Страница:
Однако удар, нанесенный раннепифагорейской концепции числа, отнюдь не отменил математической "программы" изучения природы, а только внес в эту программу свои коррективы.
Видимо, последствием открытия иррациональности было усиление тенденции к геометризации математики; появилось стремление геометрически выразить отношения, которые, как оказалось, невыразимы с помощью арифметического числа.
Вместо геометрической арифметики теперь развивается "геометрическая алгебра": величины изображаются через отрезки и прямоугольники, с помощью которых можно было соотносить между собой не только рациональные числа, но и несоизмеримые величины.
Надо полагать, что переход к геометрической алгебре сопровождался также и размышлением по поводу самих оснований пифагорейской математики. Может быть, именно открытие несоизмеримости впервые поставило под вопрос первоначальную пифагорейскую интуицию, что тела состоят из неделимых точек-монад.
Попытки справиться с несоизмеримостью в конце концов привели к формулировке аксиомы Евдокса (ее называют также аксиомой Архимеда), которая легла в основу теории отношений несоизмеримых величин. Эта аксиома приводится Евклидом в четвертом определении V книги "Начал": "Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга". А вот как формулирует Архимед эту аксиому в работе "О шаре и цилиндре" (пятое допущение, или постулат Архимеда): "...б(льшая из двух неравных линий, поверхностей или тел превосходит меньшую на такую величину, которая, будучи складываема сама с собой, может превзойти любую заданную величину из тех, которые могут друг с другом находиться в определенном отношении"65.
Нам представляется, однако, что общее значение открытия иррациональности для развития и математики, и науки в целом не исчерпывается указанными последствиями, хотя внешне выражается прежде всего в них.
Дело в том, что это открытие впервые, быть может, заставило рождающуюся греческую науку сознательно задуматься о своих предпосылках. Ведь те понятия числа, точки, фигуры и т.д., которыми оперировали пифагорейцы первоначально, еще не были логически прояснены и продуманы. Именно в этом, кстати, упрекают пифагорейцев и Платон, и (еще больше) Аристотель. В самом деле, числа у них не отделены от вещей, говорит Аристотель. Но ведь и нельзя сказать, чтобы они у них сознательно и обоснованно отождествлялись с вещами! Вопрос об онтологическом статусе чисел в этом плане просто не возникал, а потому здесь и царила некоторая непроясненность, неопределенность. Далее, Аристотель говорит, что у пифагорейцев фигуры состоят из чисел, как из неделимых пространственных единиц. Но и здесь мы имеем дело с такой же первоначальной непроясненностью: число выступает то как единица, не отнесенная к пространству, к чувственному миру, то как неделимая частица самого этого мира - такова у пифагорейцев точка. Ибо именно так предстает пифагорейцу-математику единица, когда он дает "полуарифметическое - полугеометрическое" (по словам Беккера) начертание "тройки" (рис. 2) и "десятки" (рис. 5).
Открытие несоизмеримости стало первым толчком к осознанию оснований математического исследования, к попытке не только найти новые методы работы с величинами, но и понять, что такое величина.
Однако во весь рост проблему континуума перед философами и математиками поставил Зенон из Элеи, выявив противоречия, связанные с понятием бесконечности, и после него невозможно было вернуться к прежнему, дорефлексивному оперированию математическими понятиями. Благодаря элеатам началась логическая работа над исходными понятиями науки - напряженная работа на протяжении V, IV и III вв. до н.э., завершившаяся созданием трех главных программ научного исследования: математической, атомистической и континуалистской.
Характерно, однако, что на всем протяжении этого бурного периода в развитии философии и науки - с V по III в. до н.э. - можно выделить как бы два направления философско-теоретической работы. Одно из них представлено теми философами и учеными, которые прежде всего заняты проблемами обоснования науки и логического уяснения и разработки ее понятий и методов. К нему принадлежат Зенон, Демокрит, Платон, Аристотель, Теофраст и др. Другое направление представлено в первую очередь математиками-"практиками" такими, как Архит Терентский, Евдокс Книдский, Менехм, Теэтет. Хотя эти ученые отнюдь не чужды вопросам обоснования науки и глубоко проникнуты заботой о логической четкости своих построений, но центр тяжести их исследований лежит в другом: они конструируют модели движения небесных светил, ищут способы решения математических задач, прибегая к помощи циркуля и линейки, и не всегда ставят вопрос о логическом обосновании своих методов.
Может быть, этим обстоятельством в какой-то мере объясняется тот факт, что некоторые пифагорейские представления о числе, точке и т.д. сохранялись еще у математиков до IV в. до н.э. включительно, несмотря на то что в строго логическом обосновании математики к этому времени греческая мысль ушла далеко от исходной точки благодаря критике Зенона, работе Платона и других философов. А что пифагорейские представления о числе сохранялись до III в. до н.э., можно судить по уже приведенным отрывкам из Аристотеля, да и по некоторым книгам Евклидовых "Начал". Эти представления сохранялись до тех пор, пока с ними можно было работать математику - даже если с логической точки зрения они и не были достаточно прояснены и обоснованы.
Правда, судя по свидетельству Секста Эмпирика, сами пифагорейцы тоже пытались усовершенствовать свои понятия, чтобы избежать критики со стороны элеатов. "Некоторые же (из пифагорейцев. - П.Г.) говорят, - пишет Секст, что тело составляется из одной точки. Ведь эта точка в своем течении образует линию, а линия в своем течении образует плоскость, а эта последняя, двинувшись в глубину, порождает трехмерное тело. Однако такая позиция пифагорейцев отличается от позиции их предшественников. Ведь те выводили числа из двух начал - монады и неопределенной диады, затем из чисел - точки, линии, плоскостные и пространственные фигуры. А эти из одной точки производят все. Ведь из нее (по их мнению) возникает линия, из линии - поверхность, а из последней - тело"66. Ф.М. Корнфорд видел в этом усовершенствовании непосредственный ответ пифагорейцев на критику Зенона Элейского, которая, как он считал, была направлена именно против пифагорейцев, образовавших величину из расположенных рядом дискретных точек, которые, по свидетельству Аристотеля, мыслились как протяженные67.
