Страница:
Суточные приливы происходят один раз в сутки и обусловлены действием двух составляющих приливообразующей силы с периодами в 25,8 и 23,9 ч. В ряде мест земного шара (например, у берегов Мексики) в динамике суточных приливов каждые 13-14 дней (в среднем 13,66 дня) наблюдается сдвиг
фазы на 180°, коррелирующий с '/2 цикла склонения Луны (напомним, что тропический лунный месяц равен 27,32 дня), т. е. с пересечением Луной каждые 13,66 дней плоскости небесного экватора. Здесь зримо видно, как движение нашего спутника в пространстве вызывает регулярные изменения геофизических процессов.
Полусуточные приливы отмечаются 2 раза в сутки с периодом в 12,4 ч. Амплитуда их варьирует в течение синодического месяца (29,53 дня) от максимального значения в полнолуние и новолуние до минимальных в различные четверти Луны. Изменения амплитуд составляют полусинодический цикл соответственно смене лунных фаз. Сизигийные приливы повторяются каждые 14-15 дней (в среднем 14,76 дня). Смешанные (комбинированные) приливы имеют различную амплитуду подъема воды и отличаются неравенством периодов,-они наблюдаются у побережья Тихого океана, Австралии, Аравийского полуострова. Мы специально подробно останавливаемся на типах приливных ритмов, поскольку в биологии подразделяются приливные и лунные ритмы [Чернышев В. Б" 1980; Нейман Д., 1984]. Как указывают цитируемые авторы, имеются эндогенные ритмы с пиками активности, повторяющимися каждые 12,4 ч. Они поддаются захватыванию приливными циклами ("околоприливные" ритмы) и большинство из них не отличается устойчивостью и точностью, присущими циркадианным ритмам [Нейман Д., 1984, с. 12].
Кроме того, отмечается, что некоторые виды могут обладать ритмом с удвоенным приливным периодом, равным 24,8 ч. Это обусловлено адаптацией к местному профилю приливов. Исследования показывают, что восприятие приливного фактора во время ежедневной чувствительной фазы связано с циркадианным ритмом и зависит от него. Приливные ритмы могут быть также модулированы суточными циклами освещенности и полумесячными приливными составляющими, что приводит к сложной ритмике у конкретных видов, живущих в определенных экологических условиях. Одновременно с этим у разных видов наблюдаются лунные ритмы, связанные с непосредственным действием лунного света и сменой лунных фаз (сизигийные и синодические ритмы). Эти ритмы прослеживаются у водных и наземных видов независимо от приливных циклов [Чернышев В. Б., 1980; Нейман Д" 1984]; их особенности рассмотрены ниже.
ГЛАВА 3
ЭВОЛЮЦИОННАЯ РОЛЬ ГРАВИТАЦИИ И ПРИЛИВНЫХ ЯВЛЕНИЙ
Гравитационное воздействие Луны и Солнца как таковое и вызываемые им приливо-отливные явления со всем их сложным комплексом геофизических процессов на Земле служат одним из основных эволюционных факторов. Их роль, подобно световому, радиационному и тепловому излучениям, трудно переоценить. Но поскольку этот фактор по своей физической природе отличается от других, его действие, естественно, весьма своеобразно.
3.1. ОСНОВНЫЕ КОСМИЧЕСКИЕ ФАКТОРЫ ЭВОЛЮЦИИ И ИХ ОСОБЕННОСТИ
Развитие биосферы происходило под постоянным формирующим действием факторов внешней среды. Из всей большой совокупности этих факторов (газовые, световые, температурные, радиационные, звуковые и другие) только гравитация и геомагнетизм являются, по нашему мнению, определяющими для становления жизни на Земле, поскольку они отличаются рядом важных свойств по сравнению с другими физическими факторами, действовавшими с самого начала образования Земли как планеты Солнечной системы. Прежде всего эти факторы по сравнению с любыми другими отличались н а и - меньшей изменчивостью своих свойств с момента образования планеты. Кроме того, им присуща четко выраженная периодичность проявления в природных условиях. Возможно, что именно эта особенность гравитации и геомагнетизма послужила основой для синхронизации биоритмики с этими важными геофизическими факторами [Дубров А. П., 1973а, 1974; Василик П. В., 1979, 1983; Василик П. В. и др., 1986; Simpson J. Е., 1966].
У других факторов внешней среды в широких пределах изменялись амплитуда, интенсивность, мощность потока, спектральный состав, сила воздействия даже в небольших по времени периодах эволюции, в то время как физические параметры
30
гравитации и геомагнетизма мало изменялись с начала эволюции живых существ на Земле. Инверсии геомагнитного поля, т. е. смена полярности магнитных потоков, были редким явлением в начальный период истории Земли, да и в более позднее время (кайнозой, мезозой), они разделялись миллионнолетними периодами с четкой геомагнитной периодичностью [Dub- rov A. P., 1978].
Другая важная особенность гравитации и геомагнетизма состоит в том, что оба фактора являются всепро пикающими физическими полями: ничто и никто на Земле или за ее пределами не может быть экранирован от их воздействия. Оба физических поля оказывали свое влияние на все организмы и проникали совершенно свободно без всяких энергетических и информационных потерь на любые расстояния в глубины океанов и морей, толщу земной коры и через огромные просторы Вселенной. Они были незримым и постоянно действующим каналом связи между Землей и Космосом. Эту особенность гравитации и геомагнетизма можно назвать свойством энерго-информационной оптимальности, поскольку они передают живым системам информацию о внешней среде и ее изменениях наиболее экономичным способом - без энергетических затрат, без каких-либо информационных потерь и шумов-и с наибольшей скоростью, которая возможна для геофизических факторов (не считая скорости света).
Таким образом, эти два фактора представляют собой идеальное коммуникативное средство, действующее между средой и живыми системами и, что особенно важно, они несут в себе полную пространственно-временную информацию о космических объектах, их активности, изменениях, происходящих с ними, процессах, протекающих в них. Одним словом, эти факторы важны для жизнедеятельности живых существ и их ориентации во времени и пространстве.
