История изобретателя Виктора Шаубергера очень интересна, особенно тем, что все принципы своих машин он нашел в наблюдениях за Природой. Его основное место работы – лесничество в Австрии, где он разрабатывал агротехнические технологии, отраженные в его патентах.
   Общая схема его установки нам уже знакома по работам Клема. Версия машины, показанная на рис. 39, слева, предложена Леопольдом Шерьжю. Известно, что она не была реализована, поскольку в ней есть недостатки. Согласитесь, схема очень похожа на конструкцию Ричарда Клема, но у Шерьжю нет конусного ротора. По-моему, этот недостаток является критическим. Вращение жидкости создает центробежную силу, которую мы должны использовать для увеличения кинетической энергии рабочего тела. Для выполнения этого условия, радиус вращения жидкости должен постепенно увеличиваться, желательно по траектории логарифмической спирали, что дает возможность увеличения радиальной компоненты скорости жидкости за счет влияния центробежной силы.
   Рис. 39. Принципиальная схема генератора Леопольда Шерьжю (слева) и центробежной машины Фролова (справа)
 
   Это решение предложено на рис. 39, справа, конструкция Фролова, 2011 год. В настоящее время, проект по созданию работоспособного генератора Шаубергера развивается, и мы приглашаем к участию в проекте заинтересованных инвесторов и производственных партнеров.
   Интересно, знал ли Ричард Клем про работы Виктора Шаубергера? Это кажется маловероятным, ведь Ричард работал простым оператором тяжелой техники, в частности, разбрызгивателя горячего асфальта. Скорее всего, эти два изобретения являются двумя независимыми проектами, при рассмотрении которых, полезно найти аналогии и сделать выводы для конструирования машин данного типа.
   Фотографии оригинального устройства Шаубергера, которое хранится в музее в Австрии, публикуются с разрешения семьи Шаубергера, их сайт www.pks.or.at На рис. 40 показан автор и его «домашний генератор». Вход воды происходит сверху, в узкой части конуса. Необходимо отметить, что, кроме воды, в трубках всегда есть небольшое количество воздуха, и это условие рассматривается, как необходимое для успешной работы устройства. На фото виден шарообразный воздушный фильтр. При настройке машины, было важно подобрать, с помощью клапанов и кранов управления, требуемое сочетание воды и воздуха в трубках.
   Рис. 40. Виктор Шаубергер и его «домашний генератор»
 
   Слева внизу – электрогенератор и шкив. Ротор сделан из медных трубок, огибающих конус, как показано на фото рис. 41.
   Рис. 41. Устройство в музее Шаубергера, Австрия
 
   Аэрированная жидкость обладает упругостью, что позволяет накопить потенциальную энергию при сжатии жидкости под действием центробежных сил, а затем, преобразовать ее в кинетическую энергию ротора. Мы уже отмечали этот нюанс: упругость рабочего тела, в таких конструкциях, необходима для преобразования потенциальной энергии. Центробежная сила сжимает рабочую массу, в ней увеличивается потенциальная энергия. Далее, при движении по спирали с увеличением радиуса, эта энергия преобразуется в кинетическую энергию рабочей массы, ее ускорение, а также, в увеличение крутящего момента ротора.
   Кроме того, упругая среда необходима, так как несжимаемые жидкости не могут двигаться сплошным потоком с ускорением, без разрывов и турбулентности.
   Интересная особенность конструкции сопла в машине Шаубергера: применяется вставка, которая не вращается, но создает спиральное вращение воды на выходе из трубки, рис. 42.