Интересные соображения по этому вопросу высказал Дж. Рейвен. Согласно Рейвену, пифагорейцы под влиянием критики элеатов по-новому определили понятия "точки", "линии" и т.д., введя принцип непрерывности и рассматривая точки на линии лишь как ее "границы" или "пределы". По Рейвену, это было шагом вперед от понятия "минимальной линии", мыслимой как состоящей из двух точек. Рейвен считает, что эти новые понятия были созданы "поколением пифагорейцев, живших уже в эпоху Платона; платоники же позаимствовали у них эти понятия"68. Однако на основании тех источников, которыми пока располагает история науки, трудно разрешить вопрос, какую роль в этом процессе перестройки математических понятий сыграли современные Платону пифагорейцы, а какую - сам Платон и его школа. Некоторые исследователи поэтому полагают, что установлением таких основных геометрических понятий, как точка, линия, плоскость, трехмерное тело, наука обязана Платону, который далеко не все заимствовал у Филолая69.
Глава 3
ЭЛЕЙСКАЯ ШКОЛА И ПЕРВАЯ ПОСТАНОВКА ПРОБЛЕМЫ БЕСКОНЕЧНОСТИ
Что такое бытие?
Основал эту школу Ксенофан Колофонский, главными ее представителями были Парменид1 и Зенон Элейский; последний, как свидетельствуют древние источники, был любимым учеником Парменида. Значение элеатов в становлении античной философии и науки трудно переоценить. Они впервые поставили вопрос о том, как можно мыслить бытие, в то время как их предшественники - и ранние физики-натурфилософы, и пифагорейцы2 - мыслили бытие, не ставя этого вопроса. Благодаря элеатам вопрос о соотношении мышления и бытия становится предметом рефлексии; в результате появляется стремление прояснить с логической точки зрения те понятия и представления, которыми прежняя наука оперировала некритически. "Итак, я скажу тебе (ты же внимательно прислушивайся к моим речам), какие только пути исследования доступны для разума. Первый путь: бытие есть, а небытия нет. Это путь Достоверности (PeiJи), ибо близко подходит он к Истине. Второй путь: бытия нет, а небытие должно быть. Этот путь - поверь мне - не должен заслуживать твоего доверия. Ибо немыслимо ни познать, ни выразить небытия: оно - непостижимо"3. Небытие непознаваемо, невыразимо, оно недоступно мысли, потому оно и есть небытие. Ибо, по Пармениду, "мыслить и быть одно и то же"4.
Это изречение Парменида Платон и Аристотель склонны были толковать так: единственно возможным содержанием мышления является чистое бытие.
Как справедливо отмечает В. Лейнфельнер, "Парменид даже не подозревал, какие философские дискуссии, длящиеся столетиями, возбудит он своим положением, что мышление и бытие - одно и то же"5. Этой постановкой вопроса Парменид создавал предпосылки для научного мышления в собственном смысле слова, которое начинается с обсуждения следствий, вытекающих из его концепции мышления.
Что же такое парменидовское "бытие", какими атрибутами оно наделено?
Различение мыслимого и чувственно воспринимаемого. Прежде всего, по Пармениду, бытие - это то, что всегда есть; оно едино и вечно - вот главные его предикаты. Все остальные предикаты бытия уже производны от этого. Раз бытие вечно, то оно безначально - никогда не возникает; неуничтожимо никогда не гибнет; оно бесконечно, цельно, однородно и невозмутимо: "Для него нет ни прошедшего, ни будущего, ибо оно во всей своей полноте живет в настоящем, единое, неразделимое. И действительно, какое начало найдешь ты для него? Где и откуда могло бы оно возникнуть?"6
Вечность бытия и единство его для Парменида неразрывно связаны. Бытие непреходяще, а это значит, что оно не дробится на части, одна из которых могла бы быть, а другая - гибнуть или возникать; потому он и говорит, что бытие едино и цельно, неделимо, не дробится на множество. То, что у бытия нет ни прошлого, ни будущего, как раз и означает, что оно едино, тождественно себе. "Таким образом, исчезает возможность возникновения и гибели бытия. Бытие - неделимо, ибо оно всюду одинаково и нет ничего ни большего, ни меньшего, что могло бы помешать связности бытия, но все оно преисполнено бытием. Нераздельно же бытие потому, что бытие тесно примыкает к бытию"7.
Вечное (неизменное), цельное (сплошное), неделимое, единое (не многое) бытие, по Пармениду, неподвижно. Ибо откуда взяться движению у того, что не изменяется?
Можно было бы согласиться с теми, кто, подобно Лейнфельнеру, склонен считать, что парменидовское бытие есть онтологизированный логический принцип тождества (А = А), если бы сам Парменид не осознавал этот принцип тождества именно как бытие. А ведь он не только осознавал, но даже наглядно представлял его, говоря, что оно подобно шару. То, что ничем не может быть уязвлено или ущемлено, чему ничто не мешает быть таким, каково оно есть, ничто не вторгается в него извне и не деформирует изнутри, принимает форму шара. Шар - это образ-схема самодостаточной, ни в чем не нуждающейся, никуда не стремящейся реальности. А таково, по Пармениду, бытие.
Но присмотримся к определениям парменидовского "бытия". Оно вечно, едино, неизменно, неделимо, неподвижно. Все это - характеристики, противоположные тем, какими наделены явления чувственного мира - мира изменчивых, преходящих, подвижных вещей, раздробленных на множество. Движение и множественность - это две характеристики чувственного мира, которые друг друга предполагают, как это постоянно подчеркивает Парменид.
Мир бытия и чувственный мир впервые в истории человеческого мышления сознательно противополагаются: первый - это истинный мир, второй - мир видимости, мнения. Первый познаваем, второй недоступен познанию.
Вслед за Парменидом эту концепцию развивал Зенон, его ученик, которого Аристотель не случайно называет "изобретателем диалектики". Различие между Парменидом и Зеноном Платон усматривает только в том, что Парменид доказывал существование единого, а Зенон - несуществование многого8.