Имеется еще одно важное определяющее свойство гравитации и геомагнетизма как эволюционно значимых факторов среды. Оба фактора являются векторными величинами в отличие от таких факторов, как температура, освещенность и другие, представляющие собой скалярные величины. Именно векторный характер гравитации и геомагнетизма обусловил их эволюционное значение и приоритет как основных пространственно-временных характеристик среды, ее своеобразного "пространственно-временного каркаса", в котором возникают и развиваются сложные по своей полевой структуре биологические системы [Гурвич А. Г., 1944; Пушкин В. Н., 1980; Shel- drake R., 1981]. Можно предположить, что этот "каркас",
деляемый пространственным расположением звезд и планет, с его периодически повторяющимися параметрами был именно той необходимой абсолютно устойчивой системой, в рамках которой проходила вся эволюция Земли. Это дало основание считать, что началом эволюции было образование биогеосферы под действием космических тел [Вернадский В. И" 1975].
Особо следует отметить, что среди постоянно действующих факторов среды имеется еще один фактор, изначально остающийся эволюционно значимым. Это вращение Земли вокруг своей оси и ее движение по орбите вокруг Солнца. Возникающие при этом силы вращения Кориолиса являются важным фактором среды и еще одной составляющей "каркаса", потому что даже очень медленные вращения живых организмов на круговых платформах (один оборот в сутки или за час) приводят к значительным изменениям в организме [Brown F. A., Chow С. S., 1974, 1975], а биоритмика растений, находящихся на длинном маятнике, отличалась от ритмики объектов, устанавливаемых на столе [Дубров А. П" 19736]. Возможно поэтому особое значение для живых систем имеют вихревые токи и поля.
Поскольку живые системы чутко реагируют на указанные физические факторы, можно предположить, что в живых системах наряду с конкретными специальными рецепторами, различными в зависимости от степени сложности организации живой системы, есть и неспецифические механизмы рецепции этих физических факторов. Таковы 3 важнейших геофизических фактора, действующих на живые организмы на всех этапах их развития с момента образования зиготы, в течение эмбриональных стадий и во взрослом состоянии. Естественно, и другие факторы внешней среды оказывают свое действие на эволюцию, но живые системы смогли избежать их влияния, защититься от губительного действия сверхпороговых доз и интенсивностей световых, радиационных, температурных и газовых факторов среды.
3.2. ГРАВИТАЦИЯ КАК ЭКОЛОГИЧЕСКИЙ ФАКТОР ЭВОЛЮЦИИ
Роль силы тяжести для живых организмов по-настоящему была оценена только после исторического, эпохального события-начала космической эры и первого полета человека в Космос. По достоинству были тогда оценены труды и высказывания основоположника современного естествознания В. И. Вернадского и отца космонавтики К. Э. Циолковского о важности гравитации для живых организмов на Земле [Вернадский В. И.,
1975; Циолковский К. Э., 1985]. В последующие годы в изучение биологической роли гравитации большой вклад внесли многие ученые [см. Белкания Г. С., 1982]. Важное значение имеют исследования П. А. Коржуева (1971), выявившего специфическую роль силы тяжести для позвоночных животных.
Среди исследователей биологической роли гравитации П. А. Коржуев впервые обратил внимание на большое различие у представителей разных групп животных в обеспеченности организма гемоглобином. Он показал, что переход из воды на сушу вызывает резкое увеличение количества крови и гемоглобина (в расчете на массу тела животного) у высших представителей позвоночных по сравнению с таковыми у первичных позвоночных. Например, у хрящевых и костистых рыб имеется соответственно 1,1 и 1,8 г/кг гемоглобина, у птиц-10,2 г/кг и млекопитающих-12,1 г/кг. Ученый объяснил эти различия разным действием гравитации на организмы, находящиеся в водной и воздушной среде: в воде из-за действия выталкивающей силы затрачивается меньше энергии на поддержание и передвижение тела, чем у наземных животных. На основе этих данных был сделан вывод о том, что обеспеченность гемоглобином является косвенным показателем энергетического обмена организма.
Было выяснено также, что синтез гемоглобина у водных животных происходит в селезенке и почках, а у наземных животных - не только в костном мозге, как считалось ранее, а во всем скелете. Эта особенность синтеза гемоглобина у наземных животных обусловлена неодинаковой нагрузкой на различные части скелета в связи с преодолением сил гравитации при передвижении животных, поэтому скелет стал органом кроветворения. Таким образом, гемопоэтическая функция скелета оказала решающее влияние на всю эволюцию наземных позвоночных животных.
Из приведенных данных следует, что органы кроветворения эволюционно тесно связаны с гравитацией и ее изменением. Поэтому можно предполагать, что и в настоящее время эти органы находятся под контролем гравитации. Современные космические исследования выявили еще одну весьма важную особенность влияния гравитации на организм человека-тесную связь обмена кальция в костях и гравитации. В условиях невесомости резко возрастает выход кальция из тканей, особенно из костей [Смитт А. Г., 1975; Wunder С. С., Duling В., Bengele Н" 1968; Gordon S. A., Cohen M. J" 1971; Hideg J., Ga- zenko 0., 1981]. Это обусловлено нарушением процессов связывания кальция, в земных условиях контролируемых
00
тационным полем. Не исключено, что гравитационное поле Земли влияет на молекулы кальция в оболочках и мембранах клеток, изменяя каким-то образом силу и прочность связей межмолекулярного и молекулярного взаимодействия. Имеются данные, указывающие на то, что в структуре клеточных мембран ионы кальция входят в состав лабильного кальциевого гексоаквакомплекса [Кисловский Л. Д., 1971, 1982], и, возможно, гравитационное поле через этот комплекс действует на организм. Вообще следует отметить специфическую связь обмена ионов кальция с гравитацией. Например, у растений кальций тоже играет важную роль в явлениях гравиостимуляции, гравиорецепции и геотропических реакциях [Slocurn D., Ro- ux S. J., 1983; Halsted Th. W., Scott T. K., 1984; Dauwalder M. et al" 1985].
Следует отметить, что описанные выше связи с гравитацией касались лишь ее постоянной составляющей-ускорения силы тяжести, равного на Земле 982,04 см/с". Наше основное внимание привлечено к тем ничтожным изменениям силы тяжести, которые возникают за счет возмущающего действия приливообразующей силы Луны и Солнца. Сейчас уже прочно утвердилось мнение, что "...гравитация действует на все организмы и под ее влиянием проходило становление и развитие жизни на Земле. Полагается, что гравитационное воздействие сыграло существенную роль в формировании ряда физиологических систем организмов" [Гречко Г. M., Машинский А. Л., 1976]. Вопрос состоит лишь в том, чтобы выяснить, сказываются или нет ничтожные по своей абсолютной величине постоянно действующие изменения силы тяжести, происходящие под влиянием лунно-солнечной приливообразующей силы, на процессах в организме человека.
