Итак, мы можем определить некоторые минимальные условия структуры вообще: 1) Здесь должны быть по крайней мере две разнородные серии, одна из которых определяется как "означающая", а другая - как "означаемая" (одной серии никогда не достаточно для создания


77

ЛОГИКА СМЫСЛА

структуры). 2) Каждая из серий задается терминами, существующими только посредством отношений, поддерживаемых между ними. Таким отношениям - или, вернее, их значимости - соответствуют особые события, а именно, сингулярности, которые можно выделить внутри структуры. Это очень напоминает дифференциальное исчисление, где распределение сингулярных точек соответствует значимости дифференциальных отношений

2. Например, дифференциальные отношения между фонемами указывают на сингулярности в языке, в "окрестности" которых формируются звуковые и сигнификативные характеристики языка. Более того, сингулярности, относящиеся к одной серии, по-видимому, сложным образом определяют термины другой серии. Как бы то ни было, структура включает в себя два распределения сингулярных точек, соответствующих [обеим] базовым сериям. Поэтому, было бы неточно противопоставлять структуру и событие: структура включает в себя свод идеальных событий как собственную внутреннюю историю (например, если серия включает в себя "персонажей", то это история, которая соединяет все сингулярные точки, соответствующие взаимным положениям персонажей в этих двух сериях). 3) Две разнородные серии сходятся к парадоксальному элементу, выступающему в качестве их "различителя". В этом состоит принцип эмиссии сингулярностей. Данный элемент принадлежит не какой-то одной серии, а, скорее, обеим сразу. Он непрестанно циркулирует по ним. Следовательно, он обладает свойством не совпадать с самим собой, "отсутство-

___________

2 Такое сближение с дифференциальным исчислением может показаться неоправданным и излишним. Но что здесь действительно неоправданно - так это совершенно недостаточная интерпретация исчисления. Уже в конце девятнадцатого века Вейерштрасс дал окончательную интерпретацию - упорядоченную и статичную - очень близкую к математическому структурализму. Тема сингулярностей остается важной частью теории дифференциальных уравнений. Лучшим исследованием истории дифференциального исчисления и его современной структуралистской интерпретацией является работа С.В.Воуеr, The History of the Calculus and Its Conceptual Development, Dover, New York, 1959.

78

СТРУКТУРА

вать на собственном месте", не иметь самотождественности, самоподобия и саморавновесия. В одной серии он появляется как избыток, но только при условии, что в то же самое время в другой серии он проявляется как недостаток. Но если он - избыток в одной серии, то только как пустое место. А если он - недостаток в другой серии, то только как сверхштатная пешка или пассажир без купе. Он разом - и слово, и объект: эзотерическое слово и экзотерический объект.


Этот элемент выполняет функцию соединения двух серий - одной с другой, функцию их взаимного отображения друг в друге; он обеспечивает их коммуникацию, сосуществование и ветвление. А кроме того, он выполняет функцию объединения сингулярностей, соответствующих двум сериям, в "истории с узелками" - функцию, обеспечивающую переход от одного распределения сингулярностей к другому. Короче, данный элемент осуществляет распределение сингулярных точек; определяет в качестве означающей ту серию, где он появляется как избыток, а в качестве означаемой, соответственно, ту, где он появляется как недостаток; и главное, обеспечивает при этом наделение смыслом как означающей, так и означаемой серии. Ибо смысл не следует смешивать с сигнификацией. Скорее, это атрибут, который определяет означающее и означаемое как таковые. Отсюда можно сделать вывод, что не бывает структуры без серий, без отношений между терминами каждой серии и без сингулярных точек, соответствующих этим отношениям. Более того, можно сделать вывод, что не существует структуры без пустого места, приводящего все в движение.




Девятая серия: проблематическое


Что же такое идеальное событие? Это - сингулярность, или, скорее, совокупность сингулярностей, сингулярных точек, характеризующих математическую кривую, физическое положение вещей, психологическую или нравственную личность. Это - поворотные пункты и точки сгибов; узкие места, узлы, преддверия и центры;

точки плавления, конденсации и кипения; точки слез и смеха, болезни и здоровья, надежды и уныния, точки чувствительности. Однако, такие сингулярности не следует смешивать ни с личностью того, кто выражает себя в дискурсе, ни с индивидуальностью положения вещей, обозначаемого предложением, ни с обобщенностью или универсальностью понятия, означаемого фигурой или кривой. Сингулярность пребывает в ином измерении, а не в измерении обозначения, манифестации или сигнификации. Она существенным образом до-индивидуальна, нелична, аконцептуальна. Она совершенно безразлична к индивидуальному и коллективному, личному и безличному, частному и общему - и к их противоположностям. Сингулярность нейтральна. С другой стороны, она не "нечто обыкновенное": сингулярная точка противоположна обыкновенному1.