В школе элеатов впервые предметом логического мышления стала проблема бесконечности. В этом смысле философия элеатов представляет собой важный рубеж в истории научного мышления. Некоторые исследователи считают, что учение элеатов кладет начало научному знанию в строгом смысле слова9. Такая точка зрения имеет свой смысл; теоретическое естествознание невозможно без математики, а сама математика, как подчеркивает Г.И. Наан, "настолько тесно связана с понятием бесконечности, что нередко ее определяют как науку о бесконечном"10. Действительно, старое, идущее через века определение математики (точнее, математического анализа, понятого как основа и фундамент математики11) как науки о бесконечном разделяют и многие современные математики12. Но впервые проблема бесконечности стала предметом обсуждения именно в школе элеатов. Зенон вскрыл противоречия, в которые впадает мышление при попытке постигнуть бесконечное в понятиях. Его апории - это первые парадоксы, возникшие в связи с понятием бесконечного.
Однако вряд ли следует, исходя из приведенных соображений, рассматривать апории Зенона как первые шаги научного мышления вообще. Скорее можно говорить о том, что апории Зенона были первым в истории кризисом оснований науки, прежде всего математики. Для возникновения такого рода кризиса оснований необходимо, чтобы научное знание достигло некоторого уровня, чтобы уже сложилась - пусть и первая, и недостаточно логически обоснованная, но именно теория как систематическая связь положений13. И такая теория возникла ко времени Зенона: это была пифагорейская математика.
Вопрос о "приоритете": Пифагор или Парменид?
Поскольку А. Сабо в своей весьма содержательной и серьезной работе "Начала греческой математики" приходит к выводу, что учение элеатов в сущности легло в основу греческой математики и стало, таким образом, отправным пунктом в ее развитии, мы должны рассмотреть этот вопрос детальнее.
Сабо рассуждает следующим образом. Греческая математика, говорит он, отличается от египетской и вавилонской тем, что в ней утверждения, положения всегда доказываются, в то время как древневосточные тексты математического содержания содержат только интересные инструкции, так сказать, рецепты и часто примеры того, как надо решать определенную математическую задачу. Анализируя структуру математического доказательства, как оно дается в "Началах" Евклида, Сабо приходит к выводу, что доказательство представляет собой способ удостоверения того или иного положения, которое не желают (или не могут) удостоверить с помощью наглядной демонстрации. Сабо допускает, что в более ранний период математики доказывали свои утверждения, демонстрируя доступную созерцанию фигуру, так что ядро доказательства составляла конкретная наглядная демонстрация; в основе доказательства, таким образом, лежала эмпирическая и наглядная очевидность. От такого рода доказательства Евклид, подчеркивает Сабо, отказался. При этом речь идет, как полагает Сабо, не о простом повороте от наглядных моделей к понятиям, а о "сознательном отказе от созерцательного (наглядного)", о сознательном избегании просто наглядного. В результате отказа от созерцания Евклид, говорит Сабо, прибегает к так называемому косвенному выводу - доказательству от противного. "Оба эти явления в греческой математике - отказ от эмпиризма и характерное использование косвенного вывода - я свожу к решающему влиянию философии элеатов"14, - пишет Сабо. Связь здесь вполне понятна: именно элеаты впервые последовательно проводят мысль о том, что истинное знание может быть получено только с помощью разума, а чувственное восприятие всегда недостоверно.
Мы совершенно согласны с Сабо в том отношении, что именно философия элеатов впервые положила начало логической рефлексии относительно важнейших понятий античной науки, и прежде всего математики. В этом смысле ее значение для развития античной науки трудно переоценить. Именно после критики элеатов начинается уяснение предпосылок греческой математики, которые у ранних пифагорейцев, как мы видели, еще оставались непроясненными. Именно после критики элеатов, впервые поставивших на обсуждение проблему бесконечности и связанную с ней проблему континуума (пространства, времени, движения), начинают складываться основные направления научной мысли Древней Греции.
Однако трудно согласиться с некоторыми выводами, которые делает Сабо, исходя из исследования роли элеатов в становлении античной науки. Так, например, анализируя первое определение VII книги "Начал" Евклида, где вводится понятие единицы (mon?V)15, Сабо приходит к заключению, что понятие mon?V могло появиться в античной математике только после элеатов. Он подчеркивает, что даже терминологически "сущее" (t' 'n) и "Одно" (t' Ьn) выступают у элеатов как взаимозаменяемые понятия. Но известно, что первое определение VII книги Евклида почти полностью воспроизводит рассуждение Пифагора о единице, как его передает Секст Эмпирик в книге "Против ученых" (Х, 260-261)16. И не только из сообщения Секста, но и из других сообщений древних известно, что понятие монады было одним из центральных в философии ранних пифагорейцев и что, стало быть, им пользовались еще до элеатов.
Поскольку, однако, Сабо усматривает в учении элеатов о едином источник и начало развития науки, он вынужден отрицать существенный вклад ранних пифагорейцев в развитие античной математики. "В каком смысле, - пишет он, можно вообще говорить о "соперничестве" между элеатами и пифагорейцами (=арифметиками)? Как известно, элеаты допускали только существование "сущего", "Одного" и отрицали, что существует множество, ибо они считали, что можно доказать самопротиворечивость мышления также в понятии множества. Но если отрицается множество, то арифметика вообще невозможна. Следовательно, арифметики могли позаимствовать у элеатов понятие "единства", но они уже не могли вслед за элеатами отклонить множество; они должны были каким-то образом удержать множество, ибо без множества нет арифметики. И, в самом деле, второе определение арифметики у Евклида ("Начала", кн. VII, определение 2) спасает именно понятие множества благодаря тому, что оно гласит: "Число есть множество, составленное из единств (из монад - Щc mon?dwn)"17.
Согласно приведенному отрывку, арифметики-пифагорейцы могли позаимствовать у элеатов понятие единицы (монады), но не могли следовать за ними в отрицании множества, если хотели оставаться арифметиками. Зачем же, однако, было арифметикам заимствовать понятие монады у элеатов, когда это понятие уже было у ранних пифагорейцев, образовывавших число (множество) из единицы и беспредельного? И само определение числа как множества, составленного из монад (единиц, единств), - это его раннепифагорейское определение, которое приводится и Евклидом в его арифметических книгах.