3.3. ЭВОЛЮЦИОННАЯ РОЛЬ ПРИЛИВНЫХ ЯВЛЕНИЙ
В биологических системах все функциональные процессы имеют ритмический характер. Есть основания предполагать, что действие гравитационных приливообразующих сил послужило основой для ритмической периодичности всех процессов, происходящих в живых системах. Этому способствовали по крайней мере две основные причины. Во-первых, физико-химические процессы, протекающие в живых и неживых системах, подвергаются влиянию силы тяжести, хотя, естественно, в различной степени и с учетом минимального размера частиц, участвующих в процессах, условий среды, состава компонент и др. [Пиккарди Дж., 1967; Горшков M. M., 1976]. Во-вторых, известна
1/1
ведущая роль водной среды в эволюции живых систем. Приливо-отливные явления оказывали сильное действие на водные организмы и особенно на те, которые существуют в лито- и сублиторальной зоне. Во время отлива огромное число видов, не уходящих с водой и остающихся на обнаженном дне, находилось до наступления прилива в резко измененных условиях водного, светового, газового и температурного режима. Для того чтобы выжить в таких условиях, у приспособленных к водной среде организмов должно было временно измениться функциональное состояние перестройка водного, энергетического и метаболического обмена на период отлива. Для этого у живых организмов прежде всего должна была измениться проницаемость оболочек и мембран клеток, через которые осуществляется обмен с окружающей их водной средой. Это было для них жизненно важно - важно для того, чтобы не произошло обезвоживание белково-коллоидного содержимого клеток за время до наступления нового прилива. Во время отлива резко изменялись условия солнечной инсоляции, температура и газовый режим среды. И только вода, приходящая с приливной волной, вновь "оживляла" обитателей литоральной зоны и давала им возможность нормально функционировать.
Таким образом, среди различных способов адаптации организмов к среде [Prosser С. L,, 1986], приливно-отливной механизм регуляции клеточной проницаемости был одним из основных для тех видов, которые жили в литоральной зоне и затем вышли на сушу. Этот механизм был ключевым для сохранения временного анабиоза за счет резкого снижения метаболизма, а также сохранения воды и трофических веществ внутри живого организма. Следовательно, приливно-отливной механизм регуляции проницаемости клеточных мембран и оболочек явился, по нашему мнению, первоначальным деноминатором, основным определяющим фактором биологической ритмики, сопряженным с гравитационными силами.
Предположение о возможном синхронизирующем влиянии приливообразующих сил Луны и Солнца на живые организмы через механизм клеточной проницаемости находит свое подтверждение в высказывании известного биофизика А. С. Пресмана (1974): "...первобытный мировой океан, в котором, вероятнее всего, зародилась жизнь, представлял собой систему, вещественно-энергетические параметры которой могли измениться под влиянием весьма слабых воздействий окружающей среды".
Возникновение биологической организации на Земле происходило около 3,6-4,2 млрд лет назад [Пресман А. С., 1974],
и повторяющаяся с тех пор периодичность геофизических процессов закрепилась в эволюционной программе развития живых организмов и стала их наследственным свойством. Кроме того, как уже отмечалось, гравитация оказала свое влияние еще на один жизненно важный элемент, необходимый для существования живых систем,- кислород. В то время как вода является для живых систем основой всего метаболизма и структурного построения, а углерод играет роль структурного каркаса белковых молекул, то кислород принципиально важен в качестве окислителя. Тесная связь гемопоэтической функции скелета высших позвоночных с гравитацией свидетельствует о ее важной роли в энергетических процессах организма, осуществляющихся через механизм связывания кислорода гемоглобином.
Из сказанного выше становится понятным, почему есть основания анализировать гипотезы о возможном согласовании биоритмических и циклических процессов живых организмов, включая человека, с приливо-отливными явлениями и лунной ритмикой. Результаты экспериментальных исследований показывают, что приливы, движения Луны в пространстве и даже лупньш свет действуют на биологические ритмы у самых разных видов организмов, причем эти лунные и приливные ритмы весьма устойчивые и изучены у большого числа видов [Биологические часы, 1964; Альтшулер В., Гурвич В., 1971; Чернышев В. Б., 1980; Агаджанян Н. А" Горшков М. М" 1984; Нейман Д" 1984; Brown F. А., 1983; Neumann D" 1985].
Отмечается [Нейман Д., 1984, с. 13], что, несмотря на большое разнообразие, животные приливной зоны по своим адаптационно-поведенческим реакциям приспособлены либо к водной среде во время прилива, либо к наземной во время отлива, т. е. в обоих случаях их поведение синхронизировано во времени с приливом или отливом. При этом у разных животных связь с приливами прослеживается для самых различных свойств или процессов-подвижности, размножения, окраски, миграции и др.
Интересно отметить, что устойчивость приливных ритмов при перенесении животных на сушу в лабораторные условия была различной. У одних животных околоприливные ритмы угасали через несколько дней, у других они соответствовали профилю предшествующих приливов ко дню сбора, у третьих равнялись периодам полусуточных или смешанных приливов, а у четвертых оказывались сходными с совмещенным околоприливным и окололунным ритмами [Нейман Д" 1984, с. 14- 15]. Это говорит о том, что в популяциях исследователи имеют
чя
дело с явлением гетерогенности животных по биоритмам, связанной, возможно, с биосимметрией [Дубров А. П" 1987].
Приливные явления сопровождаются одновременно изменением самых различных факторов: сменой водной и воздушной сред, интенсивности и спектрального состава света, химического состава и турбулентности воды, вибрации, температуры, гидростатического давления [Нейман Д., 1984, с. II]. Как показывают лабораторные исследования, каждый из этих факторов может быть дополнительным датчиком времени в лунносуточном или лунно-месячном биоритме.
