«… вот как определяется эфир: жидкость невесомая, упругая, наполняющая пространство, проникающая во все тела и признаваемая физиками за причину света, тепла, электричества и проч. Можно сказать, что эфир подобен газу. Называя эфир газом, мы понимаем флюид в широком смысле, как эластичный флюид, не имеющий сцепления между своими частицами» (Книга Менделеева «Попытка химической концепции эфира», Санкт-Петербург, типолитография М.П. Фроловой, 1905 год.)
Итак, важную роль в понимании физики рассматриваемых процессов занимает концепции массы частиц материи, включающую связанный с ними эфир. Именно, связанный с частицами материи эфир, занимающий пространство между атомами, определяет инерциальные свойства частиц массы. Следовательно, ускорение и центробежная сила являются эффектами упругого взаимодействия тела с окружающей упругой эфирной средой.
С данной точки зрения, дополнительная энергия, в частности, избыточный крутящий момент ротора, который может быть получен в технически замкнутой физической системе, обусловлен преобразованием энергии среды, в частности, упругими деформациями эфирной среды, и соответствующими этим деформациям термодинамическими изменениями в ней (поглощением и выделением тепла). Это и есть изменения свойств пространства, которые мы обсуждали в главе о теории процесса преобразования форм энергии.
По зарубежным аналогам данного проекта, можно отметить компанию EF9 Energy Systems, которая также ставит вопрос преобразования тепловой энергии атмосферного воздуха в полезную работу. Их сайт содержит немного информации о проведенных исследованиях, но достаточно подробно описывает теорию процесса http://ef9energysystems.com/ Они полагают, что главную роль в данном преобразовании энергии играет «эффект Бернулли». Цели данной компании, в настоящее время, включают создание 50 кВт генератора для частных домов, а также генератора энергии для автотранспорта.
Рассмотрим еще один пример машины, производящей работу при наличии сил гравитации и центробежных сил. Это устройство Чаза Кэмбелла (Chas Cambell) из Австралии. На рис. 48 показано фотография его колеса, вырабатывающего 3 киловатта электроэнергии.
Рис. 48. Фото конструкции Чаза Кэмбелла. 3 кВт мощности. www.free-energy-info.com
В конструктивных решениях Кэмбелла, кроме обычного самовращающегося колеса со смещением центра тяжести, есть интересная концепция извлечения избыточной энергии при использовании маховика. Сечение «периферийного» маховика показано на рис. 48.
На фото рис. 49 показан экспериментальный стенд, для исследований по данной теме, в котором нет аккумуляторов. Мотор и генератор подключены к конденсаторным накопителям энергии. Связь через маховик, по мнению изобретателя, обеспечивает увеличение мощности. Обратите внимание на «окна» в маховике, в которых видны его внутренние элементы. Полагаю, что есть аналогии с конструкцией Кэмбелла и Амарасингама. На мой взгляд, объяснение данного эффекта, применяемого не только Кэмбеллом, но и другими авторами, заключается в том, что кинетическая энергия вращающейся массы вещества, имеет квадратичную зависимость от скорости, а значит и от радиуса. Увеличение скорости вращения в 3 раза, дает увеличение кинетической энергии в 9 раз.
Рис. 49. Мотор – генератор с маховиком
В рамках данной темы, можно напомнить о проектах Вячеслава Ивановича Богомолова. В 2003 году наша компания ООО «Фарадей» провела ряд экспериментов по реализации его идей, о которых мы подробно сообщали в журнале «Новая Энергетика».
Другой известный автор разработок в данной области: Линевич Э.И., в настоящее время активно работает с европейскими инвесторами, компания «Permotors GmbH». Описание его центробежного преобразователя мощности, содержит патентная заявка РФ «Способ работы силового привода вращения и электростанция для его осуществления» RU2008105388, от 12 февраля 2008 года.
На этом, будет разумно закончить рассмотрение идей по использованию гравитационного поля, а также центробежных машин, чтобы остались силы на изучение других принципов. Перейдем к примерам конструирования источников энергии, в которых используются электрические явления. Для начала, мне представляется важным напомнить события конца XIX века, чтобы потом иметь возможность делать аналогии с современными событиями и исследованиями в области альтернативной энергетики.