Сабо сам пишет, что, признавая множество, пифагорейцы тем самым резко отличаются от элеатов; но было бы неверным, продолжает он, "говорить о их "соперничестве", так как арифметики ведь отнюдь не оспаривали элеатовское понятие "одного", они только развили его дальше..."18. В действительности, у самих "арифметиков" (т.е. пифагорейцев) уже до элеатов было понятие монады, причем в отличие от элеатов они не считали, что "единое" и "многое" (множество) взаимно исключают друг друга - тезис, который выдвинули против них элеаты. Именно элеаты впервые попытались показать, что понятие множества несовместимо с понятием "одного", "единицы", а потому заставили позднейших философов, в том числе и пифагорейцев, задуматься о том, как возможно без противоречия мыслить число и какова его природа.
Апории Зенона
Из 45 апорий, выдвинутых Зеноном, до нас дошло 9. Классическими являются пять апорий, в которых Зенон анализирует понятия множества и движения. Первую, получившую название "апория меры", Симпликий излагает следующим образом: "Доказав, что, "если вещь не имеет величины, она не существует", Зенон, прибавляет: "Если вещь существует, необходимо, чтобы она имела некоторую величину, некоторую толщину и чтобы было некоторое расстояние между тем, что представляет в ней взаимное различие". То же можно сказать о предыдущей, о той части этой вещи, которая предшествует по малости в дихотомическом делении. Итак, это предыдущее должно также иметь некоторую величину и свое предыдущее. Сказанное один раз можно всегда повторять. Таким образом, никогда не будет крайнего предела, где не было бы различных друг от друга частей. Итак, если есть множественность, нужно, чтобы вещи были в одно и то же время велики и малы и настолько малы, чтобы не иметь величины, и настолько велики, чтобы быть бесконечными"19.
Аргумент Зенона, вероятнее всего, направлен против пифагорейского представления о том, что тела "состоят из чисел". В самом деле, если мыслить число как точку, не имеющую величины ("толщины", протяженности), то сумма таких точек (тело) тоже не будет иметь величины, если же мыслить число "телесно", как имеющее некоторую конечную величину, то, поскольку тело содержит бесконечное количество таких точек (ибо тело, по допущению Зенона, можно делить "без предела"), оно должно иметь бесконечную величину. Из этого следует, что невозможно мыслить тело в виде суммы неделимых единиц, как это мы видели у пифагорейцев.
Можно, пожалуй, сказать, продолжив мысль Зенона: если "единица" неделима, то она не имеет пространственной величины (точки); если же она имеет величину, пусть как угодно малую, то она делима до бесконечности. Элеаты впервые поставили перед наукой вопрос, который является одним из важнейших методологических вопросов и по сей день20: как следует мыслить континуум дискретным или непрерывным? состоящим из неделимых (единиц, "единств", монад) или же делимым до бесконечности? Любая величина должна быть понята теперь с точки зрения того, состоит ли она из единиц (как арифметическое число пифагорейцев), неделимых "целых", или она сама есть целое, а составляющие ее элементы самостоятельного существования не имеют. Этот вопрос ставится и по отношению к числу, и по отношению к пространственной величине (линии, плоскости, объему), и по отношению к времени. В зависимости от решения проблемы континуума формируются и разные методы изучения природы и человека, т.е. разные научные программы.
Пока мы рассмотрели только одну апорию Зенона, в которой выявляется противоречивость понятия "множества". Теперь перейдем к тем апориям, где обсуждается возможность мыслить движение. Мы увидим, что здесь в основе лежит тоже проблема континуума. Наиболее известны четыре апории этого рода: "Дихотомия", "Ахиллес и черепаха", "Стрела" и "Стадий". Кратко их содержание передает Аристотель в "Физике": "Есть четыре рассуждения Зенона о движении, доставляющие большие затруднения тем, которые хотят их разрешить. Первое, о несуществовании движения на том основании, что перемещающееся тело должно прежде дойти до половины, чем до конца... Второе, так называемый Ахиллес. Оно заключается в том, что существо более медленное в беге никогда не будет настигнуто самым быстрым, ибо преследующему необходимо раньше придти в место, откуда уже двинулось убегающее, так что более медленное всегда имеет некоторое преимущество... Третье... заключается в том, что летящая стрела стоит неподвижно; оно вытекает из предположения, что время слагается из отдельных "теперь"... Четвертое рассуждение относится к двум разным массам, движущимся с равной скоростью, одни - с конца ристалища, другие - от середины, в результате чего, по его мнению, получается, что половина времени равна ее двойному количеству"21.
Первая апория - "Дихотомия" - доказывает невозможность движения, поскольку преодоление любого расстояния предполагает "отсчитывание" бесконечного множества "середин": ведь любой отрезок можно делить пополам - и так до бесконечности. Другими словами, если континуум мыслится как актуально данное бесконечное множество, то движение в таком континууме невозможно мыслить, ибо занять бесконечное число последовательных положений в ограниченный промежуток времени невозможно.
Эту антиномию можно истолковать двояким образом, и в зависимости от истолкования ее и решают по-разному. Если считать, что противоречие состоит в невозможности в конечный отрезок времени "отсчитать" бесконечное число моментов (пройти бесконечное число положений), то решение антиномии будет состоять в указании, что Зенон неправомерно отождествил бесконечность с бесконечной делимостью. Такое решение апории Зенона дал Аристотель, введя понятие континуума как потенциально делимого до бесконечности22. В самом деле, если все дело в том, что в конечный отрезок времени нельзя пройти бесконечное количество точек пространства, то достаточно указать на то, что и любой конечный отрезок времени точно так же можно делить до бесконечности, как и любой отрезок пространства. Но возможность деления, говорит Аристотель, еще не тождественна действительной поделенности как пространства, так и времени; иначе говоря, пространство и время делимы до бесконечности потенциально, но не поделены до бесконечности актуально. Бесконечная делимость не есть бесконечная величина, а потому движение, по Аристотелю, мыслимо без всякого противоречия. Каждому моменту времени соответствует определенная точка в пространстве. Так введением потенциальной бесконечности Аристотель решает антиномию, возникшую у Зенона при допущении континуума как актуальной бесконечности.