У животных литоральной зоны было обнаружено весьма важное свойство [Lehmann U. et а1., 1974]. При одновременном действии нескольких приливных факторов, создаваемом искусственно в лабораторных условиях, у отдельных особей устанавливаются разные фазы относительно приливных циклов. Авторы объясняют это способностью организма животных изменять фазу своего приливного ритма на фоне действия сложного комплекса внешних датчиков времени, синхронизаторов биоритма. Однако в других работах показано, что у человека (например, с возрастом) изменяются многодневные ритмы [Василик П, В., Галицкий А. К., 1981]. По мнению авторов, в процессе развития организм "отзывается" на разные ритмы факторов внешней среды так, что в раннем возрасте организм реагирует на одни ритмы, а во взрослом состоянии-на другие. В то же время наш анализ индивидуальных особенностей биоритмов показал, что все живые организмы, включая человека, обладают таким биосимметрическим свойством-наличие разных фаз биоритмов-изначально, с момента своего рождения и только их число в популяции от года к году изменяется [Дубров А. П., 1987]. Именно функционально-симметрическими индивидуальными особенностями объясняются многообразные реакции животных на гравитационное воздействие, приливные и лунные ритмы. Интересно отметить, что аналогичная картина наблюдается у растений, у которых степень реакции на гипогравитацию зависит от неоднородности популяции по признаку георецепторной чувствительности [Меркис А. И., Лауринавичюс Р. С., 1980].
3.4. ЭВОЛЮЦИОННАЯ РОЛЬ ЛУННЫХ РИТМОВ
Существование лунных ритмов у человека, животных и растений всегда было предметом острых дискуссий, они не прекращаются и в настоящее время в отношении всех видов животных, насекомых, птиц, рыб [Чернышев В. Б., 1980; Nowinsky L.
et al" 1979; Pannella G., 1980; Grau E. G. et al" 1981; Kava- liers M., 1982; Costa G. et al., 1983; Сатрапа S. E., 1984; Hal- sted Th. W., Scott T. K., 1984; Franke H.-D., 1985]. В равной мере это относится и к человеку, хотя трудности исследований в этом случае значительно возрастают [Агаджанян Н. А. и др., 1978; Агаджанян Н. А., Горшков M. M., 1984; Котельник Л. А., 1987: Lacey L., 1975; Abel E. L., 1976; Lieber A., 1978; Cul- ver R. B., lanna Ph. A., 1979; Gale M., 1980; Katzeff P., 1981; Rotton J., Kelly 1. W., 1985].
Один из крупнейших ученых в области селенобиологии Д. Нейман (1984, с. 27) не предполагает, что на человека оказывается прямое гравитационное действие Луны. Автор считает, что оно лишь опосредованное-через приливные явления-или световое воздействие Луны в полнолуние. Он скептически относится к сведениям о "лунных" адаптациях, считая их недостоверными, и, по его мнению,, "...имеющиеся данные о корреляциях поведения некоторых животных с лунными фазами требуют детального рассмотрения исходных данных" [Нейман Д., 1984, с. 27]. Вместе с тем Д. Нейман (1984) в своей работе приводит многочисленные наглядные примеры различных эндогенных по своей природе лунно-суточных и лунно-месячных ритмов у животных. Приведем лишь некоторые примеры такой ритмики, взятые из этой работы. Так, признаки эндогенно контролируемого лунно-суточного ритма были обнаружены в ночной активности муравьиного льва (Murmeleon obscurus): глубина ямки, в которой он находится, изменяется с лунно-месячной периодичностью (больше в полнолуние, меньше в новолуние), что, возможно, связано с соответственными изменениями энергетики организма. Месячный ритм сохраняется в темноте на протяжении двух циклов.
Лунно-месячный ритм наблюдается у насекомых-бабочекподенок (Povilla adusta), выходящих из куколок и роящихся только в полнолуние. Лунный ритм имаго поддерживался в темноте в лабораторных условиях в течение 10 дней-6 нед, что тоже свидетельствует о его эндогенном характере. В условиях тщательно контролируемого эксперимента [Lang H.-J., 1967, 1970, 1977] был выявлен лунно-месячный ритм чувствительности к свету у пресноводной рыбы Lebistes reticulatus. Максимальная чувствительность к желтому свету отмечена в полнолуние, а минимальная-в новолуние (рис. 6). Поскольку было исследовано также действие различных внешних физических факторов, таких как лунный свет, атмосферное давление, магнитное поле и другие, то автор предполагает, что лунный ритм чувствительности глаз рыбы отражает экзогенную
регуляцию каким-то неизвестным влиянием Луны. По нашему мнению, можно полагать, что существует связь зрительной рецепции с непосредственным гравитационным влиянием Луны и в первую очередь с воздействием на центры коры головного мозга, ответственные за эту рецепцию.
Необходимо отметить, что у разных видов, обитающих в литоральной зоне, есть четкие свободнотекущие ритмы размножения, имеющие лунно-месячную или лунно-полумесячную периодичность [Нейман Д., 1984, с. 32]. Долгопериодные ритмы размножения способствуют встрече партнеров и приурочены к определенному времени прилива, необходимому для последующего развития яиц или личинок. Вот некоторые примеры таких ритмов размножения: рыба атерина-грунион (Leuvesthes te- nuis), обитающая у берегов Мексики и Южной Калифорнии, мечет икру в весенне-летние месяцы каждые 15 дней около полуночи во время самых больших приливов; имаго морского комара (Clunio marinus) выводятся у европейского побережья Атлантики и Северного моря каждые 15 дней в период сизигийных приливов; сухопутные крабы (Sesarma haernatocheir, Sesarma intermedium) выпускают личинки в пресноводные реки каждые 15 дней около полнолуния или новолуния; червь палоло (Eunica viridis), обитающий в южной части Тихого океана, имеет строгий лунный ритм. Выброс гамет и скопление эпитокных сегментов происходят в последней лунной четверти в
течение одной ночи; брачные "танцы" зрелых форм полихет (Platynereis durnerili) также обладают лунно-месячным циклом.
Аналогичные данные о лунных ритмах приводятся для самых разных морских организмов литоральной и сублиторальной зоны. Высказывается мнение, что вообще для большинства морских животных можно считать доказанным наличие у них эндогенного лунно-суточного ритма [Чернышев В. Б., 1980, с. 230], и более того, как отмечает цитируемый автор, "...лунносуточные и лунно-полусуточные ритмы обнаруживаются у многих наземных организмов, которые совершенно не связаны (выделено мной.-А. Д.) в своей жизнедеятельности с океанскими приливами" (с. 231).