Глава 5
Итак, важную роль в понимании физики рассматриваемых процессов занимает концепции массы частиц материи, включающую связанный с ними эфир. Именно, связанный с частицами материи эфир, занимающий пространство между атомами, определяет инерциальные свойства частиц массы. Следовательно, ускорение и центробежная сила являются эффектами упругого взаимодействия тела с окружающей упругой эфирной средой.
С данной точки зрения, дополнительная энергия, в частности, избыточный крутящий момент ротора, который может быть получен в технически замкнутой физической системе, обусловлен преобразованием энергии среды, в частности, упругими деформациями эфирной среды, и соответствующими этим деформациям термодинамическими изменениями в ней (поглощением и выделением тепла). Это и есть изменения свойств пространства, которые мы обсуждали в главе о теории процесса преобразования форм энергии.
По зарубежным аналогам данного проекта, можно отметить компанию EF9 Energy Systems, которая также ставит вопрос преобразования тепловой энергии атмосферного воздуха в полезную работу. Их сайт содержит немного информации о проведенных исследованиях, но достаточно подробно описывает теорию процесса http://ef9energysystems.com/ Они полагают, что главную роль в данном преобразовании энергии играет «эффект Бернулли». Цели данной компании, в настоящее время, включают создание 50 кВт генератора для частных домов, а также генератора энергии для автотранспорта.
Рассмотрим еще один пример машины, производящей работу при наличии сил гравитации и центробежных сил. Это устройство Чаза Кэмбелла (Chas Cambell) из Австралии. На рис. 48 показано фотография его колеса, вырабатывающего 3 киловатта электроэнергии.
Рис. 48. Фото конструкции Чаза Кэмбелла. 3 кВт мощности. www.free-energy-info.com
В конструктивных решениях Кэмбелла, кроме обычного самовращающегося колеса со смещением центра тяжести, есть интересная концепция извлечения избыточной энергии при использовании маховика. Сечение «периферийного» маховика показано на рис. 48.
На фото рис. 49 показан экспериментальный стенд, для исследований по данной теме, в котором нет аккумуляторов. Мотор и генератор подключены к конденсаторным накопителям энергии. Связь через маховик, по мнению изобретателя, обеспечивает увеличение мощности. Обратите внимание на «окна» в маховике, в которых видны его внутренние элементы. Полагаю, что есть аналогии с конструкцией Кэмбелла и Амарасингама. На мой взгляд, объяснение данного эффекта, применяемого не только Кэмбеллом, но и другими авторами, заключается в том, что кинетическая энергия вращающейся массы вещества, имеет квадратичную зависимость от скорости, а значит и от радиуса. Увеличение скорости вращения в 3 раза, дает увеличение кинетической энергии в 9 раз.
Рис. 49. Мотор – генератор с маховиком
В рамках данной темы, можно напомнить о проектах Вячеслава Ивановича Богомолова. В 2003 году наша компания ООО «Фарадей» провела ряд экспериментов по реализации его идей, о которых мы подробно сообщали в журнале «Новая Энергетика».
Другой известный автор разработок в данной области: Линевич Э.И., в настоящее время активно работает с европейскими инвесторами, компания «Permotors GmbH». Описание его центробежного преобразователя мощности, содержит патентная заявка РФ «Способ работы силового привода вращения и электростанция для его осуществления» RU2008105388, от 12 февраля 2008 года.
На этом, будет разумно закончить рассмотрение идей по использованию гравитационного поля, а также центробежных машин, чтобы остались силы на изучение других принципов. Перейдем к примерам конструирования источников энергии, в которых используются электрические явления. Для начала, мне представляется важным напомнить события конца XIX века, чтобы потом иметь возможность делать аналогии с современными событиями и исследованиями в области альтернативной энергетики.
Глава 5
На заре российской электротехники
Обращаясь к истории российской электротехники, вспомним великого русского ученого Павла Николаевича Яблочкова, моего земляка. Его биография и изобретения подробно освещены в книге «Русские электротехники второй половины XIX века», М. А. Шателен, Госэнергоиздат, 1949 год.
Родился Павел Николаевич в Саратовской губернии, 14 сентября 1847 года. Образование он получил военноинженерное, служил офицером с 1866 по 1872 год. В 1875 году Яблочков поехал на Всемирную выставку изобретателей в Филадельфии, показать миру свой новый электромагнит с обмотками необычной формы, которые придавали магниту особую силу. Однако, до Америки он не доехал, и остался работать в Париже у Бреге, в мастерской, изготовлявшей знаменитые часы и другие физические приборы. Там он запатентовал свои изобретения, а позже стал одним из основателей Французского Электротехнического Общества.
