глубокую и общую связь между массой и энергией. Из него следует, что все тела, теряя энергию, теряют и массу, и, обратно, с увеличением энергии увеличивается масса тела. Так, например, масса атома уменьшается при излучении.
Установленный теорией относительности принцип эквивалентности массы и энергии сыграл большую роль во всей теоретической физике, начиная с астрофизики и кончая атомной и ядерной физикой. В частности, стало возможно написать баланс энергии для явлений ядерного распада и получить отсюда ряд весьма общих формул, описывающих эти явления. Однако эти вопросы уже не имеют к нашей теме прямого отношения, и мы их касаться не будем.
4. Общая теория относительности
Остановимся теперь в нескольких словах на общей теории относительности. Вначале теория относительности была создана Эйнштейном лишь для инерционных систем координат, т е. для систем координат, движущихся прямолинейно и равномерно относительно системы неподвижных звезд, и так же, как и в старой классической механике, принцип относительности был провозглашен только для прямолинейного и равномерного движения. Поэтому под теорией относительности понимают обычно совокупность наиболее существенных результатов, относящихся к инерционным системам координат. Чтобы подчеркнуть это, ее иногда называют частной или специальной теорией относительности. Но необходимо было попытаться обобщить эти результаты на случай ускоренного движения и построить теорию, справедливую в более общем случае. Для непрямолинейного или ускоренного движения, вообще говоря, принцип относительности в его прежней формулировке оказывается уже несправедливым, поскольку в системе координат, движущейся ускоренно (например, вращающейся), механические, оптические или электромагнитные явления протекают иначе, чем в инерциальных системах отсчета. В частности, для правильного описания механических явлений, протекающих в ускоренной системе координат, необходимо вводить некие фиктивные дополнительные силы, называемые центробежными и силами Кориолиса. А необходимость введения этих сил дает наблюдателю возможность определить наличие ускорения системы координат, с которой он связан. Тем не менее и в этом случае можно все же сохранить принцип относительности в его более общей форме, если допустить, что все законы природы выражаются в виде тензорных соотношений в четырехмерном пространстве и попытаться учесть влияние ускорения на физические явления введением ускоренно движущихся систем координат. Более подробный анализ показывает, что использование криволинейных координат в четырехмерном пространстве позволяет объяснить явления, наблюдаемые ускоренно движущимся наблюдателем, и, в частности, введение центробежных и других связанных с ними сил.
Развивая эти идеи, Эйнштейн выдвинул чрезвычайно красивую гипотезу, на которой основана его известная теория гравитации. Силы тяготения, или гравитационные силы, играющие столь важную роль в астрономии, обладают одной особенностью, выделяющей их из всех известных нам в природе сил. А именно, как показали чрезвычайно точные эксперименты, проведенные Эйнштейном, эти силы всегда пропорциональны массе тела, на которое они действуют, и, следовательно, все тела независимо от величины их массы или заряда движутся в гравитационном поле совершенно одинаково (разумеется, при одних и тех же начальных условиях). Иначе говоря, их траектория определяется только свойствами гравитационного поля и не зависит от свойств движущегося тела. Это позволило Эйнштейну учесть влияние гравитационных полей, действующих в некоторой области пространства, введением локальной кривизны четырехмерного пространства. Используемый в специальной теории относительности четырехмерный континуум пространства-времени представляет собой эвклидово или, как говорят, плоское пространство (в частном случае двух измерений примером эвклидова пространства может служить обычная плоскость). Однако ничто не мешает предположить, что четырехмерное пространство может обладать переменной кривизной, т е. быть неэвклидовым. В этом случае уже нельзя ввести системы прямоугольных координат, и положение какой-либо точки в пространстве может быть определено лишь и помощью криволинейной системы координат, подобно тому как это делается в геометрии при изучении искривленных поверхностей. Таким образом, наблюдатель, находящийся в неэвклидовом пространстве, должен для описания событий обязательно пользоваться криволинейной системой координат, что и приводит к появлению гравитационных сил. Центробежные силы, возникающие во вращающейся системе координат, связаны с тем, что наблюдатель, находящийся в этой системе, использует для описания явлений, происходящих в эвклидовом четырехмерном пространстве, системы криволинейных координат. Подобно этому возникновение гравитационных сил вызвано тем, что в области действия гравитационных полей пространство оказывается неэвклидовым и наблюдатель вынужден пользоваться криволинейными координатами.