   Рис. 42. Сопло на конце трубки «домашнего генератора» Шаубергера
 
   Данное техническое решение широко известно конструкторам устройств, в которых требуется увеличить скорость движения реактивной струи на выходе из сопла. При создании вращения потока воды вокруг своей оси, на его периферии образуются микровихри, которые играют роль «шариков» своеобразного подшипника, уменьшающего трение воды о стенки трубки. В нашей конструкции, которую мы разрабатываем по аналогичной схеме, рис. 39, справа, применяется похожее решение. Тема перспективная, расчеты показывают, что ротор радиусом 30 см при 3000 об/мин может обеспечить 40 киловатт мощности на валу. Подробности – на сайте http://alexfrolov.narod.ru
   Известно, что устройство Шаубергера не только выходило на режим самовращения, но и создавало большую осевую (вертикальную) силу тяги. Одно из устройств Шаубергера, при испытаниях, взлетело, пробило крышу и разрушило часть здания.
   Судьба изобретателя привела его в Америку, где он поссорился с партнерами, хотя его генератор очень хорошо работал. Подписав контракт на английском, которого он не понимал, Шаубергер вернулся в Европу. Позже он узнал, что по контракту, он передал все права на свои разработки американцам, а сам более не имеет прав заниматься этими исследованиями.
   Об этой и других конструкциях по данной теме подробно рассказывает Евгений Арсентьев на своем сайте www.evgars.com. Известно также о попытках московского автора Евгения Степановича Папушина построить «самовращающуюся машину» похожего принципа действия, но его схем и результатов для публикации не имеется.
   Аналогичная разработка, использующая воздух, была известна в 1960-х годах в США. Автор Карл Хаскел (Haskell Karl). В настоящее время, она развивается группой под руководством Рона Роквела (Ron Rockwel). Патента на данное изобретение нет, и очень мало информации, но можно отметить особенности этой самоподдерживающейся турбины: обороты достигают 100 тысяч оборотов в минуту. На турбину подается высокий электрический потенциал, видимо, для снижения трения, поэтому, в процессе работы, воздух ионизируется.
   Приведу еще один пример использования центробежных сил, то есть градиента давления эфира на вращающееся тело, для увеличения эффективности преобразования форм энергии. В 1999 году, мной был подготовлен доклад для конференции в Санкт-Петербургском Университете по теме «Высокоэффективный электролиз воды». Предлагалось техническое решение, позволяющее изменить условия газообразования на поверхности электродов. Это решение состояло в создании вращения электролизера. Предложенная схема показана на рис. 43.
   Рис. 43. Схема центробежного электролизера Фролова
 
   Суть изобретения состоит в том, что центробежные силы, которые создаются при вращении, действуют на газовый слой, и отрывают его от поверхности электродов. Газ (водород), в такой конструкции, собирается около оси вращения и может оттуда извлекаться для полезного использования. Кислород, в данной конструкции, предполагалось освобождать в атмосферу (отверстия в крышке). Величина центробежной силы, определяющая эффективность процесса, должна быть максимальной, что ограничивается только конструктивными возможностями. Расход энергии привода нужен на этапе разгона ротора, но на поддержание вращения требуются минимальные затраты. В данном центробежном электролизере, эффективность обуславливается созданием оптимальных условий поляризации молекул воды вблизи поверхности электродов, при отсутствии на ней газовой пленки (или при частичном уменьшении ее влияния). Фактически, этим методом снижается начальное напряжение диссоциации, что приводит к уменьшению расхода электроэнергии. Развитие проекта и эксперименты по предложенному мной методу, возможны при наличии заинтересованного в данной теме заказчика. Я не патентовал данным метод. Его зарубежные аналоги известны, например, в работах японского ученого Омаза (Ohmasa), компания Japan Techno, используются низкочастотные вибрации в электролизере, причем они обеспечивают именно вращение воды, а не только вибрации, что эффективно устраняет газовый слой с поверхности электродов. Технология описана в международном патенте WO 03/048424A1, который подан в 2004 году.
   Другой метод центробежного электролиза разработан авторами Студенниковым В.В. и Кудиновым, Российская заявка № 2003104497/12 от 17.02.2003 г. Международная заявка РСТ/RU 03/00413 от 18.09.2003 г. «Установка для разложения воды электролизом». Их изобретение относится к области электрохимии. Схема показана на рис. 44.