фазы на 180°, коррелирующий с '/2 цикла склонения Луны (напомним, что тропический лунный месяц равен 27,32 дня), т. е. с пересечением Луной каждые 13,66 дней плоскости небесного экватора. Здесь зримо видно, как движение нашего спутника в пространстве вызывает регулярные изменения геофизических процессов.
Полусуточные приливы отмечаются 2 раза в сутки с периодом в 12,4 ч. Амплитуда их варьирует в течение синодического месяца (29,53 дня) от максимального значения в полнолуние и новолуние до минимальных в различные четверти Луны. Изменения амплитуд составляют полусинодический цикл соответственно смене лунных фаз. Сизигийные приливы повторяются каждые 14-15 дней (в среднем 14,76 дня). Смешанные (комбинированные) приливы имеют различную амплитуду подъема воды и отличаются неравенством периодов,-они наблюдаются у побережья Тихого океана, Австралии, Аравийского полуострова. Мы специально подробно останавливаемся на типах приливных ритмов, поскольку в биологии подразделяются приливные и лунные ритмы [Чернышев В. Б" 1980; Нейман Д., 1984]. Как указывают цитируемые авторы, имеются эндогенные ритмы с пиками активности, повторяющимися каждые 12,4 ч. Они поддаются захватыванию приливными циклами ("околоприливные" ритмы) и большинство из них не отличается устойчивостью и точностью, присущими циркадианным ритмам [Нейман Д., 1984, с. 12].
Кроме того, отмечается, что некоторые виды могут обладать ритмом с удвоенным приливным периодом, равным 24,8 ч. Это обусловлено адаптацией к местному профилю приливов. Исследования показывают, что восприятие приливного фактора во время ежедневной чувствительной фазы связано с циркадианным ритмом и зависит от него. Приливные ритмы могут быть также модулированы суточными циклами освещенности и полумесячными приливными составляющими, что приводит к сложной ритмике у конкретных видов, живущих в определенных экологических условиях. Одновременно с этим у разных видов наблюдаются лунные ритмы, связанные с непосредственным действием лунного света и сменой лунных фаз (сизигийные и синодические ритмы). Эти ритмы прослеживаются у водных и наземных видов независимо от приливных циклов [Чернышев В. Б., 1980; Нейман Д" 1984]; их особенности рассмотрены ниже.
ГЛАВА 3
ЭВОЛЮЦИОННАЯ РОЛЬ ГРАВИТАЦИИ И ПРИЛИВНЫХ ЯВЛЕНИЙ
Гравитационное воздействие Луны и Солнца как таковое и вызываемые им приливо-отливные явления со всем их сложным комплексом геофизических процессов на Земле служат одним из основных эволюционных факторов. Их роль, подобно световому, радиационному и тепловому излучениям, трудно переоценить. Но поскольку этот фактор по своей физической природе отличается от других, его действие, естественно, весьма своеобразно.
3.1. ОСНОВНЫЕ КОСМИЧЕСКИЕ ФАКТОРЫ ЭВОЛЮЦИИ И ИХ ОСОБЕННОСТИ
Развитие биосферы происходило под постоянным формирующим действием факторов внешней среды. Из всей большой совокупности этих факторов (газовые, световые, температурные, радиационные, звуковые и другие) только гравитация и геомагнетизм являются, по нашему мнению, определяющими для становления жизни на Земле, поскольку они отличаются рядом важных свойств по сравнению с другими физическими факторами, действовавшими с самого начала образования Земли как планеты Солнечной системы. Прежде всего эти факторы по сравнению с любыми другими отличались н а и - меньшей изменчивостью своих свойств с момента образования планеты. Кроме того, им присуща четко выраженная периодичность проявления в природных условиях. Возможно, что именно эта особенность гравитации и геомагнетизма послужила основой для синхронизации биоритмики с этими важными геофизическими факторами [Дубров А. П., 1973а, 1974; Василик П. В., 1979, 1983; Василик П. В. и др., 1986; Simpson J. Е., 1966].
У других факторов внешней среды в широких пределах изменялись амплитуда, интенсивность, мощность потока, спектральный состав, сила воздействия даже в небольших по времени периодах эволюции, в то время как физические параметры
30
гравитации и геомагнетизма мало изменялись с начала эволюции живых существ на Земле. Инверсии геомагнитного поля, т. е. смена полярности магнитных потоков, были редким явлением в начальный период истории Земли, да и в более позднее время (кайнозой, мезозой), они разделялись миллионнолетними периодами с четкой геомагнитной периодичностью [Dub- rov A. P., 1978].
Другая важная особенность гравитации и геомагнетизма состоит в том, что оба фактора являются всепро пикающими физическими полями: ничто и никто на Земле или за ее пределами не может быть экранирован от их воздействия. Оба физических поля оказывали свое влияние на все организмы и проникали совершенно свободно без всяких энергетических и информационных потерь на любые расстояния в глубины океанов и морей, толщу земной коры и через огромные просторы Вселенной. Они были незримым и постоянно действующим каналом связи между Землей и Космосом. Эту особенность гравитации и геомагнетизма можно назвать свойством энерго-информационной оптимальности, поскольку они передают живым системам информацию о внешней среде и ее изменениях наиболее экономичным способом - без энергетических затрат, без каких-либо информационных потерь и шумов-и с наибольшей скоростью, которая возможна для геофизических факторов (не считая скорости света).
Таким образом, эти два фактора представляют собой идеальное коммуникативное средство, действующее между средой и живыми системами и, что особенно важно, они несут в себе полную пространственно-временную информацию о космических объектах, их активности, изменениях, происходящих с ними, процессах, протекающих в них. Одним словом, эти факторы важны для жизнедеятельности живых существ и их ориентации во времени и пространстве.