Видимо, последствием открытия иррациональности было усиление тенденции к геометризации математики; появилось стремление геометрически выразить отношения, которые, как оказалось, невыразимы с помощью арифметического числа.
Вместо геометрической арифметики теперь развивается "геометрическая алгебра": величины изображаются через отрезки и прямоугольники, с помощью которых можно было соотносить между собой не только рациональные числа, но и несоизмеримые величины.
Надо полагать, что переход к геометрической алгебре сопровождался также и размышлением по поводу самих оснований пифагорейской математики. Может быть, именно открытие несоизмеримости впервые поставило под вопрос первоначальную пифагорейскую интуицию, что тела состоят из неделимых точек-монад.
Попытки справиться с несоизмеримостью в конце концов привели к формулировке аксиомы Евдокса (ее называют также аксиомой Архимеда), которая легла в основу теории отношений несоизмеримых величин. Эта аксиома приводится Евклидом в четвертом определении V книги "Начал": "Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга". А вот как формулирует Архимед эту аксиому в работе "О шаре и цилиндре" (пятое допущение, или постулат Архимеда): "...б(льшая из двух неравных линий, поверхностей или тел превосходит меньшую на такую величину, которая, будучи складываема сама с собой, может превзойти любую заданную величину из тех, которые могут друг с другом находиться в определенном отношении"65.
Нам представляется, однако, что общее значение открытия иррациональности для развития и математики, и науки в целом не исчерпывается указанными последствиями, хотя внешне выражается прежде всего в них.
Дело в том, что это открытие впервые, быть может, заставило рождающуюся греческую науку сознательно задуматься о своих предпосылках. Ведь те понятия числа, точки, фигуры и т.д., которыми оперировали пифагорейцы первоначально, еще не были логически прояснены и продуманы. Именно в этом, кстати, упрекают пифагорейцев и Платон, и (еще больше) Аристотель. В самом деле, числа у них не отделены от вещей, говорит Аристотель. Но ведь и нельзя сказать, чтобы они у них сознательно и обоснованно отождествлялись с вещами! Вопрос об онтологическом статусе чисел в этом плане просто не возникал, а потому здесь и царила некоторая непроясненность, неопределенность. Далее, Аристотель говорит, что у пифагорейцев фигуры состоят из чисел, как из неделимых пространственных единиц. Но и здесь мы имеем дело с такой же первоначальной непроясненностью: число выступает то как единица, не отнесенная к пространству, к чувственному миру, то как неделимая частица самого этого мира - такова у пифагорейцев точка. Ибо именно так предстает пифагорейцу-математику единица, когда он дает "полуарифметическое - полугеометрическое" (по словам Беккера) начертание "тройки" (рис. 2) и "десятки" (рис. 5).
Открытие несоизмеримости стало первым толчком к осознанию оснований математического исследования, к попытке не только найти новые методы работы с величинами, но и понять, что такое величина.
Однако во весь рост проблему континуума перед философами и математиками поставил Зенон из Элеи, выявив противоречия, связанные с понятием бесконечности, и после него невозможно было вернуться к прежнему, дорефлексивному оперированию математическими понятиями. Благодаря элеатам началась логическая работа над исходными понятиями науки - напряженная работа на протяжении V, IV и III вв. до н.э., завершившаяся созданием трех главных программ научного исследования: математической, атомистической и континуалистской.
Характерно, однако, что на всем протяжении этого бурного периода в развитии философии и науки - с V по III в. до н.э. - можно выделить как бы два направления философско-теоретической работы. Одно из них представлено теми философами и учеными, которые прежде всего заняты проблемами обоснования науки и логического уяснения и разработки ее понятий и методов. К нему принадлежат Зенон, Демокрит, Платон, Аристотель, Теофраст и др. Другое направление представлено в первую очередь математиками-"практиками" такими, как Архит Терентский, Евдокс Книдский, Менехм, Теэтет. Хотя эти ученые отнюдь не чужды вопросам обоснования науки и глубоко проникнуты заботой о логической четкости своих построений, но центр тяжести их исследований лежит в другом: они конструируют модели движения небесных светил, ищут способы решения математических задач, прибегая к помощи циркуля и линейки, и не всегда ставят вопрос о логическом обосновании своих методов.
Может быть, этим обстоятельством в какой-то мере объясняется тот факт, что некоторые пифагорейские представления о числе, точке и т.д. сохранялись еще у математиков до IV в. до н.э. включительно, несмотря на то что в строго логическом обосновании математики к этому времени греческая мысль ушла далеко от исходной точки благодаря критике Зенона, работе Платона и других философов. А что пифагорейские представления о числе сохранялись до III в. до н.э., можно судить по уже приведенным отрывкам из Аристотеля, да и по некоторым книгам Евклидовых "Начал". Эти представления сохранялись до тех пор, пока с ними можно было работать математику - даже если с логической точки зрения они и не были достаточно прояснены и обоснованы.
Правда, судя по свидетельству Секста Эмпирика, сами пифагорейцы тоже пытались усовершенствовать свои понятия, чтобы избежать критики со стороны элеатов. "Некоторые же (из пифагорейцев. - П.Г.) говорят, - пишет Секст, что тело составляется из одной точки. Ведь эта точка в своем течении образует линию, а линия в своем течении образует плоскость, а эта последняя, двинувшись в глубину, порождает трехмерное тело. Однако такая позиция пифагорейцев отличается от позиции их предшественников. Ведь те выводили числа из двух начал - монады и неопределенной диады, затем из чисел - точки, линии, плоскостные и пространственные фигуры. А эти из одной точки производят все. Ведь из нее (по их мнению) возникает линия, из линии - поверхность, а из последней - тело"66. Ф.М. Корнфорд видел в этом усовершенствовании непосредственный ответ пифагорейцев на критику Зенона Элейского, которая, как он считал, была направлена именно против пифагорейцев, образовавших величину из расположенных рядом дискретных точек, которые, по свидетельству Аристотеля, мыслились как протяженные67.