На этом закончим весьма краткий очерк теории тяготения Эйнштейна, более глубокое изучение которой невозможно без привлечения довольно сложного математического аппарата. Отметим только еще раз, что это, пожалуй, одна из самых красивых и изящных физических теорий.
Специальная теория относительности неоднократно подтверждена экспериментально. В частности, предсказываемое этой теорией заметное увеличение массы электронов при приближении их скорости к скорости света блестяще подтвердилось многими экспериментами, последние и наиболее точные из которых были проделаны Гюйе и Лаванши. Точно так же не вызывает сомнения принцип эквивалентности массы и энергии, неоспоримо доказанный экспериментами в ядерной физике. Но если специальная теория относительности достаточно проверена на опыте, то этого нельзя еще сказать об общей теории относительности. Действительно, новые эффекты, предсказываемые этой теорией, столь малы, что, обнаружив их, каждый раз приходится спрашивать себя, действительно ли это те самые эффекты, которые предсказывает общая теория относительности или же они вызваны другими неучтенными факторами. И ни чрезвычайно малое вековое смещение перигелия Меркурия, ни очень слабое отклонение световых лучей, проходящих вблизи Солнца, не могут пока служить неопровержимыми доказательствами справедливости этой теории, поскольку, хотя эти эффекты и совпадают по порядку величины с предсказываемыми теорией Эйнштейна, толкование их все же не вполне однозначно. Более убедительными кажутся эксперименты по измерению красного смещения спектральных линий, излучаемых, например, спутником Сириуса. Однако этого единственного подтверждения еще недостаточно и одно оно, без сомнения, не может служить достоверным доказательством справедливости общей теории относительности.
И тем не менее, несмотря на недостаточное экспериментальное подтверждение общей теории относительности, эта теория, созданная Эйнштейном, – впечатляющее сооружение. Она принесла в физику множество новых и плодотворных идей, научила внимательно вникать в сущность основных теоретических положений и критически относиться к очевидным и само собой разумеющимся на первый взгляд утверждениям. Благодаря самой сложности, с одной стороны, и одновременно логической стройности ее, с другой, изучение этой теории чрезвычайно полезно для всех физиков-теоретиков.
Развивая эти идеи, Эйнштейн выдвинул чрезвычайно красивую гипотезу, на которой основана его известная теория гравитации. Силы тяготения, или гравитационные силы, играющие столь важную роль в астрономии, обладают одной особенностью, выделяющей их из всех известных нам в природе сил. А именно, как показали чрезвычайно точные эксперименты, проведенные Эйнштейном, эти силы всегда пропорциональны массе тела, на которое они действуют, и, следовательно, все тела независимо от величины их массы или заряда движутся в гравитационном поле совершенно одинаково (разумеется, при одних и тех же начальных условиях). Иначе говоря, их траектория определяется только свойствами гравитационного поля и не зависит от свойств движущегося тела. Это позволило Эйнштейну учесть влияние гравитационных полей, действующих в некоторой области пространства, введением локальной кривизны четырехмерного пространства. Используемый в специальной теории относительности четырехмерный континуум пространства-времени представляет собой эвклидово или, как говорят, плоское пространство (в частном случае двух измерений примером эвклидова пространства может служить обычная плоскость). Однако ничто не мешает предположить, что четырехмерное пространство может обладать переменной кривизной, т е. быть неэвклидовым. В этом случае уже нельзя ввести системы прямоугольных координат, и положение какой-либо точки в пространстве может быть определено лишь и помощью криволинейной системы координат, подобно тому как это делается в геометрии при изучении искривленных поверхностей. Таким образом, наблюдатель, находящийся в неэвклидовом пространстве, должен для описания событий обязательно пользоваться криволинейной системой координат, что и приводит к появлению гравитационных сил. Центробежные силы, возникающие во вращающейся системе координат, связаны с тем, что наблюдатель, находящийся в этой системе, использует для описания явлений, происходящих в эвклидовом четырехмерном пространстве, системы криволинейных координат. Подобно этому возникновение гравитационных сил вызвано тем, что в области действия гравитационных полей пространство оказывается неэвклидовым и наблюдатель вынужден пользоваться криволинейными координатами.