Первый патент Яблочкова № 110479 от 29 ноября 1875 года выдан французским правительством на «электромагнит». Отличительной особенностью электромагнита Яблочкова было то, что его обмотка была сделана из плоской ленты, намотанной на ребро, так что плоскость ленты была перпендикулярна к сердечнику. На рис. 50 показано, каким образом взаимодействует поле плоского витка с полем в сердечнике. Суть этого важного изобретения, по-моему, состоит не только в экономии меди. В таком трансформаторе создаются условия для асимметрии первичного магнитного поля В1 и вторичного (индуцированного) поля В2, показанные на рис. 50. Вторичное поле почти не создает влияния на первичный источник. Кроме того, намотка плоской лентой «на ребро» позволяет получить большое число Ампер-витков на единицу длины сердечника, как и при намотке тонкими проводами круглого сечения малого диаметра, но при этом удается обеспечить в обмотке малое активное сопротивление току (малые омические потери).
Рис. 50. Плоская лента создает поле В2
Второй патент Яблочкова № 111535 от 17 февраля 1876 года также упоминает о применении ленточной обмотки. Отметим, что Тесла и другие изобретатели также применяли плоские ленты в обмотках трансформаторов и электромоторов, в том числе, включая их по схеме Мебиуса.
23 марта 1876 года Яблочков получает патент на лампу освещения, так называемую «свечу Яблочкова». В 1877 году он получил французский патент на магнитную динамо-электрическую машину переменного тока, в которой обмотки оставались неподвижными. Изменения магнитного потока происходили за счет вращения зубчатого железного диска. Фактически, это одна из первых схем альтернатора. При такой конструкции, электродвижущая сила создается почти без торможения ротора.
Отметим также его приоритеты в изобретении первого в мире трансформатора. Французский патент № 115793 от 30 ноября 1876 года описывает трансформатор, изобретенный Яблочковым: «… в любой точке цепи я включаю индуктирующую катушку, через которую проходит ток от источника тока. Далее я помещаю, надлежащим образом, вторую катушку, в которой первая индуцирует ток». Схема показана на рис. 51.
Рис. 51. Трансформатор Яблочкова. Рисунок из патента № 115793 от 30 ноября 1876 года
Системы электрического освещения того времени имели только один провод, а второй конец линии подключался к заземлению. Позже мы рассмотрим аналогичные современные однопроводные линии электропередач. Счетчиков электроэнергии тогда не было, а оплата производилась по установленному тарифу за пользование.
Кроме французского патента, 6 апреля 1878 года, Яблочков получает и русский патент на первый в мире электромагнитный трансформатор. В немецкой «Истории трансформаторов» Уппенборн пишет: «В 1878 году мы встречаемся с первым опытом промышленного применения индукционных катушек для освещения; в этом году Яблочков взял немецкий патент № 1630, который был им применен для питания своих ламп».
Яблочков нашел способ использовать воздух (ионизацию окружающей среды), как «источник свободных электронов» для усиления мощности в цепи полезной нагрузки. 13 сентября 1877 года в Русском Физико-Химическом Обществе был сделан доклад Профессора Егорова об изобретениях Яблочкова, в том числе по вопросу «введения больших конденсаторов в цепь машины-генератора для увеличения мощности ламп».
На рис. 52 показана схема распределения переменного тока с конденсаторами по французскому патенту Яблочкова, № 120684 от 11 октября 1877 года на «Систему распределения и усиления атмосферным электричеством токов, получаемых от одного источника тока с целью одновременного питания нескольких светильников».
Рис. 52. Рисунок из патента Яблочкова П.Н. № 120684 от 11 октября 1877 года
В книге «Электрическое освещение», изданная в 1883 году Де Монсель, пишет: «Для того, чтобы увеличить световую мощность электрических свечей, Яблочкову пришла мысль применить конденсаторы большой поверхности».
Отметим, что кроме плоских пластин, были предложены «игольчатые конденсаторы», так сказать «ежики», похожие на щетки с металлическими иглами. Острие электрода, как известно, улучшает условия ионизации воздуха.