Интересные соображения по этому вопросу высказал Дж. Рейвен. Согласно Рейвену, пифагорейцы под влиянием критики элеатов по-новому определили понятия "точки", "линии" и т.д., введя принцип непрерывности и рассматривая точки на линии лишь как ее "границы" или "пределы". По Рейвену, это было шагом вперед от понятия "минимальной линии", мыслимой как состоящей из двух точек. Рейвен считает, что эти новые понятия были созданы "поколением пифагорейцев, живших уже в эпоху Платона; платоники же позаимствовали у них эти понятия"68. Однако на основании тех источников, которыми пока располагает история науки, трудно разрешить вопрос, какую роль в этом процессе перестройки математических понятий сыграли современные Платону пифагорейцы, а какую - сам Платон и его школа. Некоторые исследователи поэтому полагают, что установлением таких основных геометрических понятий, как точка, линия, плоскость, трехмерное тело, наука обязана Платону, который далеко не все заимствовал у Филолая69.
Глава 3
ЭЛЕЙСКАЯ ШКОЛА И ПЕРВАЯ ПОСТАНОВКА ПРОБЛЕМЫ БЕСКОНЕЧНОСТИ
Что такое бытие?
Основал эту школу Ксенофан Колофонский, главными ее представителями были Парменид1 и Зенон Элейский; последний, как свидетельствуют древние источники, был любимым учеником Парменида. Значение элеатов в становлении античной философии и науки трудно переоценить. Они впервые поставили вопрос о том, как можно мыслить бытие, в то время как их предшественники - и ранние физики-натурфилософы, и пифагорейцы2 - мыслили бытие, не ставя этого вопроса. Благодаря элеатам вопрос о соотношении мышления и бытия становится предметом рефлексии; в результате появляется стремление прояснить с логической точки зрения те понятия и представления, которыми прежняя наука оперировала некритически. "Итак, я скажу тебе (ты же внимательно прислушивайся к моим речам), какие только пути исследования доступны для разума. Первый путь: бытие есть, а небытия нет. Это путь Достоверности (PeiJи), ибо близко подходит он к Истине. Второй путь: бытия нет, а небытие должно быть. Этот путь - поверь мне - не должен заслуживать твоего доверия. Ибо немыслимо ни познать, ни выразить небытия: оно - непостижимо"3. Небытие непознаваемо, невыразимо, оно недоступно мысли, потому оно и есть небытие. Ибо, по Пармениду, "мыслить и быть одно и то же"4.
Это изречение Парменида Платон и Аристотель склонны были толковать так: единственно возможным содержанием мышления является чистое бытие.
Как справедливо отмечает В. Лейнфельнер, "Парменид даже не подозревал, какие философские дискуссии, длящиеся столетиями, возбудит он своим положением, что мышление и бытие - одно и то же"5. Этой постановкой вопроса Парменид создавал предпосылки для научного мышления в собственном смысле слова, которое начинается с обсуждения следствий, вытекающих из его концепции мышления.
Что же такое парменидовское "бытие", какими атрибутами оно наделено?
Различение мыслимого и чувственно воспринимаемого. Прежде всего, по Пармениду, бытие - это то, что всегда есть; оно едино и вечно - вот главные его предикаты. Все остальные предикаты бытия уже производны от этого. Раз бытие вечно, то оно безначально - никогда не возникает; неуничтожимо никогда не гибнет; оно бесконечно, цельно, однородно и невозмутимо: "Для него нет ни прошедшего, ни будущего, ибо оно во всей своей полноте живет в настоящем, единое, неразделимое. И действительно, какое начало найдешь ты для него? Где и откуда могло бы оно возникнуть?"6
Вечность бытия и единство его для Парменида неразрывно связаны. Бытие непреходяще, а это значит, что оно не дробится на части, одна из которых могла бы быть, а другая - гибнуть или возникать; потому он и говорит, что бытие едино и цельно, неделимо, не дробится на множество. То, что у бытия нет ни прошлого, ни будущего, как раз и означает, что оно едино, тождественно себе. "Таким образом, исчезает возможность возникновения и гибели бытия. Бытие - неделимо, ибо оно всюду одинаково и нет ничего ни большего, ни меньшего, что могло бы помешать связности бытия, но все оно преисполнено бытием. Нераздельно же бытие потому, что бытие тесно примыкает к бытию"7.
Вечное (неизменное), цельное (сплошное), неделимое, единое (не многое) бытие, по Пармениду, неподвижно. Ибо откуда взяться движению у того, что не изменяется?
Можно было бы согласиться с теми, кто, подобно Лейнфельнеру, склонен считать, что парменидовское бытие есть онтологизированный логический принцип тождества (А = А), если бы сам Парменид не осознавал этот принцип тождества именно как бытие. А ведь он не только осознавал, но даже наглядно представлял его, говоря, что оно подобно шару. То, что ничем не может быть уязвлено или ущемлено, чему ничто не мешает быть таким, каково оно есть, ничто не вторгается в него извне и не деформирует изнутри, принимает форму шара. Шар - это образ-схема самодостаточной, ни в чем не нуждающейся, никуда не стремящейся реальности. А таково, по Пармениду, бытие.
Но присмотримся к определениям парменидовского "бытия". Оно вечно, едино, неизменно, неделимо, неподвижно. Все это - характеристики, противоположные тем, какими наделены явления чувственного мира - мира изменчивых, преходящих, подвижных вещей, раздробленных на множество. Движение и множественность - это две характеристики чувственного мира, которые друг друга предполагают, как это постоянно подчеркивает Парменид.
Мир бытия и чувственный мир впервые в истории человеческого мышления сознательно противополагаются: первый - это истинный мир, второй - мир видимости, мнения. Первый познаваем, второй недоступен познанию.
Вслед за Парменидом эту концепцию развивал Зенон, его ученик, которого Аристотель не случайно называет "изобретателем диалектики". Различие между Парменидом и Зеноном Платон усматривает только в том, что Парменид доказывал существование единого, а Зенон - несуществование многого8.