На этом закончим весьма краткий очерк теории тяготения Эйнштейна, более глубокое изучение которой невозможно без привлечения довольно сложного математического аппарата. Отметим только еще раз, что это, пожалуй, одна из самых красивых и изящных физических теорий.
Специальная теория относительности неоднократно подтверждена экспериментально. В частности, предсказываемое этой теорией заметное увеличение массы электронов при приближении их скорости к скорости света блестяще подтвердилось многими экспериментами, последние и наиболее точные из которых были проделаны Гюйе и Лаванши. Точно так же не вызывает сомнения принцип эквивалентности массы и энергии, неоспоримо доказанный экспериментами в ядерной физике. Но если специальная теория относительности достаточно проверена на опыте, то этого нельзя еще сказать об общей теории относительности. Действительно, новые эффекты, предсказываемые этой теорией, столь малы, что, обнаружив их, каждый раз приходится спрашивать себя, действительно ли это те самые эффекты, которые предсказывает общая теория относительности или же они вызваны другими неучтенными факторами. И ни чрезвычайно малое вековое смещение перигелия Меркурия, ни очень слабое отклонение световых лучей, проходящих вблизи Солнца, не могут пока служить неопровержимыми доказательствами справедливости этой теории, поскольку, хотя эти эффекты и совпадают по порядку величины с предсказываемыми теорией Эйнштейна, толкование их все же не вполне однозначно. Более убедительными кажутся эксперименты по измерению красного смещения спектральных линий, излучаемых, например, спутником Сириуса. Однако этого единственного подтверждения еще недостаточно и одно оно, без сомнения, не может служить достоверным доказательством справедливости общей теории относительности.
И тем не менее, несмотря на недостаточное экспериментальное подтверждение общей теории относительности, эта теория, созданная Эйнштейном, – впечатляющее сооружение. Она принесла в физику множество новых и плодотворных идей, научила внимательно вникать в сущность основных теоретических положений и критически относиться к очевидным и само собой разумеющимся на первый взгляд утверждениям. Благодаря самой сложности, с одной стороны, и одновременно логической стройности ее, с другой, изучение этой теории чрезвычайно полезно для всех физиков-теоретиков.
Глава V. Появление квантов в физике
1. Классическая и квантовая физика
Наступило время перейти к введению понятия квантов в физику. Однако прежде чем излагать историю появления квантов, необходимо в нескольких словах остановиться на глубоком различии между классическими, доквантовыми теориями и квантовой теорией. Общим для всех классических теорий является предположение о возможности описывать состояния физического мира, задавая точное положение отдельных его частей в трехмерном пространстве. Это положение непрерывно изменяется со временем. При этом само движение определяется характером изменения положения со временем.
Разумеется, между прежними попытками и представлениями релятивистской теории есть существенное различие. В дорелятивистской физике пространство представляет собой некоторую фиксированную область, в которой протекают все физические явления, рассматриваемые любыми мыслимыми наблюдателями в одно и то же время, абсолютное и универсальное, которое задает свой ритм всем этим наблюдателям. В теории относительности, напротив, ни пространство, ни время не имеют абсолютного характера. Абсолютен лишь четырехмерный континуум, образованный объединением пространства и времени и называемый четырехмерным миром. Каждый наблюдатель из этого четырехмерного мира разными способами выделяет свое пространство и свое время. Однако, несмотря на это существенное различие во взглядах на пространство и время, как релятивистская, так и дорелятивистская физика в равной мере исходят из предположения о том, что все физические явления независимо от их характера и природы могут быть вполне определенно и однозначно описаны в рамках трехмерного пространства и времени. Так, например, движение какой-либо частицы определяется заданием последовательности вполне определенных положений ее в различные моменты времени совершенно независимо от физической природы этой частицы, скажем, от величины ее массы. Более того, так же как и в старой классической физике, в релятивистской теории вся эволюция физических явлений определяется неумолимой игрой дифференциальных уравнений, которые однозначно предсказывают все будущее. При описании четырехмерного пространства теория относительности предполагает заданной всю совокупность событий, соответствующих любому моменту времени. И релятивистская теория лишь несовершенством человека объясняет тот факт, что наблюдатель может раскрывать события в четырехмерном мире только последовательно шаг за шагом по мере течения его собственного времени. Утверждая, что каждый наблюдатель может однозначно локализовать события в пространстве и во времени, придавая пространственный характер длительности и рассматривая любые реальные предсказания, диктуемые самим характером пространства-времени, теория относительности сохраняет в силе вплоть до самых детальных следствий генеральные идеи прежней физики. Поэтому можно сказать, что, несмотря на такой новый, почти революционный характер эйнштейновских концепций, теория относительности в определенном смысле явилась венцом именно классической физики.
