У природы и ученых есть в арсенале более изощренные методы создания твердых тел с высокой удельной величиной поверхности, чем механическое сверление, но общий принцип сохраняется: все практически важные сорбенты имеют внутреннюю пористую структуру, характеризующуюся наноразмерами.
   Таков активированный уголь, таблетки которого мы глотаем при желудочных отравлениях. Получают его до сих пор почти по Ловицу, обжигом без доступа воздуха древесины или костей животных, но лучше всего – скорлупы кокосовых орехов. Активацию полученного таким образом угля осуществляют попросту обработкой перегретым водяным паром, при этом вскрываются и очищаются внутренние поры, диаметр которых составляет несколько нанометров. После такой обработки активированный уголь готов принять на своей поверхности всякую гадость из содержимого нашего желудка, вредные вещества из питьевой воды или смолы из табачного дыма.
   Другой сорбент, не менее важный и также встречающийся вам в быту, – силикагель. Пакетики с ним часто кладут в упаковку различных товаров, чтобы не отсыревали, – силикагель прекрасно сорбирует влагу из воздуха. По своему составу силикагель – тот же песок, только пористый. И получить его можно из песка с помощью незамысловатых операций – обработка щелочью, обработка кислотой, нагревание. Хитрость кроется в режимах обработки. Варьируя их, получают огромное количество марок силикагеля с различными диаметрами пор, в единицы и десятки нанометров.
   И, говоря о сорбентах, нельзя обойти вниманием цеолиты – одно из самых совершенных и красивых творений мира неорганической природы. Казалось бы, обычная глина (даже и по составу), но заглянем внутрь! Представьте себе полость в форме правильного многогранника – кубооктаэдра, соединенную шестью “окнами” правильной формы с шестью точно такими же полостями и так до бесконечности, с регулярностью идеального кристалла. Собственно, цеолиты и являются кристаллами, но очень своеобразными. У меня же при взгляде на их структуру возникает другая ассоциация – с громадной космической станцией, одинаковые отсеки которой соединены между собой шлюзами.
   Внутренний диаметр полости составляет 1,1–1,2 нм, форма же и диаметр “окон” зависит от типа цеолита. Бывают квадратные окна с диаметром менее 0,1 нм, шестичленные – 0,22 нм, восьмичленные – 0,4–0,5 нм, двенадцатичленные – 0,8–0,9 нм.
   Как минералы цеолиты известны с незапамятных времен, но на их необычные свойства первым обратил внимание шведский естествоиспытатель Аксель Фредрик Кронштедт. В 1756 году он обнаружил, что при нагревании стильбита, минерала семейства алюмосиликатов, происходит вспучивание – увеличение объема образца, сопровождающееся выделением воды. Поэтому он и ввел термин “цеолит”, что в переводе с греческого означает “кипящий камень”. Впоследствии оказалось, что аналогичным свойством обладают и другие минералы этого семейства – клиноптилолит, морденит, фожазит, шабазит.
   Ученые, расшифровав структуру цеолита более полувека назад, задались амбициозной целью воспроизвести и превзойти Природу. Это удалось сделать практически одновременно исследователям из СССР, США и Великобритании. Они разработали технологии производства синтетических цеолитов, позволявшие получать вещества с заданной структурой, не встречавшиеся ранее в природе. К настоящему времени синтезировано и изучено уже более 500 различных цеолитов, различающихся формой и размерами полостей и окон, составом и свойствами. В частности, ученые научились варьировать в относительно широких пределах (до 1,5 нм) размер пор цеолита.
   Зачем это нужно? Алюмосиликаты, в частности глины, сами по себе являются хорошими сорбентами и с большей или меньшей эффективностью поглощают все компоненты сложных смесей. Но в цеолитах в дело вмешивается размерный фактор. В коммерческом цеолите А, например, диаметр входных отверстий составляет 0,22 нм, что совпадает с размером молекулы воды. Молекулы больших размеров просто не пролезут в цеолит, поэтому из влажной смеси газов цеолит А сорбирует только воду. Благодаря этому свойству цеолиты называют часто молекулярными ситами. При этом цеолиты поглощают воду до тех пор, пора она полностью не заполнит все свободное пространство внутри сорбента, все полости и поры.