В школе элеатов впервые предметом логического мышления стала проблема бесконечности. В этом смысле философия элеатов представляет собой важный рубеж в истории научного мышления. Некоторые исследователи считают, что учение элеатов кладет начало научному знанию в строгом смысле слова9. Такая точка зрения имеет свой смысл; теоретическое естествознание невозможно без математики, а сама математика, как подчеркивает Г.И. Наан, "настолько тесно связана с понятием бесконечности, что нередко ее определяют как науку о бесконечном"10. Действительно, старое, идущее через века определение математики (точнее, математического анализа, понятого как основа и фундамент математики11) как науки о бесконечном разделяют и многие современные математики12. Но впервые проблема бесконечности стала предметом обсуждения именно в школе элеатов. Зенон вскрыл противоречия, в которые впадает мышление при попытке постигнуть бесконечное в понятиях. Его апории - это первые парадоксы, возникшие в связи с понятием бесконечного.
Однако вряд ли следует, исходя из приведенных соображений, рассматривать апории Зенона как первые шаги научного мышления вообще. Скорее можно говорить о том, что апории Зенона были первым в истории кризисом оснований науки, прежде всего математики. Для возникновения такого рода кризиса оснований необходимо, чтобы научное знание достигло некоторого уровня, чтобы уже сложилась - пусть и первая, и недостаточно логически обоснованная, но именно теория как систематическая связь положений13. И такая теория возникла ко времени Зенона: это была пифагорейская математика.
Вопрос о "приоритете": Пифагор или Парменид?
Поскольку А. Сабо в своей весьма содержательной и серьезной работе "Начала греческой математики" приходит к выводу, что учение элеатов в сущности легло в основу греческой математики и стало, таким образом, отправным пунктом в ее развитии, мы должны рассмотреть этот вопрос детальнее.
Сабо рассуждает следующим образом. Греческая математика, говорит он, отличается от египетской и вавилонской тем, что в ней утверждения, положения всегда доказываются, в то время как древневосточные тексты математического содержания содержат только интересные инструкции, так сказать, рецепты и часто примеры того, как надо решать определенную математическую задачу. Анализируя структуру математического доказательства, как оно дается в "Началах" Евклида, Сабо приходит к выводу, что доказательство представляет собой способ удостоверения того или иного положения, которое не желают (или не могут) удостоверить с помощью наглядной демонстрации. Сабо допускает, что в более ранний период математики доказывали свои утверждения, демонстрируя доступную созерцанию фигуру, так что ядро доказательства составляла конкретная наглядная демонстрация; в основе доказательства, таким образом, лежала эмпирическая и наглядная очевидность. От такого рода доказательства Евклид, подчеркивает Сабо, отказался. При этом речь идет, как полагает Сабо, не о простом повороте от наглядных моделей к понятиям, а о "сознательном отказе от созерцательного (наглядного)", о сознательном избегании просто наглядного. В результате отказа от созерцания Евклид, говорит Сабо, прибегает к так называемому косвенному выводу - доказательству от противного. "Оба эти явления в греческой математике - отказ от эмпиризма и характерное использование косвенного вывода - я свожу к решающему влиянию философии элеатов"14, - пишет Сабо. Связь здесь вполне понятна: именно элеаты впервые последовательно проводят мысль о том, что истинное знание может быть получено только с помощью разума, а чувственное восприятие всегда недостоверно.
Мы совершенно согласны с Сабо в том отношении, что именно философия элеатов впервые положила начало логической рефлексии относительно важнейших понятий античной науки, и прежде всего математики. В этом смысле ее значение для развития античной науки трудно переоценить. Именно после критики элеатов начинается уяснение предпосылок греческой математики, которые у ранних пифагорейцев, как мы видели, еще оставались непроясненными. Именно после критики элеатов, впервые поставивших на обсуждение проблему бесконечности и связанную с ней проблему континуума (пространства, времени, движения), начинают складываться основные направления научной мысли Древней Греции.
Однако трудно согласиться с некоторыми выводами, которые делает Сабо, исходя из исследования роли элеатов в становлении античной науки. Так, например, анализируя первое определение VII книги "Начал" Евклида, где вводится понятие единицы (mon?V)15, Сабо приходит к заключению, что понятие mon?V могло появиться в античной математике только после элеатов. Он подчеркивает, что даже терминологически "сущее" (t' 'n) и "Одно" (t' Ьn) выступают у элеатов как взаимозаменяемые понятия. Но известно, что первое определение VII книги Евклида почти полностью воспроизводит рассуждение Пифагора о единице, как его передает Секст Эмпирик в книге "Против ученых" (Х, 260-261)16. И не только из сообщения Секста, но и из других сообщений древних известно, что понятие монады было одним из центральных в философии ранних пифагорейцев и что, стало быть, им пользовались еще до элеатов.
Поскольку, однако, Сабо усматривает в учении элеатов о едином источник и начало развития науки, он вынужден отрицать существенный вклад ранних пифагорейцев в развитие античной математики. "В каком смысле, - пишет он, можно вообще говорить о "соперничестве" между элеатами и пифагорейцами (=арифметиками)? Как известно, элеаты допускали только существование "сущего", "Одного" и отрицали, что существует множество, ибо они считали, что можно доказать самопротиворечивость мышления также в понятии множества. Но если отрицается множество, то арифметика вообще невозможна. Следовательно, арифметики могли позаимствовать у элеатов понятие "единства", но они уже не могли вслед за элеатами отклонить множество; они должны были каким-то образом удержать множество, ибо без множества нет арифметики. И, в самом деле, второе определение арифметики у Евклида ("Начала", кн. VII, определение 2) спасает именно понятие множества благодаря тому, что оно гласит: "Число есть множество, составленное из единств (из монад - Щc mon?dwn)"17.
Согласно приведенному отрывку, арифметики-пифагорейцы могли позаимствовать у элеатов понятие единицы (монады), но не могли следовать за ними в отрицании множества, если хотели оставаться арифметиками. Зачем же, однако, было арифметикам заимствовать понятие монады у элеатов, когда это понятие уже было у ранних пифагорейцев, образовывавших число (множество) из единицы и беспредельного? И само определение числа как множества, составленного из монад (единиц, единств), - это его раннепифагорейское определение, которое приводится и Евклидом в его арифметических книгах.