Мы сказали, что каждой серии структуры соответствует совокупность сингулярностей. И наоборот, каждая сингулярность - источник расширения серий в направлении окрестности другой сингулярности. В этом смысле

_____________________



1 Раньше нам казалось, что смысл как "нейтральное" противоположен сингулярному так же, как и другим модальностям, ибо сингулярность определялась только в отношении денотации и манифестации. Сингулярность определялась как индивидуальное и личное, а не как точечное. Напротив, теперь сингулярность принадлежит нейтральной области.

80 ПРОБЛЕМАТИЧЕСКОЕ


в структуре содержится не только несколько расходящихся серий, но каждая серия сама задается несколькими сходящимися под-сериями. Если рассмотреть сингулярности, соответствующие двум основным базовым сериям, то обнаружится, что в обоих случаях они различаются благодаря своему распределению. От серии к серии какие-то сингулярные точки либо исчезают, либо разделяются, либо меняют свою природу и функцию. В тот момент, когда две серии резонируют и коммуницируют, мы переходим от одного распределения к другому. То есть в тот момент, когда парадоксальный элемент пробегает серии, сингулярности смещаются, перераспределяются, трансформируются одна в другую и меняют состав.

Если сингулярностями выступают вариабельные события, то они коммуницируют в одном и том же Событии, которое без конца перераспределяет их, тогда как их трансформации формируют историю. Пегю ясно понимал, что история и событие неотделимы от сингулярных точек: "У событий есть критические точки, так же как у температуры есть критические точки: точки плавления, замерзания, кипения, конденсации, коагуляции и кристаллизации. Внутри события есть даже состояния перенасыщения, которые осаждаются, кристаллизуются и устанавливаются только посредством введения фрагмента будущего события"2. К тому же, Пегю изобрел целый язык - патологичнее и эстетичнее которого трудно себе представить - для того, чтобы объяснить, как сингулярность переходит в линию обычных точек, как она снова начинается в другой сингулярности, как она перераспределяется в другую совокупность (два повтора - плохой и хороший, один - сажает на цепь, другой - вызволяет).

События идеальны. Новалисе говорит где-то, что существует два хода событий: один - идеальный, другой - реальный и несовершенный. Например, идеальный Протестантизм и реальное Лютеранство

3. Однако, это различие проходит не между двумя типами событий, а скорее, между идеальным событием и его пространственно-

________

2 Peguy, Clio, Paris, Gallimard, p. 269.

3 Novalis, L'Encyclopedic, tr. Maurice de Gandillac, ed. de Minuit, Paris, p. 396.

81

ЛОГИКА СМЫСЛА

временным осуществлением в положении вещей. Оно между событием и происшествием. События - это идеальные сингулярности, коммуницирующие в одном и том же Событии. Следовательно, они обладают вечной истиной. Их временем никогда не является настоящее, вынуждающее их существовать и происходить. Скорее, события неизменно пребывают именно в безграничном Эоне, в Инфинитиве. Только события идеальны

. Пересмотр платонизма означает, прежде всего и главным образом, замену сущностей на события как потоки сингулярностей. У двойной битвы есть конкретная цель - устранить всякое догматическое смешивание события с сущностью, а кроме того, исключить эмпирическое отождествление события с происшествием.

Модус события - проблематическое. Нельзя сказать, что существуют проблематические события. Можно говорить, что события имеют дело исключительно лишь с проблемами и определяют их условия. У неоплатоника Прокла есть прекрасные страницы, где понятие геометрической теоремы противопоставляется проблематическому. Прокл определяет проблему посредством событий, призванных воздействовать на логическую материю (рассечения, удаления, присоединения и так далее), тогда как теоремы имеют дело со свойствами, дедуцируемыми из сущности

4. Событие само по себе является проблематическим и проблематизирующим. Проблема определяется только сингулярными точками, выражающими ее условия. Нельзя сказать, что таким образом проблема решается. Наоборот, так она утверждается в качестве проблемы. Например, в теории дифференциальных уравнении существование и распределение сингулярностей связано с проблемным полем, которое задается уравнением как таковым. Что касается решения, то оно появляется только вместе с интегральными кривыми и с той формой, какую эти кривые принимают в окрестности сингулярности внутри векторного поля. Так что, по-видимому, у проблемы всегда есть решение, соответствующее задающим ее условиям. Фактически, сингулярности контролируют генезис решений уравнения. Тем