   Еще ярче молекулярно-ситовой эффект проявляется в случае углеводородов. Цеолиты с диаметром пор 0,4–0,5 нм пропускают внутрь линейные молекулы и дают от ворот поворот их разветвленным изомерам. Это свойство применяется в процессе депарафинизации керосино-газойлевых и масляных фракций нефти. Проблема состоит в том, что линейные (нормальные) углеводороды обладают высокой температурой застывания и их удаление из фракции снижает температуру застывания моторных топлив и масел, что чрезвычайно важно для России с ее зимними холодами.
   С цеолитами вы сталкиваетесь и в быту, ведь современные стиральные порошки содержат от 15 до 30 % цеолитов. Они избирательно поглощают из воды ионы кальция и магния, именно поэтому современные стиральные порошки можно использовать в воде любой жесткости.
   Но основная область применения цеолитов все же не адсорбция, а процессы нефтепереработки, где они произвели настоящую революцию. Они не только заменили в ряде процессов платиновые катализаторы, что само по себе поразительно, настолько сильно они различаются по химической природе и цене. При этом они еще позволили увеличить эффективность процессов: если в 1980 году, до внедрения синтетических цеолитных катализаторов, на производство одной тонны моторного топлива расходовали две тонны нефти, то сейчас – менее полутора.
   Впрочем, мы заступили на поле катализа, о котором речь пойдет впереди, сразу в нескольких главах, ведь катализ – одна из основных областей нанотехнологий. Поэтому не будем больше углубляться в этот вопрос и подчеркнем лишь одну общую мысль: свойства поверхности зависят не только от ее химического состава и условий обработки, но и от геометрии. В наибольшей степени этот эффект проявляется при радиусе кривизны поверхности порядка нанометров, возможно, за счет роста напряжений и избыточной поверхностной энергии. Именно поэтому свойства поверхности, обрамляющей поры полости цеолитов, столь разительно отличаются от свойств плоских поверхностей алюмосиликатов с близким химическим составом.
   Ученые имеют в запасе еще один мощный метод изменения свойств поверхности и тонкого регулирования структуры сорбентов или, в более общем случае, твердых тел. Представляю его с особым удовольствием, потому что с ним связаны пятнадцать лет моей жизни. Речь идет о химическом модифицировании поверхности. Конкретно мы занимались прививкой разнообразных органических соединений к поверхности неорганического вещества – силикагеля. Тогда совмещение воедино столь разных субстанций называлось скрещиванием ужа и ежа, аналогия нашего времени, порожденная рекламой, – пересадка волос на лысину. То, что мы получали, было действительно похоже на ежика – частокол органических молекул, накрепко связанных с поверхностью. Толщина этого слоя равнялась длине молекулы, то есть 1–2 нм.
   Зачем мы этим занимались? Во-первых, это была интересная научная задача, находящаяся на переднем крае науки того времени, 70–80-х годов прошлого века. Во-вторых, получаемые материалы имели просто необъятное поле применения, в том числе в качестве сорбентов. Целенаправленно выбирая структуру прививаемого органического соединения, мы синтезировали сорбенты для извлечения из растворов конкретных ионов металлов, определенных органических веществ, аминокислот, белков и других биологически активных соединений. Извлечения и разделения. Разделения и определения. Затем, уже в новые времена, мы организовали производство разработанных нами сорбентов, их ассортимент сейчас измеряется сотнями наименований, они широко используются для мониторинга загрязнений окружающей среды, химического и биохимического анализа, в биотехнологии. Это была славная охота!
   Число работ, выполненных в этой области, огромно. Одни группы исследователей покрывали поверхности плотным слоем неорганических веществ толщиной от одного атома до нескольких нанометров, другие использовали для этой цели готовые полимеры или осуществляли реакции полимеризации на поверхности, третьи закрепляли на поверхности белки и ферменты – классические нанообъекты и т. д. Не будет большим преувеличением сказать, что к концу прошлого века ученые могли привить что угодно к любой поверхности.