Имеется еще одно важное определяющее свойство гравитации и геомагнетизма как эволюционно значимых факторов среды. Оба фактора являются векторными величинами в отличие от таких факторов, как температура, освещенность и другие, представляющие собой скалярные величины. Именно векторный характер гравитации и геомагнетизма обусловил их эволюционное значение и приоритет как основных пространственно-временных характеристик среды, ее своеобразного "пространственно-временного каркаса", в котором возникают и развиваются сложные по своей полевой структуре биологические системы [Гурвич А. Г., 1944; Пушкин В. Н., 1980; Shel- drake R., 1981]. Можно предположить, что этот "каркас",
деляемый пространственным расположением звезд и планет, с его периодически повторяющимися параметрами был именно той необходимой абсолютно устойчивой системой, в рамках которой проходила вся эволюция Земли. Это дало основание считать, что началом эволюции было образование биогеосферы под действием космических тел [Вернадский В. И" 1975].
Особо следует отметить, что среди постоянно действующих факторов среды имеется еще один фактор, изначально остающийся эволюционно значимым. Это вращение Земли вокруг своей оси и ее движение по орбите вокруг Солнца. Возникающие при этом силы вращения Кориолиса являются важным фактором среды и еще одной составляющей "каркаса", потому что даже очень медленные вращения живых организмов на круговых платформах (один оборот в сутки или за час) приводят к значительным изменениям в организме [Brown F. A., Chow С. S., 1974, 1975], а биоритмика растений, находящихся на длинном маятнике, отличалась от ритмики объектов, устанавливаемых на столе [Дубров А. П" 19736]. Возможно поэтому особое значение для живых систем имеют вихревые токи и поля.
Поскольку живые системы чутко реагируют на указанные физические факторы, можно предположить, что в живых системах наряду с конкретными специальными рецепторами, различными в зависимости от степени сложности организации живой системы, есть и неспецифические механизмы рецепции этих физических факторов. Таковы 3 важнейших геофизических фактора, действующих на живые организмы на всех этапах их развития с момента образования зиготы, в течение эмбриональных стадий и во взрослом состоянии. Естественно, и другие факторы внешней среды оказывают свое действие на эволюцию, но живые системы смогли избежать их влияния, защититься от губительного действия сверхпороговых доз и интенсивностей световых, радиационных, температурных и газовых факторов среды.
3.2. ГРАВИТАЦИЯ КАК ЭКОЛОГИЧЕСКИЙ ФАКТОР ЭВОЛЮЦИИ
Роль силы тяжести для живых организмов по-настоящему была оценена только после исторического, эпохального события-начала космической эры и первого полета человека в Космос. По достоинству были тогда оценены труды и высказывания основоположника современного естествознания В. И. Вернадского и отца космонавтики К. Э. Циолковского о важности гравитации для живых организмов на Земле [Вернадский В. И.,
1975; Циолковский К. Э., 1985]. В последующие годы в изучение биологической роли гравитации большой вклад внесли многие ученые [см. Белкания Г. С., 1982]. Важное значение имеют исследования П. А. Коржуева (1971), выявившего специфическую роль силы тяжести для позвоночных животных.
Среди исследователей биологической роли гравитации П. А. Коржуев впервые обратил внимание на большое различие у представителей разных групп животных в обеспеченности организма гемоглобином. Он показал, что переход из воды на сушу вызывает резкое увеличение количества крови и гемоглобина (в расчете на массу тела животного) у высших представителей позвоночных по сравнению с таковыми у первичных позвоночных. Например, у хрящевых и костистых рыб имеется соответственно 1,1 и 1,8 г/кг гемоглобина, у птиц-10,2 г/кг и млекопитающих-12,1 г/кг. Ученый объяснил эти различия разным действием гравитации на организмы, находящиеся в водной и воздушной среде: в воде из-за действия выталкивающей силы затрачивается меньше энергии на поддержание и передвижение тела, чем у наземных животных. На основе этих данных был сделан вывод о том, что обеспеченность гемоглобином является косвенным показателем энергетического обмена организма.
Было выяснено также, что синтез гемоглобина у водных животных происходит в селезенке и почках, а у наземных животных - не только в костном мозге, как считалось ранее, а во всем скелете. Эта особенность синтеза гемоглобина у наземных животных обусловлена неодинаковой нагрузкой на различные части скелета в связи с преодолением сил гравитации при передвижении животных, поэтому скелет стал органом кроветворения. Таким образом, гемопоэтическая функция скелета оказала решающее влияние на всю эволюцию наземных позвоночных животных.
Из приведенных данных следует, что органы кроветворения эволюционно тесно связаны с гравитацией и ее изменением. Поэтому можно предполагать, что и в настоящее время эти органы находятся под контролем гравитации. Современные космические исследования выявили еще одну весьма важную особенность влияния гравитации на организм человека-тесную связь обмена кальция в костях и гравитации. В условиях невесомости резко возрастает выход кальция из тканей, особенно из костей [Смитт А. Г., 1975; Wunder С. С., Duling В., Bengele Н" 1968; Gordon S. A., Cohen M. J" 1971; Hideg J., Ga- zenko 0., 1981]. Это обусловлено нарушением процессов связывания кальция, в земных условиях контролируемых
00
тационным полем. Не исключено, что гравитационное поле Земли влияет на молекулы кальция в оболочках и мембранах клеток, изменяя каким-то образом силу и прочность связей межмолекулярного и молекулярного взаимодействия. Имеются данные, указывающие на то, что в структуре клеточных мембран ионы кальция входят в состав лабильного кальциевого гексоаквакомплекса [Кисловский Л. Д., 1971, 1982], и, возможно, гравитационное поле через этот комплекс действует на организм. Вообще следует отметить специфическую связь обмена ионов кальция с гравитацией. Например, у растений кальций тоже играет важную роль в явлениях гравиостимуляции, гравиорецепции и геотропических реакциях [Slocurn D., Ro- ux S. J., 1983; Halsted Th. W., Scott T. K., 1984; Dauwalder M. et al" 1985].
Следует отметить, что описанные выше связи с гравитацией касались лишь ее постоянной составляющей-ускорения силы тяжести, равного на Земле 982,04 см/с". Наше основное внимание привлечено к тем ничтожным изменениям силы тяжести, которые возникают за счет возмущающего действия приливообразующей силы Луны и Солнца. Сейчас уже прочно утвердилось мнение, что "...гравитация действует на все организмы и под ее влиянием проходило становление и развитие жизни на Земле. Полагается, что гравитационное воздействие сыграло существенную роль в формировании ряда физиологических систем организмов" [Гречко Г. M., Машинский А. Л., 1976]. Вопрос состоит лишь в том, чтобы выяснить, сказываются или нет ничтожные по своей абсолютной величине постоянно действующие изменения силы тяжести, происходящие под влиянием лунно-солнечной приливообразующей силы, на процессах в организме человека.