Яблочков объяснял: «Я заставляю динамическое электричество, доставляемое источником электричества, претерпевать двойную трансформацию – сначала в статическое электричество, а затем снова в динамическое… я соединяю проводник, идущий от машин переменного тока с внутренней обкладкой Лейденской банки или конденсатора особого устройства, а второй провод соединяю со свечой.
Включение конденсаторов не только позволяет распределить ток по разным направлениям, но имеет еще целью развить атмосферное электричество, которое аккумулируется в конденсаторах… Поэтому сумма количества электричества, посылаемая в источники света, больше, чем количество электричества, доставляемое первоначальным источником тока».
Интересно, что позже, в научных работах стали применять «цензуру» и удалять все высказывания по теме, касающейся вопроса получения избыточной энергии. Кто из ученых XX века смог бы так написать, как Яблочков в 1877 году, о том, что он «получает в лампе накаливания больше энергии, чем берет из первичного источника». Писали, но очень осторожно. Позже мы рассмотрим работы Академика Николая Дмитриевича Папалекси, которые относятся к 50-м годам прошлого века. Там есть интересные выводы о возможности получения КПД параметрического генератора «намного более 99 %».
Крупнейшие французские физики той эпохи, например, Маскар и Варрен-Деларю, присутствовали при опытах Яблочкова, и отмечали, что сумма токов от обкладок конденсаторов в землю превышала в 2 раза силу тока первичного генератора. Заметим, «токов, идущих в землю». Избыточный ток, то есть большое количество свободных электронов, приводимых в движение изменением электрического потенциала в однопроводной линии, может быть обеспечен только при контакте цепи с заземлением, и при наличии «конденсатора с большой поверхностью», аккумулирующего атмосферное электричество. Заземление – источник свободных электронов и условия создания большой силы тока в цепи питания полезной нагрузки. Данный принцип применяется во многих конструкциях, в частности, у Капанадзе.
Второй фактор, который стоит отметить для данного изобретения 1877 года: увеличение силы тока отмечалось при наличии в цепях катушек индуктивности. Фактически, Яблочков впервые применял в России резонансные трансформаторы, как сочетание катушек индуктивности и мощных конденсаторов.
Главный фактор развития технического прогресса в то время – свобода изобретательской мысли и ограниченные технические возможности в области электротехники. Приходилось искать оптимальные решения. Практическое применения находили машины, производящие электроэнергию любым практичным «экономным» способом. Эффективность получения и преобразования электроэнергии была ключевым фактором. Вращение ротора создавалось с помощью паровых машин, как правило, имеющими небольшую мощность и низкие обороты, поэтому от конструкции электрогенератора требовалось получить максимум мощности, даже при слабом механическом приводе. Эти задачи никто не воспринимал, как попытку нарушения закона сохранения энергии. Работает? Значит, правильное решение!
Кроме электромагнитных генераторов, Яблочковым был разработан высоковольтный генератор энергии, а также электромагнитный генератор «Эклиптика», рисунок которого, из патента 1882 года, показан на рис. 53.
Рис. 53. Машина «Эклиптика» Яблочкова
Данный генератор использует особую суперпозицию намагничивающей обмотки: ось вращения ротора (вторичной обмотки) лежит под углом к оси магнитного потока. Достоверных сведений по эффективности такого генератора нет, но поскольку сейчас встречаются похожие современные схемы, то можно предположить, что старое изобретение Яблочкова имеет хорошие перспективы развития.
Показательны следующие события: парижская выставка 1878 года, сыгравшая такую роль в успехе Яблочкова, была местом, где начались большие изменения в его жизни. Именно на выставке у него возникла мысль реализовать свои идеи в России. Он начал искать в России партнеров по развитию своих изобретений, даже предлагал их даром Русскому Военному Министерству, но долго не получал от них ответа.
Наконец, изобретения Яблочкова привлекли внимание Великого Князя Константина Николаевича, который был адмиралом, возглавлял Морское Ведомство. Кроме того, интерес проявлял Николай Григорьевич Рубинштейн, директор московской консерватории, имевший много связей с московскими капиталистами.