   Достигнутый уровень технологий в этой области таков, что позволяет делать просто феноменальные вещи. Берут, например, стеклянную пластинку 1×1 см, мысленно разделяют ее на десять тысяч участков и на каждый участок прививают, уже реально, а не мысленно, какое-то конкретное соединение. В сущности, получают сборку из десяти тысяч различных сорбентов, каждый из которых настроен на связывание определенного, индивидуального вещества. Если учесть, что размер каждого участка сопоставим с размером подковки для блохи, то все это не что иное, как изготовление десяти тысяч различных подковок и прибивка их в строго определенном порядке.
   Затем окунают эту пластинку в раствор, вынимают, промывают и рассматривают в “мелкоскоп”, чтобы определить, на каких участках прошла адсорбция, и так определяют вещества, которые содержались в испытуемом растворе и число которых может измеряться тысячами.
   Фантастика, скажете вы. Да нет, обычный биочип, выпускается с начала 1990-х годов. Не придавайте большого значения слову “чип”. Дело в том, что американская компания “Affimetrix”, первой запустившая их производство, использовала при этом некоторые технологические приемы из микроэлектронной промышленности. Это единственная связь биочипов с микроэлектроникой. Их применяют для сложных биохимических анализов. Например, с их помощью можно быстро проанализировать геном пациента и определить его предрасположенность к тому или иному наследственному заболеванию. Есть все основания надеяться, что в недалеком будущем эта процедура станет вполне рутинной и доступной всем нам по цене.
   Завершая этот панегирик явлению адсорбции и работающим в этой области исследователям, наследникам Ловица, еще раз подчеркнем универсальность применений адсорбции. Не будь ее, мы бы давно отравились водой, которую пьем, и воздухом, которым дышим. (Здесь нас спасают природные механизмы адсорбции, но и разнообразные очистные сооружения тоже вносят заметный вклад.) Сорбенты используют для опреснения морской воды, для выделения ценных металлов из руд, для производства множества товаров, используемых нами в быту, для анализа загрязнений окружающей среды и контроля качества продукции. В общем, невозможно представить нашу сегодняшнюю жизнь без сорбентов, которые, как неоднократно и специально подчеркивалось, почти все имеют наноструктуру.
   И вот на этом фоне в последние несколько лет зазвучали заявления, что нанотехнологии позволят создать высокоэффективные сорбенты нового поколения. Специалистов взяла оторопь: а мы-то чем всю жизнь занимались, как не созданием этих самых сорбентов? Занимались, но на основе устаревших принципов, отвечают им, а нанотехнологии… (далее по тексту). И вот уже в новостных лентах, публикациях СМИ, в лекциях и научно-популярных статьях начинают появляться примеры сорбентов нового поколения, полученных методами нанотехнологий.
   Одну из таких разработок охочие до сенсаций и составления всяческих рейтингов журналисты включили даже в “лучшую пятерку нанодостижений” года[3]. Подкупает, конечно, важность поставленной задачи: очистка питьевой воды от соединений мышьяка. Эта проблема очень остро стоит в некоторых развивающихся странах Азии и Африки. По данным Всемирного банка, число людей, страдающих от заболеваний, вызванных мышьяком, составляет около 65 миллионов. А Национальная инженерная академия США установила премию в один миллион долларов для того, кто предложит простой, дешевый и эффективный способ решения проблемы. Неудивительно, что сразу несколько групп исследователей стали работать в этом направлении.
   Больше всех преуспели специалисты из Университета Райса в Техасе под руководством Вики Колвин. Они предложили использовать для связывания соединений мышьяка ржавчину, измельченную до частиц наноразмеров. Технология очистки в полной мере отвечает поставленным требованиям: вы всыпаете в загрязненную воду немного порошка из баночки, взбалтываете, вытягиваете частицы из раствора с помощью обычного магнита и в результате получаете воду, пригодную для питья, согласно действующим стандартам.