3.3. ЭВОЛЮЦИОННАЯ РОЛЬ ПРИЛИВНЫХ ЯВЛЕНИЙ
В биологических системах все функциональные процессы имеют ритмический характер. Есть основания предполагать, что действие гравитационных приливообразующих сил послужило основой для ритмической периодичности всех процессов, происходящих в живых системах. Этому способствовали по крайней мере две основные причины. Во-первых, физико-химические процессы, протекающие в живых и неживых системах, подвергаются влиянию силы тяжести, хотя, естественно, в различной степени и с учетом минимального размера частиц, участвующих в процессах, условий среды, состава компонент и др. [Пиккарди Дж., 1967; Горшков M. M., 1976]. Во-вторых, известна
1/1
ведущая роль водной среды в эволюции живых систем. Приливо-отливные явления оказывали сильное действие на водные организмы и особенно на те, которые существуют в лито- и сублиторальной зоне. Во время отлива огромное число видов, не уходящих с водой и остающихся на обнаженном дне, находилось до наступления прилива в резко измененных условиях водного, светового, газового и температурного режима. Для того чтобы выжить в таких условиях, у приспособленных к водной среде организмов должно было временно измениться функциональное состояние перестройка водного, энергетического и метаболического обмена на период отлива. Для этого у живых организмов прежде всего должна была измениться проницаемость оболочек и мембран клеток, через которые осуществляется обмен с окружающей их водной средой. Это было для них жизненно важно - важно для того, чтобы не произошло обезвоживание белково-коллоидного содержимого клеток за время до наступления нового прилива. Во время отлива резко изменялись условия солнечной инсоляции, температура и газовый режим среды. И только вода, приходящая с приливной волной, вновь "оживляла" обитателей литоральной зоны и давала им возможность нормально функционировать.
Таким образом, среди различных способов адаптации организмов к среде [Prosser С. L,, 1986], приливно-отливной механизм регуляции клеточной проницаемости был одним из основных для тех видов, которые жили в литоральной зоне и затем вышли на сушу. Этот механизм был ключевым для сохранения временного анабиоза за счет резкого снижения метаболизма, а также сохранения воды и трофических веществ внутри живого организма. Следовательно, приливно-отливной механизм регуляции проницаемости клеточных мембран и оболочек явился, по нашему мнению, первоначальным деноминатором, основным определяющим фактором биологической ритмики, сопряженным с гравитационными силами.
Предположение о возможном синхронизирующем влиянии приливообразующих сил Луны и Солнца на живые организмы через механизм клеточной проницаемости находит свое подтверждение в высказывании известного биофизика А. С. Пресмана (1974): "...первобытный мировой океан, в котором, вероятнее всего, зародилась жизнь, представлял собой систему, вещественно-энергетические параметры которой могли измениться под влиянием весьма слабых воздействий окружающей среды".
Возникновение биологической организации на Земле происходило около 3,6-4,2 млрд лет назад [Пресман А. С., 1974],
и повторяющаяся с тех пор периодичность геофизических процессов закрепилась в эволюционной программе развития живых организмов и стала их наследственным свойством. Кроме того, как уже отмечалось, гравитация оказала свое влияние еще на один жизненно важный элемент, необходимый для существования живых систем,- кислород. В то время как вода является для живых систем основой всего метаболизма и структурного построения, а углерод играет роль структурного каркаса белковых молекул, то кислород принципиально важен в качестве окислителя. Тесная связь гемопоэтической функции скелета высших позвоночных с гравитацией свидетельствует о ее важной роли в энергетических процессах организма, осуществляющихся через механизм связывания кислорода гемоглобином.
Из сказанного выше становится понятным, почему есть основания анализировать гипотезы о возможном согласовании биоритмических и циклических процессов живых организмов, включая человека, с приливо-отливными явлениями и лунной ритмикой. Результаты экспериментальных исследований показывают, что приливы, движения Луны в пространстве и даже лупньш свет действуют на биологические ритмы у самых разных видов организмов, причем эти лунные и приливные ритмы весьма устойчивые и изучены у большого числа видов [Биологические часы, 1964; Альтшулер В., Гурвич В., 1971; Чернышев В. Б., 1980; Агаджанян Н. А" Горшков М. М" 1984; Нейман Д" 1984; Brown F. А., 1983; Neumann D" 1985].
Отмечается [Нейман Д., 1984, с. 13], что, несмотря на большое разнообразие, животные приливной зоны по своим адаптационно-поведенческим реакциям приспособлены либо к водной среде во время прилива, либо к наземной во время отлива, т. е. в обоих случаях их поведение синхронизировано во времени с приливом или отливом. При этом у разных животных связь с приливами прослеживается для самых различных свойств или процессов-подвижности, размножения, окраски, миграции и др.
Интересно отметить, что устойчивость приливных ритмов при перенесении животных на сушу в лабораторные условия была различной. У одних животных околоприливные ритмы угасали через несколько дней, у других они соответствовали профилю предшествующих приливов ко дню сбора, у третьих равнялись периодам полусуточных или смешанных приливов, а у четвертых оказывались сходными с совмещенным околоприливным и окололунным ритмами [Нейман Д" 1984, с. 14- 15]. Это говорит о том, что в популяциях исследователи имеют
чя
дело с явлением гетерогенности животных по биоритмам, связанной, возможно, с биосимметрией [Дубров А. П" 1987].
Приливные явления сопровождаются одновременно изменением самых различных факторов: сменой водной и воздушной сред, интенсивности и спектрального состава света, химического состава и турбулентности воды, вибрации, температуры, гидростатического давления [Нейман Д., 1984, с. II]. Как показывают лабораторные исследования, каждый из этих факторов может быть дополнительным датчиком времени в лунносуточном или лунно-месячном биоритме.