___________

4 Proclus, Commenlaires sur le premier livre des Elements d'Euclide, tr. Ver Eecke, Desclee de Brouwer, pp.68 sq.

82 ПРОБЛЕМАТИЧЕСКОЕ


не менее, как отметил Лотман, это тот случай, когда инстанция-проблема и инстанция-решение различаются по природе

5, поскольку они представляют, соответственно, идеальное событие и его пространственно-временное осуществление. Значит, нужно покончить с застарелой привычкой мысли рассматривать проблематическое как субъективную категорию нашего знания, как эмпирический момент, указывающий только на несовершенство наших методов и на нашу обреченность ничего не знать наперед - обреченность, исчезающую только по мере приобретения соответствующего знания'. Даже если решение снимает проблему, она, тем не менее, остается в Идее, связывающей проблему с ее условиями и организующей генезис решения как такового. Без этой Идеи решение не имело бы смысла. Проблематическое является одновременно и объективной категорией познания, и совершенно объективным видом бытия. "Проблематическое" характеризует именно идеальные объективности. Кант, без сомнения, был первьм, кто принял проблематическое не как мимолетную неопределенность, а как истинный объект Идеи, а значит, как неустранимый горизонт всего, что происходит и является.

В результате можно по-новому осознать связь математики с человеком: речь не о том, чтобы исчислить или измерить способности человека. Скорее, с одной стороны, речь идет о проблематизации человеческих событий, а с другой - о том, что человеческие события сами являются условиями проблемы. Эта двойная цель достигается в придуманной Кэрролом развлекательной математике. Первый аспект появляется как раз в тексте, озаглавленном "История с узелками". Эта история составлена из узелков, которые всякий раз окружают син-

_________________

5 Cf. Albert Lautman, Essai sur les notions de structure et d'existence en mathematiques, Paris, Hermann, 1938, 1.2, pp.148-149; et Nouvelles recherches sur la structure dialectique des mathematiques, Hermann, 1939, pp. 13-15. О роли сингулярностей см. Essai, 2, pp. 138-139; et Le Probleme du Temps, Paris, Hermann, 1946, pp.41-42.

Пегю по-своему увидел существенную связь между событием, или сингулярностью, и категориями проблемы и решения: см. ор. cit., р.269: "...и проблема, которую мы не можем видеть до конца, проблема без исхода...", и т.д.

83

ЛОГИКА СМЫСЛА

гулярности, соответствующие некой проблеме. Эти сингулярности оживают благодаря персонажам, которые перемещаются и перераспределяются от проблемы к проблеме, пока вновь не отыщут друг друга в десятом узелке, пойманные в сеть своих родственных отношений. На место Мышиного это, отсылающего либо к поглощаемым объектам, либо к выражаемым смыслам, теперь заступают данные

[data], которые отсылают то к пищеварению, то к "дано", то есть к условиям проблемы. Вторая - более глубокая - попытка предпринята в Динамике части-цы: "Можно наблюдать, как две линии прокладывают свой монотонный путь по плоской поверхности. Старшая из двух благодаря долгой практике постигла искусство ложиться точно между экстремальными точками - искусство, которого так мучительно не хватает молодой и импульсивной траектории. Но та, что моложе, с девичьей резвостью все время стремилась отклониться и стать гиперболой или какой-нибудь другой романтической и незамкнутой кривой... До сих пор судьба и лежащая под ними поверхность держали их порознь. Но долго так не могло продолжаться: какая-то линия пересекла их, да так, что сделала сумму двух внутренних углов меньше, чем два прямые угла..."