   Несколько лет назад относительно молодой (р. 1965) американский ученый иорданского происхождения Омар Яги (Omar Yaghi) из Университета Калифорнии получил очень интересные кристаллические вещества, внутренняя структура которых чрезвычайно похожа на цеолиты – те же полости и окна с размером менее одного нанометра. Но в отличие от цеолитов, содержащих атомы кремния, алюминия и кислорода, эти материалы собраны из органических молекул[4] и ионов металлов – цинка или кобальта. Структурой и судьбой им предопределено быть хорошими адсорбентами, и действительно – кобальтовый “цеолит” хорошо поглощает маленькие молекулы углекислого газа, целых 89 литров на литр сорбента.
   Это послужило основанием для громогласного заявления: “Техническая сторона проблемы избирательного удаления углекислого газа решена. При помощи разработанных нами структур можно создавать ловушки именно для СО2, не задерживая остальные газы. Захваченный газ хранится в специальном резервуаре, и, до тех пор пока этот резервуар не будет вскрыт, СО2 там будет пребывать”. Ключ к успеху – способность сорбента поглощать углекислый газ “на уровне молекул”. Это должно было найти отклик в душах присутствующих: сразу виден прогресс науки, мы теперь можем работать на уровне атомов и молекул, не то что раньше, до эпохи нанотехнологий! Мы-то с вами понимаем, что ни на каком другом “уровне” углекислый газ поглотить невозможно, потому что молекула – это форма его существования. Но государственным чиновникам, которым, собственно, и был адресован этот пассаж, не до этих тонкостей, они мыслят глобальными категориями. Предмет их главных, доходящих до маниакальной одержимости забот – техногенные выбросы углекислого газа, и они готовы щедро финансировать любые работы по его поглощению из атмосферы и последующему захоронению.
   Они, конечно, обращаются к экспертам. Сорбент хороший? Очень интересный! Много углекислого газа поглощает? Много, отвечает эксперт, подразумевая: для сорбента. Дело в том, что литр щелочи средней концентрации поглощает еще больше углекислого газа, но это не сорбция и уж тем более не нанотехнологии, это добрая, старая “школьная” химия. Вопроса о том, можно ли с помощью этого сорбента решить проблемы выбросов углекислого газа, уже не следует, все и так понятно.
   На самом деле ответ на вопрос получить нетрудно, если знать (или рассчитать по элементарному, школьному уравнению реакции), что при сгорании одного литра бензина образуется ~1500 литров углекислого газа. Для его поглощения необходимо около 17 литров сорбента. Подозреваю, что вы уже прикидываете в уме, сколько килограммов (литров) такого сорбента вам необходимо будет взять с собой в поездку на дачу и сколько лишнего бензина вы при этом сожжете. Подозреваю также, что для поглощения углекислого газа, извергаемого за один лишь день автотранспортом Москвы, потребуется израсходовать весь общемировой запас кобальта.
   Как при этом расценивать приведенное выше заявление – как некомпетентность или блеф? Руководствуясь презумпцией невиновности и принципами уважительного отношения к коллегам, склоняюсь к мысли, что это все же блеф.
   Да, блефа в нанотехнологиях много. Отчасти это порождается самой системой финансирования науки. Если, например, в нашей стране реально финансируются только работы в области нанотехнологий, то исследователи при подаче заявок на гранты просто вынуждены вставлять куда ни попадя приставку “нано”. С волками жить – по-волчьи выть. В какой-то мере это можно по-человечески понять и извинить.
   Но совсем другое дело – сознательный обман, чрезмерные и в принципе невыполнимые обещания или, наоборот, продажа заведомо устаревшей научной разработки, облеченной в упаковку звучных модных терминов. Наибольший ущерб этот “наноблеф” наносит самим нанотехнологиям. Общественность разочаровывается в них, потому что не видит примеров реализации “принципиально новых” технологий. Специалисты укрепляются в скептическом отношении к нанотехнологиям и почитают их самих широкомасштабным блефом, придуманным исключительно для “распила” огромных бюджетных средств. Не понимаем мы, что такое нанотехнологии и зачем они нужны, честно и задушевно говорят мне коллеги, а мы как работали, так и будем работать, по старинке, разрабатывая высокоэффективные сорбенты нового поколения. (Говорят они, конечно, немного по-другому, это я просто перевожу их высказывания на приличный, старорежимный язык.)