У животных литоральной зоны было обнаружено весьма важное свойство [Lehmann U. et а1., 1974]. При одновременном действии нескольких приливных факторов, создаваемом искусственно в лабораторных условиях, у отдельных особей устанавливаются разные фазы относительно приливных циклов. Авторы объясняют это способностью организма животных изменять фазу своего приливного ритма на фоне действия сложного комплекса внешних датчиков времени, синхронизаторов биоритма. Однако в других работах показано, что у человека (например, с возрастом) изменяются многодневные ритмы [Василик П, В., Галицкий А. К., 1981]. По мнению авторов, в процессе развития организм "отзывается" на разные ритмы факторов внешней среды так, что в раннем возрасте организм реагирует на одни ритмы, а во взрослом состоянии-на другие. В то же время наш анализ индивидуальных особенностей биоритмов показал, что все живые организмы, включая человека, обладают таким биосимметрическим свойством-наличие разных фаз биоритмов-изначально, с момента своего рождения и только их число в популяции от года к году изменяется [Дубров А. П., 1987]. Именно функционально-симметрическими индивидуальными особенностями объясняются многообразные реакции животных на гравитационное воздействие, приливные и лунные ритмы. Интересно отметить, что аналогичная картина наблюдается у растений, у которых степень реакции на гипогравитацию зависит от неоднородности популяции по признаку георецепторной чувствительности [Меркис А. И., Лауринавичюс Р. С., 1980].
3.4. ЭВОЛЮЦИОННАЯ РОЛЬ ЛУННЫХ РИТМОВ
Существование лунных ритмов у человека, животных и растений всегда было предметом острых дискуссий, они не прекращаются и в настоящее время в отношении всех видов животных, насекомых, птиц, рыб [Чернышев В. Б., 1980; Nowinsky L.
et al" 1979; Pannella G., 1980; Grau E. G. et al" 1981; Kava- liers M., 1982; Costa G. et al., 1983; Сатрапа S. E., 1984; Hal- sted Th. W., Scott T. K., 1984; Franke H.-D., 1985]. В равной мере это относится и к человеку, хотя трудности исследований в этом случае значительно возрастают [Агаджанян Н. А. и др., 1978; Агаджанян Н. А., Горшков M. M., 1984; Котельник Л. А., 1987: Lacey L., 1975; Abel E. L., 1976; Lieber A., 1978; Cul- ver R. B., lanna Ph. A., 1979; Gale M., 1980; Katzeff P., 1981; Rotton J., Kelly 1. W., 1985].
Один из крупнейших ученых в области селенобиологии Д. Нейман (1984, с. 27) не предполагает, что на человека оказывается прямое гравитационное действие Луны. Автор считает, что оно лишь опосредованное-через приливные явления-или световое воздействие Луны в полнолуние. Он скептически относится к сведениям о "лунных" адаптациях, считая их недостоверными, и, по его мнению,, "...имеющиеся данные о корреляциях поведения некоторых животных с лунными фазами требуют детального рассмотрения исходных данных" [Нейман Д., 1984, с. 27]. Вместе с тем Д. Нейман (1984) в своей работе приводит многочисленные наглядные примеры различных эндогенных по своей природе лунно-суточных и лунно-месячных ритмов у животных. Приведем лишь некоторые примеры такой ритмики, взятые из этой работы. Так, признаки эндогенно контролируемого лунно-суточного ритма были обнаружены в ночной активности муравьиного льва (Murmeleon obscurus): глубина ямки, в которой он находится, изменяется с лунно-месячной периодичностью (больше в полнолуние, меньше в новолуние), что, возможно, связано с соответственными изменениями энергетики организма. Месячный ритм сохраняется в темноте на протяжении двух циклов.
Лунно-месячный ритм наблюдается у насекомых-бабочекподенок (Povilla adusta), выходящих из куколок и роящихся только в полнолуние. Лунный ритм имаго поддерживался в темноте в лабораторных условиях в течение 10 дней-6 нед, что тоже свидетельствует о его эндогенном характере. В условиях тщательно контролируемого эксперимента [Lang H.-J., 1967, 1970, 1977] был выявлен лунно-месячный ритм чувствительности к свету у пресноводной рыбы Lebistes reticulatus. Максимальная чувствительность к желтому свету отмечена в полнолуние, а минимальная-в новолуние (рис. 6). Поскольку было исследовано также действие различных внешних физических факторов, таких как лунный свет, атмосферное давление, магнитное поле и другие, то автор предполагает, что лунный ритм чувствительности глаз рыбы отражает экзогенную
регуляцию каким-то неизвестным влиянием Луны. По нашему мнению, можно полагать, что существует связь зрительной рецепции с непосредственным гравитационным влиянием Луны и в первую очередь с воздействием на центры коры головного мозга, ответственные за эту рецепцию.
Необходимо отметить, что у разных видов, обитающих в литоральной зоне, есть четкие свободнотекущие ритмы размножения, имеющие лунно-месячную или лунно-полумесячную периодичность [Нейман Д., 1984, с. 32]. Долгопериодные ритмы размножения способствуют встрече партнеров и приурочены к определенному времени прилива, необходимому для последующего развития яиц или личинок. Вот некоторые примеры таких ритмов размножения: рыба атерина-грунион (Leuvesthes te- nuis), обитающая у берегов Мексики и Южной Калифорнии, мечет икру в весенне-летние месяцы каждые 15 дней около полуночи во время самых больших приливов; имаго морского комара (Clunio marinus) выводятся у европейского побережья Атлантики и Северного моря каждые 15 дней в период сизигийных приливов; сухопутные крабы (Sesarma haernatocheir, Sesarma intermedium) выпускают личинки в пресноводные реки каждые 15 дней около полнолуния или новолуния; червь палоло (Eunica viridis), обитающий в южной части Тихого океана, имеет строгий лунный ритм. Выброс гамет и скопление эпитокных сегментов происходят в последней лунной четверти в
течение одной ночи; брачные "танцы" зрелых форм полихет (Platynereis durnerili) также обладают лунно-месячным циклом.
Аналогичные данные о лунных ритмах приводятся для самых разных морских организмов литоральной и сублиторальной зоны. Высказывается мнение, что вообще для большинства морских животных можно считать доказанным наличие у них эндогенного лунно-суточного ритма [Чернышев В. Б., 1980, с. 230], и более того, как отмечает цитируемый автор, "...лунносуточные и лунно-полусуточные ритмы обнаруживаются у многих наземных организмов, которые совершенно не связаны (выделено мной.-А. Д.) в своей жизнедеятельности с океанскими приливами" (с. 231).