Родился Павел Николаевич в Саратовской губернии, 14 сентября 1847 года. Образование он получил военноинженерное, служил офицером с 1866 по 1872 год. В 1875 году Яблочков поехал на Всемирную выставку изобретателей в Филадельфии, показать миру свой новый электромагнит с обмотками необычной формы, которые придавали магниту особую силу. Однако, до Америки он не доехал, и остался работать в Париже у Бреге, в мастерской, изготовлявшей знаменитые часы и другие физические приборы. Там он запатентовал свои изобретения, а позже стал одним из основателей Французского Электротехнического Общества.
Первый патент Яблочкова № 110479 от 29 ноября 1875 года выдан французским правительством на «электромагнит». Отличительной особенностью электромагнита Яблочкова было то, что его обмотка была сделана из плоской ленты, намотанной на ребро, так что плоскость ленты была перпендикулярна к сердечнику. На рис. 50 показано, каким образом взаимодействует поле плоского витка с полем в сердечнике. Суть этого важного изобретения, по-моему, состоит не только в экономии меди. В таком трансформаторе создаются условия для асимметрии первичного магнитного поля В1 и вторичного (индуцированного) поля В2, показанные на рис. 50. Вторичное поле почти не создает влияния на первичный источник. Кроме того, намотка плоской лентой «на ребро» позволяет получить большое число Ампер-витков на единицу длины сердечника, как и при намотке тонкими проводами круглого сечения малого диаметра, но при этом удается обеспечить в обмотке малое активное сопротивление току (малые омические потери).
Рис. 50. Плоская лента создает поле В2
Второй патент Яблочкова № 111535 от 17 февраля 1876 года также упоминает о применении ленточной обмотки. Отметим, что Тесла и другие изобретатели также применяли плоские ленты в обмотках трансформаторов и электромоторов, в том числе, включая их по схеме Мебиуса.
23 марта 1876 года Яблочков получает патент на лампу освещения, так называемую «свечу Яблочкова». В 1877 году он получил французский патент на магнитную динамо-электрическую машину переменного тока, в которой обмотки оставались неподвижными. Изменения магнитного потока происходили за счет вращения зубчатого железного диска. Фактически, это одна из первых схем альтернатора. При такой конструкции, электродвижущая сила создается почти без торможения ротора.
Отметим также его приоритеты в изобретении первого в мире трансформатора. Французский патент № 115793 от 30 ноября 1876 года описывает трансформатор, изобретенный Яблочковым: «… в любой точке цепи я включаю индуктирующую катушку, через которую проходит ток от источника тока. Далее я помещаю, надлежащим образом, вторую катушку, в которой первая индуцирует ток». Схема показана на рис. 51.
Рис. 51. Трансформатор Яблочкова. Рисунок из патента № 115793 от 30 ноября 1876 года
Системы электрического освещения того времени имели только один провод, а второй конец линии подключался к заземлению. Позже мы рассмотрим аналогичные современные однопроводные линии электропередач. Счетчиков электроэнергии тогда не было, а оплата производилась по установленному тарифу за пользование.
Кроме французского патента, 6 апреля 1878 года, Яблочков получает и русский патент на первый в мире электромагнитный трансформатор. В немецкой «Истории трансформаторов» Уппенборн пишет: «В 1878 году мы встречаемся с первым опытом промышленного применения индукционных катушек для освещения; в этом году Яблочков взял немецкий патент № 1630, который был им применен для питания своих ламп».
Яблочков нашел способ использовать воздух (ионизацию окружающей среды), как «источник свободных электронов» для усиления мощности в цепи полезной нагрузки. 13 сентября 1877 года в Русском Физико-Химическом Обществе был сделан доклад Профессора Егорова об изобретениях Яблочкова, в том числе по вопросу «введения больших конденсаторов в цепь машины-генератора для увеличения мощности ламп».
На рис. 52 показана схема распределения переменного тока с конденсаторами по французскому патенту Яблочкова, № 120684 от 11 октября 1877 года на «Систему распределения и усиления атмосферным электричеством токов, получаемых от одного источника тока с целью одновременного питания нескольких светильников».
Рис. 52. Рисунок из патента Яблочкова П.Н. № 120684 от 11 октября 1877 года
В книге «Электрическое освещение», изданная в 1883 году Де Монсель, пишет: «Для того, чтобы увеличить световую мощность электрических свечей, Яблочкову пришла мысль применить конденсаторы большой поверхности».