   Дорогие коллеги, отвечаю я им, нанотехнологии – это очень просто, это то, чем вы занимались всю свою профессиональную жизнь. И прогресс нанотехнологий будет связан, в частности, с распространением опыта, накопленного вами в области синтеза и изучения свойств сорбентов, на другие отрасли науки.

Глава 3
Мисс Марпл коллоидной химии

   Она была домохозяйкой. Звали ее Агнесс Луиза Вильгельмина Покелс. Родилась она в 1862 году в Венеции, которая входила в то время в состав Австрийской империи. Отец Агнесс был офицером австрийской армии. В 1871 году Покелсы перебрались в Нижнюю Саксонию, в Брауншвейг, где Агнесс и прожила всю свою долгую жизнь.
   Она росла странным ребенком, ее не интересовали куклы и игра в дочки-матери, переходящая в игру жених-невеста, она испытывала противоестественное, по мнению окружающих, влечение к естественным наукам, заниматься которыми девушкам было непристойно и невозможно в силу особенностей их мышления. Ведь недаром женщин не принимали в немецкие университеты! Агнесс оставалось только с завистью смотреть на своего младшего брата Фридриха, который поступил в знаменитый Гёттингенский университет, а затем стал профессором теоретической физики в Гейдельберге и обессмертил фамилию Покелс в названии открытого им физического эффекта.
   Но это было много позже. Пока же Агнесс читала учебники по физике своего брата-студента и занималась домашним хозяйством, проводя большую часть времени на кухне. Она мыла посуду и размышляла о поверхностном натяжении воды, о том, что вода, которая плещется в тазике, делает это с каждой минутой по-разному, что, очевидно, связано, с одной стороны, с поверхностным натяжением воды, а с другой – с жиром, которой смывается с тарелок.
   Это явление настолько ее заинтересовало, что Агнесс решила заняться изучением влияния различных веществ на поверхностное натяжение воды. И в первую очередь, конечно, мыла, без которого не обходилась ни одна хозяйка, желавшая до блеска отмыть жирную посуду. Для исследований Агнесс сконструировала незамысловатое устройство; его ключевым элементом была пуговица, которую она клала плашмя на поверхность воды, а потом измеряла силу ее отрыва от поверхности. Так кухня стала научной лабораторией Агнесс.
   Упорство, настойчивость, аккуратность – эти свойства выгодно отличают женщин от мужчин, и Агнесс Покелс обладала ими в полной мере. А еще немецкая методичность! Все это позволило ей получить огромный массив данных, проливающих свет на практически неизученную в то время область поверхностных явлений. Она не побоялась представить их на суд лорда Рэлея. Рэлей оказался человеком широким и непредвзятым, он не только прочитал письмо молодой женщины, но, оценив важность полученных данных, настоял на их публикации в престижнейшем журнале “Nature” (естественно, пришлось нажать на редакцию журнала). Статья Агнесс Покелс вышла в 1891 году со скромным названием: “Поверхностное натяжение”.
   Будет большим преувеличением сказать, что статья произвела эффект разорвавшейся бомбы. Ее прочитали и отложили в сторону. Как это часто бывает, научное сообщество долго переваривало новую информацию, интенсивные исследования в этой области начались лишь четверть века спустя, в основном благодаря усилиям Ирвинга Ленгмюра (1881–1957).
   Немного изменила эта статья и в жизни самой Агнесс Покелс. Она постепенно оставила занятия наукой. Через сорок лет пришло запоздалое признание. В 1931 году она получила награду Коллоидного общества, а в следующем году Технический университет Брауншвейга пожаловал ей звание почетного доктора философии. По странному совпадению, в том же году Ленгмюр получил Нобелевскую премию по химии “за открытия и исследования в области химии поверхностных явлений”. Агнесс так и осталась домохозяйкой, не вышла замуж и всю жизнь прожила одна. Скончалась она в 1935 году – мисс Марпл коллоидной химии.