   Рис. 44. Схема вращающегося электролизера Студенникова и Кудинова
 
   Особенности применяемого авторами химического состава электролита в том, что в нем есть тяжелые анионы и легкие катионы. Электролит подают внутрь ротора, вращающегося с большой скоростью. В поле центробежных сил в электролите происходит разделение среды на легкие и тяжелые ионы, что приводит к появлению радиальной разности потенциалов, а затем к возникновению электрического тока, контур которого замыкается через вращающийся металлический ротор. Мощность привода, в экспериментах авторов, составляла 5 кВт. Скорость вращения – от 1500 до 40000 оборотов в минуту. Таким образом, внешний источник электроэнергии для электролиза здесь не требуется. Необходимо привести электролит во вращение, а затем, в электролите создается разность потенциалов, поддерживающая процесс диссоциации. При замыкании внешней цепи, в ней идет ток проводимости, который может обеспечивать значительную мощность в полезной нагрузке, при этом, процесс идет с выделением газа (кислорода и водорода) из электролита.
   При использовании кислотного электролита, вблизи оси вращения образуются положительные ионы водорода. Получив из металлического корпуса электроны, они рекомбинируют в молекулы водорода. Более тяжелые анионы собираются на периферии вращающегося объема, отдают электроны в корпус металлического ротора, что приводит к образованию молекул кислорода.
   Центробежными силами, легкие молекулы кислорода выталкиваются более тяжелыми ионами к оси вращающегося объема электролита. Через отверстия в валу, образующиеся молекулы кислорода и водорода удаляются из вращающегося объема, и подаются потребителю. Данная электрохимическая реакция разложения воды является эндотермической, то есть может продолжаться только при наличии теплообмена с внешней средой. С этой целью, на вход теплообменника поступает остывший на периферии вращающегося объема осадок, а в центральную область вращающегося объема подается подогретый до температуры окружающей среды электролит. Добавление чистой воды извне необходимо, по мере разложения воды на кислород и водород.
   По данным авторов-разработчиков, теоретически, на каждый ватт затраченной механической мощности, из внешней среды поглощается от 20 до 88 ватт теплоты, соответственно производимому из воды количеству газа. Это означает эффективность 20 к 1 или даже 88 к 1. В такой конструкции, один кубический метр условного рабочего объема электролизера, позволял бы получать за секунду 3,5 кубометра водорода.
   В свое время, информация авторов о своей разработке вызвала большой интерес инвесторов, в том числе зарубежных, но позже, многие заявления авторов экспериментально не подтвердились. В 2010 году, данный проект еще не вышел на уровень коммерциализации. Темой занималась компания «Аламбик Альфа», в Москве. Полезные статьи по теме «хемиэлектрический гравитолиз Студенникова» опубликовал Макаров Андрей Фадеевич из Кемерово. Дополнительную информацию можно найти в журнале «Новая Энергетика», на нашем сайте.
   Получение тепла путем кавитации при разнообразных способах вращения воды, подробно рассматривать не будем. Желаюшдм изучить основы вихревых теплогенераторов (ВТГ), рекомендую найти в Интернет работы Юрия Семеновича Потапова. С моей точки зрения, избыточная тепловая энергия в таких устройствах также является результатом преобразований свободной энергии эфира путем использования центробежных инерциальных эффектов, возникающих при вращении рабочей жидкости: вращение создает давление, сжатие рабочей жидкости и увеличение ее потенциальной энергии, что можно использовать для создания автономных источников энергии. Все остальные эффекты в устройствах кавитационного типа являются вторичными.
   Кстати, один из таких косвенных эффектов ВТГ мы изучали в совместном проекте с Валерием Владимировичем Лазаревым, Университет Санкт-Петербурга. Идея нашего эксперимента состояла в проверке влияния кавитации на степень радиоактивности жидкости, которая циркулировала в ВТГ. Мы успешно, в двух различных экспериментах, показали, что процесс кавитации уменьшает не только уровень радиоактивности самой жидкости, но и общий радиоактивный фон вокруг работающего ВТГ. Подробности можно найти на нашем сайте www.faraday.ru.