Не нужно видеть в этом тексте просто аллегорию или способ антропоморфизации математики - как, впрочем, и в замечательном отрывке из Сильвин и Бруно: "Однажды совпадение гуляло с маленьким происшествием, и они встретили объяснение...". Когда Кэррол рассказывает про параллелограмм, который вздыхает по внешним углам и сетует, что не может быть вписан в круг, или про кривую, страдающую от "рассечении и изъятий", которым ее подвергают, то нужно помнить, что психологические и нравственные персонажи тоже созданы из до-личных сингулярностей, что их чувства и пафос тоже заданы в окрестности этих сингулярностей, чувствительных критических точек, поворотных пунктов, точек кипения, узелков и преддверий (того, что Кэррол, например, называет простой гнев и праведный гнев

). Две линии Кэррола вызывают две резонирующие серии. Их устремления вызывают распределения сингулярностей, переходящих одна в другую и перераспределяю-

84

ПРОБЛЕМАТИЧЕСКОЕ

щихся в ходе узелковой истории. Как говорил Кэррол, "гладкая поверхностность - это характер повествования, в котором, какие две точки не возьми, оказывается, что говорящий псевдо-целиком разлегся [s'etendre en tout-en-faux] относительно этих двух точек"

6. В Динамике частицы Кэррол дает очерк теории серий и теории степеней и сил частиц, организованных в эти серии ("LSD, функция большой ценности...").

События можно обсуждать только в контексте тех проблем, чьи условия определены этими событиями. События можно обсуждать только как сингулярности, развернутые в проблематическом поле, в окрестности которого происходит отбор решений. Вот почему все работы Кэррола пронизаны целостным методом проблем и решений, устанавливающим научный язык событий и их осуществлений. Итак, если распределения сингулярностей, соответствующие каждой серии, формируют поля проблем, то как тогда охарактеризовать парадоксальный элемент, пробегающий по этим сериям, заставляющий их резонировать, коммуницировать и разветвляться - элемент, управляющий всеми повторениями, превращениями и перераспределениями? Сам этот элемент следует

определять как место вопроса. Проблема задается сингулярными точками, соответствующими сериям, но вопрос определяется некой случайной точкой, соответствующей пустому месту или подвижному элементу. Метаморфозы и перераспределения сингулярностей формируют историю. Каждая комбинация и каждое распределение - это событие. Но парадоксальный элемент - это Событие, в котором коммуницируют и распределяются все события. Это - Уникальное событие, а все другие события являются его фрагментами и частями. Позже Джеймс Джойс сможет придать смысл методу вопросов и ответов, дублирующему метод проблем - Выпытывание, которое обосновывает Проблематическое. Вопрос развора-

__________

6 Словосочетанием "псевдо-разлегся" [s'etendre en faux] мы попытались перевести английский глагол to lie. (Французское слово faux означает "ложный, неверный, фальшивый"; s'etendre - "тянуться, растягиваться, простираться". Английский же глагол to lie имеет два разных основных значения - лгать и лежать. - Примечание переводчика.)

85 ЛОГИКА СМЫСЛА


чивается в проблемы, а проблемы сворачиваются в неком фундаментальном вопросе. И так же как решения не подавляют проблем, а напротив, открывают в них присущие им условия, без которых проблемы не имели бы смысла, - так и ответы вовсе не подавляют и даже не

нейтрализуют вопрос, упорно сохраняющийся во всех ответах. Следовательно, существует некий аспект, в котором проблемы остаются без решения, а вопрос без ответа. Именно в этом смысле проблема и вопрос обозначают идеальные объективности и обладают своим собственным бытием - минимумом бытия (например, "загадки без разгадки" в Алисе). Мы уже увидели, что эзотерические слова существенно связаны с проблемой и вопросом. С одной стороны, слова-бумажники неотделимы от проблемы, которая разворачивается в разветвленные серии. Эта проблема вовсе не выражает субъективную неопределенность. Напротив, она выражает объективное равновесие разума, помещенного прямо в горизонте того, что случается или является: Ричард или Вильям? Злой-опасный или опасный-злой? В обоих случаях распределение сингулярностей налицо. С другой стороны, пустые слова или, точнее, слова, обозначающие пустое слово, неотделимы от вопроса, который сворачивается и перемещается по сериям. Вопрос связан с тем самым элементом, которого никогда нет на своем месте, который не походит на себя самого и несамотождественен, и который поэтому является объектом фундаментального вопроса, перемещающегося вместе с ним: что такое Снарк? что такое Флисс? что такое Это? Оставаясь рефреном песни, чьи куплеты формируют множество серий, по которым он циркулирует в облике магического слова, чьи все имена, которыми песня "называется", не заполняют пустоты, - этот парадоксальный элемент обладает именно тем сингулярным бытием, той "объективностью", которая соответствует вопросу как таковому и при этом никогда не дает на него никакого ответа.