Сабо сам пишет, что, признавая множество, пифагорейцы тем самым резко отличаются от элеатов; но было бы неверным, продолжает он, "говорить о их "соперничестве", так как арифметики ведь отнюдь не оспаривали элеатовское понятие "одного", они только развили его дальше..."18. В действительности, у самих "арифметиков" (т.е. пифагорейцев) уже до элеатов было понятие монады, причем в отличие от элеатов они не считали, что "единое" и "многое" (множество) взаимно исключают друг друга - тезис, который выдвинули против них элеаты. Именно элеаты впервые попытались показать, что понятие множества несовместимо с понятием "одного", "единицы", а потому заставили позднейших философов, в том числе и пифагорейцев, задуматься о том, как возможно без противоречия мыслить число и какова его природа.
Апории Зенона
Из 45 апорий, выдвинутых Зеноном, до нас дошло 9. Классическими являются пять апорий, в которых Зенон анализирует понятия множества и движения. Первую, получившую название "апория меры", Симпликий излагает следующим образом: "Доказав, что, "если вещь не имеет величины, она не существует", Зенон, прибавляет: "Если вещь существует, необходимо, чтобы она имела некоторую величину, некоторую толщину и чтобы было некоторое расстояние между тем, что представляет в ней взаимное различие". То же можно сказать о предыдущей, о той части этой вещи, которая предшествует по малости в дихотомическом делении. Итак, это предыдущее должно также иметь некоторую величину и свое предыдущее. Сказанное один раз можно всегда повторять. Таким образом, никогда не будет крайнего предела, где не было бы различных друг от друга частей. Итак, если есть множественность, нужно, чтобы вещи были в одно и то же время велики и малы и настолько малы, чтобы не иметь величины, и настолько велики, чтобы быть бесконечными"19.
Аргумент Зенона, вероятнее всего, направлен против пифагорейского представления о том, что тела "состоят из чисел". В самом деле, если мыслить число как точку, не имеющую величины ("толщины", протяженности), то сумма таких точек (тело) тоже не будет иметь величины, если же мыслить число "телесно", как имеющее некоторую конечную величину, то, поскольку тело содержит бесконечное количество таких точек (ибо тело, по допущению Зенона, можно делить "без предела"), оно должно иметь бесконечную величину. Из этого следует, что невозможно мыслить тело в виде суммы неделимых единиц, как это мы видели у пифагорейцев.
Можно, пожалуй, сказать, продолжив мысль Зенона: если "единица" неделима, то она не имеет пространственной величины (точки); если же она имеет величину, пусть как угодно малую, то она делима до бесконечности. Элеаты впервые поставили перед наукой вопрос, который является одним из важнейших методологических вопросов и по сей день20: как следует мыслить континуум дискретным или непрерывным? состоящим из неделимых (единиц, "единств", монад) или же делимым до бесконечности? Любая величина должна быть понята теперь с точки зрения того, состоит ли она из единиц (как арифметическое число пифагорейцев), неделимых "целых", или она сама есть целое, а составляющие ее элементы самостоятельного существования не имеют. Этот вопрос ставится и по отношению к числу, и по отношению к пространственной величине (линии, плоскости, объему), и по отношению к времени. В зависимости от решения проблемы континуума формируются и разные методы изучения природы и человека, т.е. разные научные программы.
Пока мы рассмотрели только одну апорию Зенона, в которой выявляется противоречивость понятия "множества". Теперь перейдем к тем апориям, где обсуждается возможность мыслить движение. Мы увидим, что здесь в основе лежит тоже проблема континуума. Наиболее известны четыре апории этого рода: "Дихотомия", "Ахиллес и черепаха", "Стрела" и "Стадий". Кратко их содержание передает Аристотель в "Физике": "Есть четыре рассуждения Зенона о движении, доставляющие большие затруднения тем, которые хотят их разрешить. Первое, о несуществовании движения на том основании, что перемещающееся тело должно прежде дойти до половины, чем до конца... Второе, так называемый Ахиллес. Оно заключается в том, что существо более медленное в беге никогда не будет настигнуто самым быстрым, ибо преследующему необходимо раньше придти в место, откуда уже двинулось убегающее, так что более медленное всегда имеет некоторое преимущество... Третье... заключается в том, что летящая стрела стоит неподвижно; оно вытекает из предположения, что время слагается из отдельных "теперь"... Четвертое рассуждение относится к двум разным массам, движущимся с равной скоростью, одни - с конца ристалища, другие - от середины, в результате чего, по его мнению, получается, что половина времени равна ее двойному количеству"21.
Первая апория - "Дихотомия" - доказывает невозможность движения, поскольку преодоление любого расстояния предполагает "отсчитывание" бесконечного множества "середин": ведь любой отрезок можно делить пополам - и так до бесконечности. Другими словами, если континуум мыслится как актуально данное бесконечное множество, то движение в таком континууме невозможно мыслить, ибо занять бесконечное число последовательных положений в ограниченный промежуток времени невозможно.
Эту антиномию можно истолковать двояким образом, и в зависимости от истолкования ее и решают по-разному. Если считать, что противоречие состоит в невозможности в конечный отрезок времени "отсчитать" бесконечное число моментов (пройти бесконечное число положений), то решение антиномии будет состоять в указании, что Зенон неправомерно отождествил бесконечность с бесконечной делимостью. Такое решение апории Зенона дал Аристотель, введя понятие континуума как потенциально делимого до бесконечности22. В самом деле, если все дело в том, что в конечный отрезок времени нельзя пройти бесконечное количество точек пространства, то достаточно указать на то, что и любой конечный отрезок времени точно так же можно делить до бесконечности, как и любой отрезок пространства. Но возможность деления, говорит Аристотель, еще не тождественна действительной поделенности как пространства, так и времени; иначе говоря, пространство и время делимы до бесконечности потенциально, но не поделены до бесконечности актуально. Бесконечная делимость не есть бесконечная величина, а потому движение, по Аристотелю, мыслимо без всякого противоречия. Каждому моменту времени соответствует определенная точка в пространстве. Так введением потенциальной бесконечности Аристотель решает антиномию, возникшую у Зенона при допущении континуума как актуальной бесконечности.