Современная квантовая физика смотрит на вещи совершенно иначе. Во введении к этой книжке мы уже указали на некоторые из главных особенностей квантовой теории. Само существование кванта действия, как мы говорили, выражает своего рода взаимную связь между локализацией некоторого объекта во времени и в пространстве и его динамическим состоянием. С точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности.
Из существования этой взаимосвязи вытекает невозможность одновременного определения координаты и скорости, выражаемая на математическом языке соотношением неопределенности Гейзенберга. Это соотношение указывает на то, что нельзя и каком-либо эксперименте одновременно проводить измерения пространственно-временных координат и параметров, определяющих динамическое состояние системы.
Анализ этого сложного вопроса показывает, что с точки зрения квантовой физики пространственно-временное описание событий, принятое в классической (и даже в релятивистской) физике, должно рассматриваться лишь как приближение, справедливое только для сравнительно тяжелых тел. А под тяжелыми телами мы понимаем тела, состоящие из чрезвычайно большого числа элементарных частиц и, следовательно, обладающие полной массой, во много раз превышающей массу любой из элементарных частиц. К таким телам относятся, в частности, все используемые нами обычно в экспериментах тела. Этим и объясняется то, что при изучении крупномасштабных явлений классическая физика прекрасно могла обходиться этим пространственно-временным описанием.
Система координат, связанная с каким-либо материальным телом, и часы, синхронизованные соответствующим образом, позволяют, следуя методам классической физики, удовлетворительно описывать все макроскопические явления. Но при попытке использовать таким образом определенные пространственно-временные координаты для описания процессов, происходящих в микромире, мы сталкиваемся с соотношениями неопределенности Гейзенберга. Из этих соотношений вытекает, что понятия пространства и времени, используемые в классической физике и вполне применимые для описания макроскопических явлений, становятся неприменимыми при описании явлений атомного масштаба.
Однако мы, физики, все же упорно пытаемся описывать мир элементарных частиц с помощью прежних понятий пространства и времени, привитых нам повседневным опытом. Отсюда и трудности, возникающие при изучении квантовой теории, поэтому нам и кажется столь странным само понятие кванта действия. Быть может и окажется возможным ввести для мира атома понятия пространства и времени каким-либо более общим способом, чем это делается в классической физике. Однако эти новые понятия должны как-то отражать существование кванта действия и более тесную, чем в классической физике, связь между чисто геометрическими и динамическими понятиями. Кроме того, в случае систем, состоящих из очень большого числа элементарных частиц, т е., иначе говоря, при описании макроскопических явлений, они должны позволить перейти к обычным понятиям пространства и времени. Интересные работы в этом направлении уже сделаны Детушем. Во всяком случае, не следует забывать о такой возможности.
Абсолютный детерминизм классической физики в значительной мере покоится на понятиях пространства и времени. Приведя к глубоким изменениям во взглядах на пространство и время, теория относительности тем не менее сохранила принцип классического детерминизма. Совершенно иначе обстоит дело в квантовой механике. Отвергая точное пространственно-временное описание явлений, во всяком случае явлений масштаба атома, она отвергает также и принцип классического детерминизма в его старом смысле.