Отметим, что кроме плоских пластин, были предложены «игольчатые конденсаторы», так сказать «ежики», похожие на щетки с металлическими иглами. Острие электрода, как известно, улучшает условия ионизации воздуха.
Яблочков объяснял: «Я заставляю динамическое электричество, доставляемое источником электричества, претерпевать двойную трансформацию – сначала в статическое электричество, а затем снова в динамическое… я соединяю проводник, идущий от машин переменного тока с внутренней обкладкой Лейденской банки или конденсатора особого устройства, а второй провод соединяю со свечой.
Включение конденсаторов не только позволяет распределить ток по разным направлениям, но имеет еще целью развить атмосферное электричество, которое аккумулируется в конденсаторах… Поэтому сумма количества электричества, посылаемая в источники света, больше, чем количество электричества, доставляемое первоначальным источником тока».
Интересно, что позже, в научных работах стали применять «цензуру» и удалять все высказывания по теме, касающейся вопроса получения избыточной энергии. Кто из ученых XX века смог бы так написать, как Яблочков в 1877 году, о том, что он «получает в лампе накаливания больше энергии, чем берет из первичного источника». Писали, но очень осторожно. Позже мы рассмотрим работы Академика Николая Дмитриевича Папалекси, которые относятся к 50-м годам прошлого века. Там есть интересные выводы о возможности получения КПД параметрического генератора «намного более 99 %».
Крупнейшие французские физики той эпохи, например, Маскар и Варрен-Деларю, присутствовали при опытах Яблочкова, и отмечали, что сумма токов от обкладок конденсаторов в землю превышала в 2 раза силу тока первичного генератора. Заметим, «токов, идущих в землю». Избыточный ток, то есть большое количество свободных электронов, приводимых в движение изменением электрического потенциала в однопроводной линии, может быть обеспечен только при контакте цепи с заземлением, и при наличии «конденсатора с большой поверхностью», аккумулирующего атмосферное электричество. Заземление – источник свободных электронов и условия создания большой силы тока в цепи питания полезной нагрузки. Данный принцип применяется во многих конструкциях, в частности, у Капанадзе.
Второй фактор, который стоит отметить для данного изобретения 1877 года: увеличение силы тока отмечалось при наличии в цепях катушек индуктивности. Фактически, Яблочков впервые применял в России резонансные трансформаторы, как сочетание катушек индуктивности и мощных конденсаторов.
Главный фактор развития технического прогресса в то время – свобода изобретательской мысли и ограниченные технические возможности в области электротехники. Приходилось искать оптимальные решения. Практическое применения находили машины, производящие электроэнергию любым практичным «экономным» способом. Эффективность получения и преобразования электроэнергии была ключевым фактором. Вращение ротора создавалось с помощью паровых машин, как правило, имеющими небольшую мощность и низкие обороты, поэтому от конструкции электрогенератора требовалось получить максимум мощности, даже при слабом механическом приводе. Эти задачи никто не воспринимал, как попытку нарушения закона сохранения энергии. Работает? Значит, правильное решение!
Кроме электромагнитных генераторов, Яблочковым был разработан высоковольтный генератор энергии, а также электромагнитный генератор «Эклиптика», рисунок которого, из патента 1882 года, показан на рис. 53.
Рис. 53. Машина «Эклиптика» Яблочкова
Данный генератор использует особую суперпозицию намагничивающей обмотки: ось вращения ротора (вторичной обмотки) лежит под углом к оси магнитного потока. Достоверных сведений по эффективности такого генератора нет, но поскольку сейчас встречаются похожие современные схемы, то можно предположить, что старое изобретение Яблочкова имеет хорошие перспективы развития.
Показательны следующие события: парижская выставка 1878 года, сыгравшая такую роль в успехе Яблочкова, была местом, где начались большие изменения в его жизни. Именно на выставке у него возникла мысль реализовать свои идеи в России. Он начал искать в России партнеров по развитию своих изобретений, даже предлагал их даром Русскому Военному Министерству, но долго не получал от них ответа.
Наконец, изобретения Яблочкова привлекли внимание Великого Князя Константина Николаевича, который был адмиралом, возглавлял Морское Ведомство. Кроме того, интерес проявлял Николай Григорьевич Рубинштейн, директор московской консерватории, имевший много связей с московскими капиталистами.
Конец бесплатного ознакомительного фрагмента