   Практические успехи в области создания энергетически автономных устройств, на основе данного принципа, успешно и давно развиваются, например, «квантовые теплоэлектростанции» КТЭС Потапова, рис. 45.
   Рис. 45. Схема двухступенчатой электростанции КТЭС Потапова
 
   В них происходит не только нагрев жидкости, но и вырабатывается электроэнергия, необходимая для насосов и внешнего потребителя. Рассмотрим схему: Насос 6 качает воду в «циклон» 3, а после ускорения воды выходит через сопло 9 на гидротурбину 11, которая соединена с электрогенератором. В нижней емкости 13 установлена вторая гидротурбина 14, также связанная с электрогенератором. На выходе из сопла 9 вихревого теплогенератора температура рабочей среды составляет порядка 70 – 100 градусов Цельсия и давление 8 – 10 атм. Этот поток обеспечивает работу первой турбины. Турбина в нижней емкости приводится в действие жидкостью, перемещающейся под действием собственного веса из верхней емкости. Таким образом, одновременно с производством тепловой энергии, получение которой обеспечивает теплогенератор 1, в установке вырабатывается электрическая энергия. Получение этой электроэнергии и тепла не требует никаких затрат топлива, ее производство является экологически чистым. Данными по заводу-изготовителю, протоколам испытаний и опыту эксплуатации таких электростанций мы не располагаем.
   Разумеется, конструктивные особенности ротора, имеющего специальные элементы, увеличивающие кавитацию, а также специальная траектория движения воды, и другие факторы, являются важными для получения максимума тепловой энергии при минимальном расходе электроэнергии привода, создающего вращение. Тем не менее, логика событий следующая: вращение рабочей массы жидкости (после разгона) затрат не требует (потери на трение не учитываем), давление создается в результате инерциальных свойств материи, а именно, градиента эфира, который нами воспринимается, как центробежная сила. Далее, давление обуславливает избыточную энергию, которая проявляется в виде избыточного тепла или скорости движения (кинетической энергии) рабочей массы жидкости.
   Важный аспект: получив давление, за счет центробежной силы, надо обеспечить возможность рабочей массы двигаться с ускорением, то есть «преобразовать статику в динамику», потенциальную энергию в кинетическую. Дальнейшее развитие событий, например, использование кинетической энергии потока воды или воздуха, нам известно.
   В качестве перспективного направления поиска решения задачи автономного энергоснабжения, приведу еще один пример аналогичной конструкции. На рис. 46 показано фото и схема эксперимента Харди.
   Рис. 46. Схема эксперимента и фото колеса турбины генератора
 
   Автор Джеймс Харди (James D. Hardy) получил патент США 2007/0018461 A1 от 25 января 2007 года. Конструкция примитивная, домашнего изготовления. О параметрах насоса: для эксперимента применялся насос высокого давления от компактной автомобильной мойки высокого давления, питание от сети 220VAC. Такие насосы создают струю воды с давлением около 100 атмосфер.
   Производительность насоса около 350–600 литров воды в час. Мощность потребления примерно 1 киловатт в час. Расчет величины мощности, которую можно было бы получить от турбины, если полностью использовать кинетическую энергию такого потока воды (350 кг в час при давлении 100 атм), мы производить не будем. По экспериментальным данным, ее хватает для того, чтобы даже самодельная турбина, показанная на фото, и обычный электрогенератор работали в автономном режиме, обеспечивая электропитание насоса и нескольких ламп накаливания, выполняющих роль полезной нагрузки. По особенностям конструкции генератора Харди отметим, что его турбина с «ложками» вращается недостаточно быстро, чтобы обеспечить вращение электрогенератора с требуемыми 1500 оборотов в минуту. Поэтому на валу турбины установлен маховик большого диаметра для ременной передачи на вал генератора, который имеет меньший диаметр. Видеофильм данного эксперимента можно посмотреть в Интернет http://www.youtube.com/watch?v=qhwQt1tJYa8
   Рассмотрим еще один проект с участием Юрия Семеновича Потапова, который был незавершен нами по ряду причин. Проект, который мы проводили в 2004–2005 годах, получил название «молекулярный двигатель», по предложению Потапова. Фото установки, которую мы построили и испытывали в нашей лаборатории, показано на рис. 47.