Разумеется, между прежними попытками и представлениями релятивистской теории есть существенное различие. В дорелятивистской физике пространство представляет собой некоторую фиксированную область, в которой протекают все физические явления, рассматриваемые любыми мыслимыми наблюдателями в одно и то же время, абсолютное и универсальное, которое задает свой ритм всем этим наблюдателям. В теории относительности, напротив, ни пространство, ни время не имеют абсолютного характера. Абсолютен лишь четырехмерный континуум, образованный объединением пространства и времени и называемый четырехмерным миром. Каждый наблюдатель из этого четырехмерного мира разными способами выделяет свое пространство и свое время. Однако, несмотря на это существенное различие во взглядах на пространство и время, как релятивистская, так и дорелятивистская физика в равной мере исходят из предположения о том, что все физические явления независимо от их характера и природы могут быть вполне определенно и однозначно описаны в рамках трехмерного пространства и времени. Так, например, движение какой-либо частицы определяется заданием последовательности вполне определенных положений ее в различные моменты времени совершенно независимо от физической природы этой частицы, скажем, от величины ее массы. Более того, так же как и в старой классической физике, в релятивистской теории вся эволюция физических явлений определяется неумолимой игрой дифференциальных уравнений, которые однозначно предсказывают все будущее. При описании четырехмерного пространства теория относительности предполагает заданной всю совокупность событий, соответствующих любому моменту времени. И релятивистская теория лишь несовершенством человека объясняет тот факт, что наблюдатель может раскрывать события в четырехмерном мире только последовательно шаг за шагом по мере течения его собственного времени. Утверждая, что каждый наблюдатель может однозначно локализовать события в пространстве и во времени, придавая пространственный характер длительности и рассматривая любые реальные предсказания, диктуемые самим характером пространства-времени, теория относительности сохраняет в силе вплоть до самых детальных следствий генеральные идеи прежней физики. Поэтому можно сказать, что, несмотря на такой новый, почти революционный характер эйнштейновских концепций, теория относительности в определенном смысле явилась венцом именно классической физики.
Современная квантовая физика смотрит на вещи совершенно иначе. Во введении к этой книжке мы уже указали на некоторые из главных особенностей квантовой теории. Само существование кванта действия, как мы говорили, выражает своего рода взаимную связь между локализацией некоторого объекта во времени и в пространстве и его динамическим состоянием. С точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности.
Из существования этой взаимосвязи вытекает невозможность одновременного определения координаты и скорости, выражаемая на математическом языке соотношением неопределенности Гейзенберга. Это соотношение указывает на то, что нельзя и каком-либо эксперименте одновременно проводить измерения пространственно-временных координат и параметров, определяющих динамическое состояние системы.
Анализ этого сложного вопроса показывает, что с точки зрения квантовой физики пространственно-временное описание событий, принятое в классической (и даже в релятивистской) физике, должно рассматриваться лишь как приближение, справедливое только для сравнительно тяжелых тел. А под тяжелыми телами мы понимаем тела, состоящие из чрезвычайно большого числа элементарных частиц и, следовательно, обладающие полной массой, во много раз превышающей массу любой из элементарных частиц. К таким телам относятся, в частности, все используемые нами обычно в экспериментах тела. Этим и объясняется то, что при изучении крупномасштабных явлений классическая физика прекрасно могла обходиться этим пространственно-временным описанием.
Система координат, связанная с каким-либо материальным телом, и часы, синхронизованные соответствующим образом, позволяют, следуя методам классической физики, удовлетворительно описывать все макроскопические явления. Но при попытке использовать таким образом определенные пространственно-временные координаты для описания процессов, происходящих в микромире, мы сталкиваемся с соотношениями неопределенности Гейзенберга. Из этих соотношений вытекает, что понятия пространства и времени, используемые в классической физике и вполне применимые для описания макроскопических явлений, становятся неприменимыми при описании явлений атомного масштаба.
Однако мы, физики, все же упорно пытаемся описывать мир элементарных частиц с помощью прежних понятий пространства и времени, привитых нам повседневным опытом. Отсюда и трудности, возникающие при изучении квантовой теории, поэтому нам и кажется столь странным само понятие кванта действия. Быть может и окажется возможным ввести для мира атома понятия пространства и времени каким-либо более общим способом, чем это делается в классической физике. Однако эти новые понятия должны как-то отражать существование кванта действия и более тесную, чем в классической физике, связь между чисто геометрическими и динамическими понятиями. Кроме того, в случае систем, состоящих из очень большого числа элементарных частиц, т е., иначе говоря, при описании макроскопических явлений, они должны позволить перейти к обычным понятиям пространства и времени. Интересные работы в этом направлении уже сделаны Детушем. Во всяком случае, не следует забывать о такой возможности.
Абсолютный детерминизм классической физики в значительной мере покоится на понятиях пространства и времени. Приведя к глубоким изменениям во взглядах на пространство и время, теория относительности тем не менее сохранила принцип классического детерминизма. Совершенно иначе обстоит дело в квантовой механике. Отвергая точное пространственно-временное описание явлений, во всяком случае явлений масштаба атома, она отвергает также и принцип классического детерминизма в его старом смысле.