 
   Что же все-таки сделала Покелс? Она впервые изучила то, что лежало на поверхности буквально и метафорически.
   В истории человечества довольно много примеров того, как люди десятилетиями и даже столетиями используют какое-нибудь умение, не понимая сути лежащего в его основе явления, – технологии часто опережают науку. В этом нет ничего удивительного, ведь для подавляющего большинства людей практический результат превалирует над пониманием – для того чтобы пользоваться электронными приборами, вовсе не обязательно знать, как в них течет электрический ток. Ученые – люди любознательные, но и им зачастую не удается докопаться до истины в силу объективных причин, например отсутствия необходимых инструментов исследования. Кроме того, ученые тоже люди, и над ними также часто довлеет практический результат, оптимизировать технологию можно и без понимания сути явления, которая остается, по выражению ученых, “черным ящиком”. И наконец, ученые всегда стремятся к открытию новых явлений, это намного интереснее и престижнее объяснения давно известного, старого.
   Вот так и получилось, что люди узнали о существовании мыла тысячи лет назад, научились его варить сотни лет назад, не имея ни малейшего понятия, что оно собой представляет и почему, собственно, смывает грязь. Первый вопрос прояснил в 1808 году французский химик Мишель Эжен Шеврёль (1786–1889{2}), среди прочего – иностранный член-корреспондент Петербургской академии наук. Он был пионером в исследовании химического строения растительных и животных жиров, ему, в частности, принадлежит патент на изготовление хорошо нам известных стеариновых свеч, он его получил вместе с Жозефом Гей-Люссаком.
   Неудивительно, что именно к Шеврёлю обратились владельцы некой текстильной фабрики с просьбой установить состав мыла, ведь его получали из животного жира обработкой содой. Ну и Шеврёль установил, что мыло – это натриевая соль длинной органической кислоты. Такие кислоты с тех пор так и называются – жирными. Внешне молекула мыла похожа на гусеницу: небольшая, хорошо смачивающаяся водой “головка” и длинный гидрофобный (плохо смачивающийся водой) “хвост”. Впрочем, такие детали химики начала XIX века не могли даже вообразить, так что они удовлетворились установлением состава мыла и забыли о нем на многие десятилетия.
   Заслуга Агнесс Покелс заключается в том, что она привлекла внимание ученых к этим, с одной стороны, хорошо известным, а с другой – абсолютно неизученным веществам. Она обнаружила, что мыло уменьшает поверхностное натяжение воды, что его молекулы каким-то образом “выносятся” на поверхность воды и изменяют ее свойства. Эти вещества были названы поверхностно-активными. Сейчас сокращение ПАВ известно всем и не нуждается в расшифровке[5].
   Обнаруженный эффект гораздо проще объяснить с высоты нашего современного знания. Молекулам мыла, в целом плохо смачивающимся водой, некомфортно в толще воды, намного выгоднее им находиться на поверхности, опустив головку в воду и выставив хвост наружу. Опять полная аналогия с гусеницей, вгрызающейся в яблоко. Хвост может свободно изгибаться, но когда молекул на поверхности станет очень много, они покроют ее плотным слоем с частоколом вытянутых в струнку хвостов. Если смотреть снаружи на поверхность мыльной воды, то это будет уже и не вода, а нечто очень похожее на… масло.
   Масло и вода – опыты Бенджамина Франклина. Он получал слои масла толщиной в несколько нанометров, двигаясь к ним, как сейчас принято говорить, сверху вниз, растягивая каплю жидкости сантиметрового диаметра в тонкую пленку площадью в сто квадратных метров. Покелс пришла к похожим слоям, двигаясь снизу вверх, от изолированных молекул, свободно плавающих в водном растворе, к их ассоциату бесконечной протяженности, состоящему из плотно прилегающих и определенным образом ориентированных молекул. Конечно, все это еще предстояло доказать, но направление движения Покелс задала.