   Рис. 47. Экспериментальная установка ООО «ЛНТФ», 2004 г.
 
   Термин «молекулярный» относится к кинетической энергии молекул воздуха, которая определяет его температуру. Молекулы воздуха хаотически двигаются, векторная сумма их скоростей равна нулю, но мы можем преобразовать их энергию в полезную работу, хотя бы частично, при создании их направленного движения (ламинаризации потока). Ламинаризация обеспечивается конструктивно, за счет геометрических особенностей конструкции, и затрат энергии не требует. Отметим, что аналогичный подход использован в проекте по созданию специального наноматериала, который мы рассмотрим позже.
   Юрий Семенович принимал участие в проектировании установки, затем работал совместно со специалистами завода имени Дегтярева, г. Ковров, по изготовлению основной части испытательного стенда установки УКС-37.
   Заказчиком проекта была моя компания «Лаборатория Новых Технологий Фарадей», в то время работавшая в Санкт-Петербурге. Теоретически, предполагалось получать электроэнергию на выходе электрогенератора, вращаемого турбиной, через которую проходит воздушный поток, причем в количестве, достаточном для работы вентилятора и полезной нагрузки. Воздух подавался на турбину от центробежного вентилятора через воздуховод, в котором предполагалось создать особые условия для использования кинетической энергии молекул воздуха, и последующей передачи этой энергии турбине. Очевидно, что, аналогично ранее рассмотренным случаям, избыточная кинетическая энергия создается уже в самом вентиляторе за счет центробежных сил, сжимающих воздух. Дальнейшие способы увеличения мощности на выходе энергокомплекса, которые предстояло изучить, должны были обеспечить пассивные конструктивные элементы воздуховода, без затрат энергии первичного источника.
   Предполагалось получать электроэнергию от процесса вращения с помощью стандартного электрогенератора типа ГС-250 номинальной мощностью 60 кВт. Преобразование давления потока в кинетическую энергию вращения обеспечивала турбина вертолетного газотурбинного двигателя типа ГТД-350, через стандартный редуктор. Изначально, подачу воздуха на вход турбины обеспечивал центробежный вентилятор типа ВПЗ, диаметр ротора которого был около 1 метра, потребление 7 кВт/ час, производят такие вентиляторы завод в г. Чудово. Позже мы его заменили другим центробежным вентилятором ВДС-5, завод «ЛИССАНТ», Санкт-Петербург. Предполагалось, что устройство УКС-37 должно было работать в автономном режиме, и вырабатывать не менее 37 кВт электроэнергии для полезной нагрузки.
   Концепция Потапова была, несомненно, верной, но у нас возникли организационные и технические трудности с ее реализацией. Выполнение работы на заводе задерживалось. После того, как договорные сроки изготовления и испытаний установки закончились, специалисты завода не вышли на автономный режим работы установки. Представители завода договорились со мной о том, что они сдают не готовое изделие, способное работать в автономном режиме, а комплект для изготовления стенда и экспериментов, по цене 50 % от договорной цены. Полагая это неплохим компромиссом, я получил экспериментальный стенд для исследований, и начал его дорабатывать. Юрий Семенович некоторое время работал со специалистами завода имени Дегтярева по данному проекту, но затем непосредственного участия в работе не принимал. Дальнейшие исследования в лаборатории я проводил самостоятельно. Большую помощь в работе по данному проекту оказал Погоняйло Игорь Анатольевич, офицер запаса, специалист высшей квалификации в области силовых установок, применяемых на судах ВМФ.