Десятая серия: идеальная игра


Льюис Кэррол не только изобретает игры и видоизменяет правила уже известных игр (теннис, крокет), но вводит и некий вид идеальной игры, чей смысл и функцию трудно оценить с первого взгляда. Например, бег по кругу в Алисе, где каждый начинает, когда вздумается, и останавливается, когда захочет; или крокетный матч, где мячи - ежики, клюшки - фламинго, а свернутые петлей солдаты-ворота непрестанно перемещаются с одного конца игрового поля на другой. У этих игр есть общие черты: в них очень много движения; у них, по-видимому, нет точных правил; они не допускают ни победителей, ни побежденных. Нам не "знакомы" такие игры, которые, как кажется, противоречат сами себе.


Знакомые нам игры отвечают определенному числу принципов, которые могут стать объектом теории. Эта теория применима равным образом как к играм, основанным на ловкости участников, так и к играм, где все решает случаи, хотя природа правил здесь разная. 1) Нужно, чтобы всякий раз набор правил предшествовал началу игры, а в процессе игры - обладал безусловным значением. 2) Данные правила определяют гипотезы, распределяющие шансы, то есть, гипотезы проигрыша и выигрыша (что случится, если...). 3) Гипотезы регулируют ход игры в соответствии с множеством бросков, которые реально или численно отличаются друг от друга. Каждый из них задает фиксированное распределение, соответствующее тому или иному случаю. (Даже если игра держится на одном броске, то такой бросок будет сочтен удачным только благодаря фиксированному распределению, которое он задаст, а также в силу его численных особенностей.) 4) Результаты бросков ранжируются по альтернативе "победа или поражение". Следо-


87

ЛОГИКА СМЫСЛА

вательно, для нормальной игры характерны заранее установленные безусловные правила; гипотезы, распределяющие шансы; фиксированные и численно различающиеся распределения; твердые результаты. Такие игры частичны в двух отношениях: прежде всего, они характеризуют лишь часть человеческой деятельности, а кроме того, даже если возвести их в абсолют, то они удерживают случай лишь в определенных точках, подразумевая механическое развитие последовательностей или сноровку, понятую как искусство каузальности. Таким образом, они неизбежно - сами имея смешанный характер - отсылают к другому типу деятельности, труда или этики, чьей карикатурой и двойником они являются и чьи элементы они объединяют в новый порядок. Будь то рискующий на пари человек Паскаля или играющий в шахматы Бог Лейбница, такие игры явным образом берутся в качестве модели именно потому, что за ними неявно стоит иная модель - уже не игра: нравственная модель Хорошего или Наилучшего, экономическая модель причин и эффектов, средств и целей.


Но недостаточно противопоставлять некую "старшую" игру младшей игре человека или божественную игру человеческой игре. Нужно вообразить другие принципы - пусть даже ни к чему не приложимые, но благодаря которым игра стала бы чистой игрой. 1) Нет заранее установленных правил, каждое движение изобретает и применяет свои собственные правила. 2) Нет никакого распределения шансов среди реально различного числа бросков; совокупность бросков утверждает случай и бесконечно разветвляет его с каждым новым броском. 3) Следовательно, броски реально или численно неотличимы. Но они различаются качественно, хотя и являются качественными формами онтологически единственного броска. Каждый бросок сам есть некая серия, но по времени значительно меньшая, чем минимум непрерывного мыслимого времени; и распределение сингулярностей соответствует этому сериальному минимуму. Каждый бросок вводит сингулярные точки - например, точки на игральной кости. Но вся совокупность бросков заключена в случайной точке, в уникальном бросании, которое непрестанно перемещается через все серии, за время


88

ИДЕАЛЬНАЯ ИГРА

значительно большее, чем максимум

непрерывного мыслимого времени. Броски последовательны в отношении друг друга и одновременны по отношению к такой точке, которая всегда меняет правила, которая координирует и разветвляет соответствующие серии, незаметно вводя случай на всем протяжении каждой серии. Уникальное бросание - это хаос, каждый бросок которого - некий фрагмент. Каждый бросок управляет распределением сингулярностей, созвездием. Но вместо замкнутого пространства, поделенного между фиксированными результатами, в соответствии с гипотезами [о распределении], подвижные результаты распределяются в открытом пространстве уникального и неделимого броска. Это - номадическое, а не оседлое, распределение, где каждая система сингулярностей коммуницирует и резонирует с другими, причем другие системы включают данную систему в себя, а она, одновременно, вовлекает их в самый главный бросок. Это уже игра проблем и вопроса, а не категорического и гипотетического.