   Испытательный стенд был получен мной в комплекте с неисправным вентилятором. По этой причине, вентилятор был заменен на новый центробежный вентилятор ВДС-5, производительностью 800 кубометров воздуха в час, потребление электроэнергии примерно 5 кВт в час.
   Исследования показали, что концепция использования центробежных машин в автономных энергокомплексах вполне работоспособная. Нам удавалось получить около 3 кВт полезной мощности в лампах накаливания, причем это не оказывало влияния на увеличение потребляемой мощности. Эта принципиальная схема преобразователя, который использует рабочую массу потока вещества (воды или воздуха), и имеет почти полную конструктивную развязку между первичным источником «возбуждения среды» и устройством приема и преобразования кинетической энергии потока.
   Можно сказать, что имеется даже некоторая «положительная связь»: если тормозить турбину, включая электрическую нагрузку, или полностью закрывать воздуховод между турбиной и вентилятором крышкой, то мощность, потребляемая электроприводом вентилятора, значительно уменьшается (от уровня 6–7 кВт до 4–5 кВт). Главное, то, что кинетическая энергия потока воздуха в такой конструкции увеличивается за счет центробежных сил, в результате сжатия рабочего тела – воздуха. При этом, потребление электроэнергии вентилятора можно минимизировать различными методами, например установкой конденсаторных компенсаторов реактивной мощности привода и точной настройкой контура в резонанс. Сложный автоматически регулируемый компенсатор реактивной мощности, в данном случае не нужен, так как у вентилятора постоянная нагрузка. Необходим мощный силовой конденсатор, имеющий величину КВАР – «КилоВольтАмперРеактивные», соответствующую мощности вентилятора.
   Мы также изучили некоторые аспекты оптимизации данной конструкции. На участке от выходного отверстия центробежного вентилятора до турбины, был установлен воздуховод диаметром 400 мм (по диаметру турбины) и длиной 1 метр. При создании в данном воздуховоде вращательного процесса движения воздушной массы, мощность в нагрузке электрогенератора увеличивалась на 5–7 % по сравнению с прямолинейным движением воздушной массы. Вращение потока воздуха обеспечивалось наклонными направляющими, устанавливаемыми внутри воздуховода на его стенки. Мощность потребления вентилятора контролировалась цифровым счетчиком электроэнергии. Это увеличение мощности на выходе электрогенератора происходило без увеличения мощности потребления вентилятором, лишь за счет конструктивных пассивных элементов, фактически, за счет изменения траектории воздушного потока.
   Перспективы получения автономного режима были небольшими, кинетической энергии потока воздуха от вентилятора ВДС-5 не хватало на преодоление потерь (КПД турбины и генератора). При потреблении вентилятором 5 кВт электроэнергии, в нагрузке генератора мы уверенно получали до 3 кВт мощности, но дальнейшее увеличение нагрузки приводило к потере качества электроэнергии (снижение числа оборотов и падению напряжения на выходе генератора). Было принято решение увеличить объем и давление рабочей массы воздуха, и для этой цели приобретен компрессор типа АФ53, с рабочим давлением на порядок выше, чем у ВДС-5.
   По причине отсутствия финансирования по данной теме, а также после возникновения технических проблем с редуктором турбины, проект был прекращен в 2005 году. Экспериментальный стенд был продан другой компании. О дальнейших исследованиях по данной теме мне известно то, что практически ценных результатов они не получили, несмотря на привлечение профессиональных специалистов по аэродинамике. За теоретическими консультациями ко мне они не обращались.
   Мы уже отмечали, что именно упругие свойства рабочего тела позволяют накапливать потенциальную энергию при его сжатии в области действия центробежной силы, а затем, получать избыточную кинетическую энергию. Важно также и понимание второй стороны открытой физической системы: упругие свойства окружающей эфирной среды. Эфир рассматривается в предлагаемой концепции, именно, как упругая среда, Менделеев использовал такой подход к объяснению свойств материи: