Страница:
– Митотическое спорообразование распространено среди бактерий, водорослей, некоторых простейших.
Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства, поэтому его часто применяют селекционеры растений для сохранения полезных свойств сорта.
Половое размножение – процесс, в котором объединяется генетическая информация от двух особей. Объединение генетической информации может происходить при конъюгации (временном соединении особей для обмена информацией, как это происходит у инфузорий) и копуляции (слиянии особей для оплодотворения) у одноклеточных животных, а также при оплодотворении у представителей разных царств. Особым случаем полового размножения является партеногенез у некоторых животных (тли, трутни пчел). В этом случае новый организм развивается из неоплодотворенного яйца, но до этого всегда происходит образование гамет.
Половое размножение у покрытосеменных растений происходит путем двойного оплодотворения. Дело в том, что в пыльнике цветка образуются гаплоидные пыльцевые зерна. Ядра этих зерен делятся на два – генеративное и вегетативное. Попав на рыльце пестика, пыльцевое зерно прорастает, образуя пыльцевую трубку. Генеративное ядро делится еще раз, образуя два спермия. Один из них, проникая в завязь, оплодотворяет яйцеклетку, а другой сливается с двумя полярными ядрами двух центральных клеток зародыша, образуя триплоидный эндосперм.
При половом размножении особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские – сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. У большинства водорослей сливаются две одинаковых половых клетки. При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы. Зигота развивается в новую особь.
Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половое размножение, но происходит оно по-другому.
Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга. Различные комбинации генов, проявляющиеся в потомстве в виде новых, интересующих человека признаках, отбираются селекционерами для выведения новых пород животных или сортов растений. В некоторых случаях применяют искусственное оплодотворение. Это делается и для того, чтобы получить потомство с заданными свойствами, и для того, чтобы преодолеть бездетность некоторых женщин.
1) происходит только у высших организмов
2) это приспособление к неблагоприятным условиям среды
3) обеспечивает комбинативную изменчивость организмов
4) обеспечивает генетическое постоянство вида
А2. Сколько сперматозоидов образуется в результате сперматогенеза из двух первичных половых клеток?
1) восемь 2) две 3) шесть 4) четыре
А3. Отличие овогенеза от сперматогенеза заключается в том, что:
1) в овогенезе образуются четыре равноценные гаметы, а в сперматогенезе одна
2) яйцеклетки содержат больше хромосом, чем сперматозоиды
3) в овогенезе образуется одна полноценная гамета, а в сперматогенезе – четыре
4) овогенез проходит с одним делением первичной половой клетки, а сперматогенез – с двумя
А4. Сколько делений исходной клетки происходит при гаметогенезе
1) 2 2) 1 3) 3 4) 4
А5. Количество образуемых половых клеток в организме, скорее всего, может зависеть от
1) запаса питательных веществ в клетке
2) возраста особи
3) соотношения мужских и женских особей в популяции
4) вероятности встречи гамет друг с другом
А6. Бесполое размножение преобладает в жизненном цикле
1) гидры 3) акулы
2) майского жука 4) мухи
А7. Гаметы у папоротников образуются
1) в спорангиях 3) на листьях
2) на заростке 4) в спорах
А8. Если диплоидный набор хромосом пчел равен 32, то 16 хромосом будет содержаться в соматических клетках
1) пчелиной матки
2) рабочей пчелы
3) трутней
4) всех перечисленных особей
А9. Эндосперм у цветковых растений образуется при слиянии
1) спермия и яйцеклетки
2) двух спермиев и яйцеклетки
3) полярного ядра и спермия
4) двух полярных ядер и спермия
А10. Двойное оплодотворение происходит у
1) мха кукушкина льна 3) ромашки лекарственной
2) папоротника орляка 4) сосны обыкновенной
1) Образование гамет у растений и животных происходит по одному механизму
2) У всех типов животных яйцеклетки одинакового размера
3) Споры папоротника образуются в результате мейоза
4) Из одного овоцита образуется 4 яйцеклетки
5) Яйцеклетка покрытосеменных растений оплодотворяется двумя спермиями
6) Эндосперм покрытосеменных растений триплоиден.
В2. Установите соответствие между формами размножения и их признаками
ВЗ. Установите правильную последовательность событий, происходящих при двойном оплодотворении цветковых растений.
A) оплодотворение яйцеклетки и центральной клетки
Б) образование пыльцевой трубки
B) опыление
Г) образование двух спермиев
Д) развитие зародыша и эндосперма
С2. Найдите ошибки в приведенном тексте, укажите номера предложений, в которых они допущены, и исправьте их. 1) В пыльниках покрытосеменных растений образуются диплоидные пыльцевые зерна. 2) Ядро пыльцевого зерна делится на два ядра: вегетативное и генеративное. 3) Пыльцевое зерно попадает на рыльце пестика и прорастает по направлению к завязи. 4) В пыльцевой трубке из вегетативного ядра образуется два спермия. 5) Один из них сливается с ядром яйцеклетки, образуя триплоидную зиготу. 6) Другой спермий сливается с ядрами центральных клеток, образуя эндосперм.
3.3. Онтогенез и присущие ему закономерности. Специализация клеток, образование тканей, органов. Эмбриональное и постэмбриональное развитие организмов. Жизненные циклы и чередование поколений. Причины нарушения развития организмов
3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия
3.5. Закономерности наследственности, их цитологические основы. Моно– и дигибридное скрещивание. Закономерности наследования, установленные Г. Менделем. Сцепленное наследование признаков, нарушение сцепления генов. Законы Т. Моргана. Хромосомная теория наследственности. Генетика пола. Наследование признаков, сцепленных с полом. Генотип как целостная система. Развитие знаний о генотипе. Геном человека. Взаимодействие генов. Решение генетических задач. Составление схем скрещивания. Законы Г. Менделя и их цитологические основы
Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства, поэтому его часто применяют селекционеры растений для сохранения полезных свойств сорта.
Половое размножение – процесс, в котором объединяется генетическая информация от двух особей. Объединение генетической информации может происходить при конъюгации (временном соединении особей для обмена информацией, как это происходит у инфузорий) и копуляции (слиянии особей для оплодотворения) у одноклеточных животных, а также при оплодотворении у представителей разных царств. Особым случаем полового размножения является партеногенез у некоторых животных (тли, трутни пчел). В этом случае новый организм развивается из неоплодотворенного яйца, но до этого всегда происходит образование гамет.
Половое размножение у покрытосеменных растений происходит путем двойного оплодотворения. Дело в том, что в пыльнике цветка образуются гаплоидные пыльцевые зерна. Ядра этих зерен делятся на два – генеративное и вегетативное. Попав на рыльце пестика, пыльцевое зерно прорастает, образуя пыльцевую трубку. Генеративное ядро делится еще раз, образуя два спермия. Один из них, проникая в завязь, оплодотворяет яйцеклетку, а другой сливается с двумя полярными ядрами двух центральных клеток зародыша, образуя триплоидный эндосперм.
При половом размножении особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские – сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. У большинства водорослей сливаются две одинаковых половых клетки. При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы. Зигота развивается в новую особь.
Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половое размножение, но происходит оно по-другому.
Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга. Различные комбинации генов, проявляющиеся в потомстве в виде новых, интересующих человека признаках, отбираются селекционерами для выведения новых пород животных или сортов растений. В некоторых случаях применяют искусственное оплодотворение. Это делается и для того, чтобы получить потомство с заданными свойствами, и для того, чтобы преодолеть бездетность некоторых женщин.
ПРИМЕРЫ ЗАДАНИЙ
Часть А
А1. Принципиальные различия между половым и бесполым размножением заключаются в том, что половое размножение:1) происходит только у высших организмов
2) это приспособление к неблагоприятным условиям среды
3) обеспечивает комбинативную изменчивость организмов
4) обеспечивает генетическое постоянство вида
А2. Сколько сперматозоидов образуется в результате сперматогенеза из двух первичных половых клеток?
1) восемь 2) две 3) шесть 4) четыре
А3. Отличие овогенеза от сперматогенеза заключается в том, что:
1) в овогенезе образуются четыре равноценные гаметы, а в сперматогенезе одна
2) яйцеклетки содержат больше хромосом, чем сперматозоиды
3) в овогенезе образуется одна полноценная гамета, а в сперматогенезе – четыре
4) овогенез проходит с одним делением первичной половой клетки, а сперматогенез – с двумя
А4. Сколько делений исходной клетки происходит при гаметогенезе
1) 2 2) 1 3) 3 4) 4
А5. Количество образуемых половых клеток в организме, скорее всего, может зависеть от
1) запаса питательных веществ в клетке
2) возраста особи
3) соотношения мужских и женских особей в популяции
4) вероятности встречи гамет друг с другом
А6. Бесполое размножение преобладает в жизненном цикле
1) гидры 3) акулы
2) майского жука 4) мухи
А7. Гаметы у папоротников образуются
1) в спорангиях 3) на листьях
2) на заростке 4) в спорах
А8. Если диплоидный набор хромосом пчел равен 32, то 16 хромосом будет содержаться в соматических клетках
1) пчелиной матки
2) рабочей пчелы
3) трутней
4) всех перечисленных особей
А9. Эндосперм у цветковых растений образуется при слиянии
1) спермия и яйцеклетки
2) двух спермиев и яйцеклетки
3) полярного ядра и спермия
4) двух полярных ядер и спермия
А10. Двойное оплодотворение происходит у
1) мха кукушкина льна 3) ромашки лекарственной
2) папоротника орляка 4) сосны обыкновенной
Часть В
В1. Выберите правильные утверждения1) Образование гамет у растений и животных происходит по одному механизму
2) У всех типов животных яйцеклетки одинакового размера
3) Споры папоротника образуются в результате мейоза
4) Из одного овоцита образуется 4 яйцеклетки
5) Яйцеклетка покрытосеменных растений оплодотворяется двумя спермиями
6) Эндосперм покрытосеменных растений триплоиден.
В2. Установите соответствие между формами размножения и их признаками
ВЗ. Установите правильную последовательность событий, происходящих при двойном оплодотворении цветковых растений.
A) оплодотворение яйцеклетки и центральной клетки
Б) образование пыльцевой трубки
B) опыление
Г) образование двух спермиев
Д) развитие зародыша и эндосперма
Часть С
С1. Почему эндосперм покрытосеменных растений триплоиден, а остальные клетки диплоидны?С2. Найдите ошибки в приведенном тексте, укажите номера предложений, в которых они допущены, и исправьте их. 1) В пыльниках покрытосеменных растений образуются диплоидные пыльцевые зерна. 2) Ядро пыльцевого зерна делится на два ядра: вегетативное и генеративное. 3) Пыльцевое зерно попадает на рыльце пестика и прорастает по направлению к завязи. 4) В пыльцевой трубке из вегетативного ядра образуется два спермия. 5) Один из них сливается с ядром яйцеклетки, образуя триплоидную зиготу. 6) Другой спермий сливается с ядрами центральных клеток, образуя эндосперм.
3.3. Онтогенез и присущие ему закономерности. Специализация клеток, образование тканей, органов. Эмбриональное и постэмбриональное развитие организмов. Жизненные циклы и чередование поколений. Причины нарушения развития организмов
Онтогенез. Онтогенез – это индивидуальное развитие организма от момента образования зиготы до смерти. В ходе онтогенеза проявляется закономерная смена фенотипов, характерных для данного вида. Различают непрямой и прямой онтогенезы. Непрямое развитие (метаморфоз) встречается у плоских червей, моллюсков, насекомых, рыб, земноводных. Их зародыши проходят в своем развитии несколько стадий, в том числе личиночную. Прямое развитие проходит в неличиночной или внутриутробной форме. К нему относятся все формы яйцеживорождения, развитие зародышей пресмыкающихся, птиц и яйцекладущих млекопитающих, а также развитие некоторых беспозвоночных (прямокрылых, паукообразных и др.). Внутриутробное развитие происходит у млекопитающих, в том числе и у человека. В онтогенезе выделяют два периода – эмбриональный – от образования зиготы до выхода из яйцевых оболочек и постэмбриональный – с момента рождения до смерти. Эмбриональный период многоклеточного организма состоит из следующих стадий: зиготы; бластулы – стадии развития многоклеточного зародыша после дробления зиготы. Зигота в процессе бластуляции не увеличивается в размерах, увеличивается число клеток, из которых она состоит; стадии образования однослойного зародыша, покрытого бластодермой, и формирования первичной полости тела – бластоцели; гаструлы – стадии образования зародышевых листков – эктодермы, энтодермы (у двухслойных кишечнополостных и губок) и мезодермы (у трехслойных у остальных многоклеточных животных). У кишечнополостных животных на этой стадии формируются специализированные клетки, такие как стрекательные, половые, кожно-мускульные и т. д. Процесс образования гаструлы называется гаструляцией.
Нейрулы – стадии закладки отдельных органов.
Гисто– и органогенеза – стадии появления специфических функциональных, морфологических и биохимических различий между отдельными клетками и частями развивающегося зародыша. У Позвоночных животных в органогенезе можно выделить:
а) нейрогенез – процесс формирования нервной трубки (головного и спинного мозга) из эктодермального зародышевого листка, а также кожного покрова, органов зрения и слуха;
б) хордогенез – процесс формирования из мезодермы хорды, мышц, почек, скелета, кровеносных сосудов;
в) процесс формирования из энтодермы кишечника и связанных с ним органов – печени, поджелудочной железы, легких. Последовательное развитие тканей и органов, их дифференцировка происходит благодаря эмбриональной индукции – влиянию одних частей зародыша на развитие других частей. Это связано с деятельностью белков, которые включаются в работу на определенных стадиях развития зародыша. Белки регулируют активность генов, определяющих признаки организма. Таким образом, становится понятным, почему признаки определенного организма появляются постепенно. Все гены никогда не включаются в работу вместе. В конкретное время работает лишь часть генов.
Постэмбриональный период разделяется на следующие этапы:
– постэмбриональный (до полового созревания);
– период половой зрелости (осуществление репродуктивных функций);
– старение и смерть.
У человека начальная стадия постэмбрионального периода характеризуется интенсивным ростом органов и частей тела в соответствии с установленными пропорциями. В целом постэмбриональный период человека подразделяется на следующие периоды:
– грудничковый (от рождения до 4 недель);
– грудной (от 4 недель до года);
– дошкольный (ясельный, средний, старший);
– школьный (ранний, подростковый);
– репродуктивный (молодой до 45 лет, зрелый до 65 лет);
– пострепродуктивный (пожилой до 75 лет и старческий – после 75 лет).
1) кольчатых червей 3) кишечнополостных
2) насекомых 4) простейших
А2. Мезодермы нет у
1) дождевого червя 3) кораллового полипа
2) майского жука 4) крысы
А3. Прямое развитие происходит у
1) лягушки 2) саранчи 3) мухи 4) пчелы
А4. В результате дробления зиготы образуется
1) гаструла 3) нейрула
2) бластула 4) мезодерма
А5. Из энтодермы развивается
1) аорта 2) мозг 3) легкие 4) кожа
А6. Отдельные органы многоклеточного организма закладываются на стадии
1) бластулы 3) оплодотворения
2) гаструлы 4) нейрулы
А7. Бластуляция – это
1) рост клеток
2) многократное дробление зиготы
3) деление клетки
4) увеличение зиготы в размерах
А8. Гаструла зародыша собаки – это:
1) зародыш с образовавшейся нервной трубкой
2) многоклеточный однослойный зародыш с полостью тела
3) многоклеточный трехслойный зародыш с полостью тела
4) многоклеточный двухслойный зародыш
А9. Дифференциация клеток, органов и тканей происходит в результате
1) действия определенных генов в определенное время
2) одновременного действия всех генов
3) гаструляции и бластуляции
4) развития определенных органов
А10.[4]Какая стадия эмбрионального развития позвоночных животных представлена множеством неспециализированных клеток?
1) бластула 3) ранняя нейрула
2) гаструла 4) поздняя нейрула
1) оплодотворение 4) сперматогенез
2) гаструляция 5) дробление
3) нейрогенез 6) овогенез
В2. Выберите признаки, характерные для бластулы
1) зародыш, у которого сформирована хорда
2) многоклеточный зародыш с полостью тела
3) зародыш, состоящий из 32 клеток
4) трехслойный зародыш
5) однослойный зародыш с полостью тела
6) зародыш, состоящий из одного слоя клеток
ВЗ. Соотнесите органы многоклеточного зародыша с зародышевыми листками, из которых закладываются эти органы
Нейрулы – стадии закладки отдельных органов.
Гисто– и органогенеза – стадии появления специфических функциональных, морфологических и биохимических различий между отдельными клетками и частями развивающегося зародыша. У Позвоночных животных в органогенезе можно выделить:
а) нейрогенез – процесс формирования нервной трубки (головного и спинного мозга) из эктодермального зародышевого листка, а также кожного покрова, органов зрения и слуха;
б) хордогенез – процесс формирования из мезодермы хорды, мышц, почек, скелета, кровеносных сосудов;
в) процесс формирования из энтодермы кишечника и связанных с ним органов – печени, поджелудочной железы, легких. Последовательное развитие тканей и органов, их дифференцировка происходит благодаря эмбриональной индукции – влиянию одних частей зародыша на развитие других частей. Это связано с деятельностью белков, которые включаются в работу на определенных стадиях развития зародыша. Белки регулируют активность генов, определяющих признаки организма. Таким образом, становится понятным, почему признаки определенного организма появляются постепенно. Все гены никогда не включаются в работу вместе. В конкретное время работает лишь часть генов.
Постэмбриональный период разделяется на следующие этапы:
– постэмбриональный (до полового созревания);
– период половой зрелости (осуществление репродуктивных функций);
– старение и смерть.
У человека начальная стадия постэмбрионального периода характеризуется интенсивным ростом органов и частей тела в соответствии с установленными пропорциями. В целом постэмбриональный период человека подразделяется на следующие периоды:
– грудничковый (от рождения до 4 недель);
– грудной (от 4 недель до года);
– дошкольный (ясельный, средний, старший);
– школьный (ранний, подростковый);
– репродуктивный (молодой до 45 лет, зрелый до 65 лет);
– пострепродуктивный (пожилой до 75 лет и старческий – после 75 лет).
ПРИМЕРЫ ЗАДАНИЙ
Часть А
А1. Двуслойное строение текла характерно для1) кольчатых червей 3) кишечнополостных
2) насекомых 4) простейших
А2. Мезодермы нет у
1) дождевого червя 3) кораллового полипа
2) майского жука 4) крысы
А3. Прямое развитие происходит у
1) лягушки 2) саранчи 3) мухи 4) пчелы
А4. В результате дробления зиготы образуется
1) гаструла 3) нейрула
2) бластула 4) мезодерма
А5. Из энтодермы развивается
1) аорта 2) мозг 3) легкие 4) кожа
А6. Отдельные органы многоклеточного организма закладываются на стадии
1) бластулы 3) оплодотворения
2) гаструлы 4) нейрулы
А7. Бластуляция – это
1) рост клеток
2) многократное дробление зиготы
3) деление клетки
4) увеличение зиготы в размерах
А8. Гаструла зародыша собаки – это:
1) зародыш с образовавшейся нервной трубкой
2) многоклеточный однослойный зародыш с полостью тела
3) многоклеточный трехслойный зародыш с полостью тела
4) многоклеточный двухслойный зародыш
А9. Дифференциация клеток, органов и тканей происходит в результате
1) действия определенных генов в определенное время
2) одновременного действия всех генов
3) гаструляции и бластуляции
4) развития определенных органов
А10.[4]Какая стадия эмбрионального развития позвоночных животных представлена множеством неспециализированных клеток?
1) бластула 3) ранняя нейрула
2) гаструла 4) поздняя нейрула
Часть В
В1. Что из перечисленного относится к эмбриогенезу?1) оплодотворение 4) сперматогенез
2) гаструляция 5) дробление
3) нейрогенез 6) овогенез
В2. Выберите признаки, характерные для бластулы
1) зародыш, у которого сформирована хорда
2) многоклеточный зародыш с полостью тела
3) зародыш, состоящий из 32 клеток
4) трехслойный зародыш
5) однослойный зародыш с полостью тела
6) зародыш, состоящий из одного слоя клеток
ВЗ. Соотнесите органы многоклеточного зародыша с зародышевыми листками, из которых закладываются эти органы
Часть С
С1. Приведите примеры прямого и непрямого постэмбрионального развития на примере насекомых.
3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия
Основные термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, взаимодействие генов, ген, генотип, гетерозиготность, гипотеза чистоты гамет, гомозиготность, дигибридное скрещивание, законы Г. Менделя, количественные признаки, кроссинговер, летали, множественные аллели, моногибридное скрещивание, независимое наследование, неполное доминирование, правило единообразия, расщепление, фенотип, цитологические основы законов Менделя.
Генетика – наука о наследственности и изменчивости организмов. Эти два свойства неразрывно связаны друг с другом, хотя имеют противоположную направленность. Наследственность предполагает сохранение информации, а изменчивость эту информацию меняет. Наследственность – это свойство организма повторять в ряду поколений свои признаки и особенности своего развития. Изменчивость – свойство организмов изменять свои признаки под влиянием внешней или внутренней среды, а также в результате новых генетических комбинаций, возникающих при половом размножении. Роль изменчивости заключается в том, что она «поставляет» новые генетические комбинации, подвергающиеся действию естественного отбора, а наследственность сохраняет эти комбинации.
К основным генетическим понятиям относятся следующие:
Ген – участок молекулы ДНК, в котором закодирована информация о последовательности аминокислот в одной молекуле белка.
Аллель – пара генов, отвечающих за альтернативное (различное) проявление одного и того же признака. Например, за цвет глаз отвечают два аллельных гена, расположенных в одинаковых локусах (местах) гомологичных хромосом. Только один из них может отвечать за развитие карих лаз, а другой – за развитие голубых глаз. В том случае, когда оба гена отвечают за одинаковое развитие признака, говорят о гомозиготном организме по данному признаку. Если аллельные гены определяют различное развитие признака, говорят о гетерозиготном организме.
Аллельные гены могут быть доминантными, подавляющими альтернативный ген, и рецессивными, подавляемыми.
Совокупность генов организма называется генотипом данного организма. Генотип организма описывается словами – «гомозиготный» или «гетерозиготный». Однако не все гены проявляются. Совокупность внешних признаков организма называется его фенотипом. Кареглазый, полный, высокий – это способ описания фенотипа организма. Говорят также о доминантном или рецессивном фенотипе.
Генетика изучает закономерности наследования признаков. Основным методом генетики является гибридологический метод или скрещивание. Этот метод был разработан австрийским ученым Грегором Менделем в 1865 г.
Развитие генетики повлекло за собой развитие многих научных направлений и, прежде всего, эволюционного учения, селекции растений и животных, медицины, биотехнологии, фармакологии и др.
На рубеже XX и XXI столетий расшифрован геном человека. Ученых поразило, что у нас всего 35 000 генов, а не 100 000, как думали раньше. У круглого червя 19 тыс. генов, у горчицы – 25 тыс. Различия между человеком и шимпанзе составляют 1 % генов, а с мышью – 10 %. Человеку достались в наследство и гены, которым 3 миллиарда лет и относительно молодые гены.
Что дает науке прочтение генома? Прежде всего, это знание позволяет целенаправленно вести генетические исследования по выявлению как патологических, так и нужных, полезных генов. Ученые не оставляют надежды на излечение людей от таких заболеваний, как рак и СПИД, диабет и др. Также не оставляют надежды и на преодоление дряхлой старости, преждевременной смертности и многих других бед человечества.
Генетика – наука о наследственности и изменчивости организмов. Эти два свойства неразрывно связаны друг с другом, хотя имеют противоположную направленность. Наследственность предполагает сохранение информации, а изменчивость эту информацию меняет. Наследственность – это свойство организма повторять в ряду поколений свои признаки и особенности своего развития. Изменчивость – свойство организмов изменять свои признаки под влиянием внешней или внутренней среды, а также в результате новых генетических комбинаций, возникающих при половом размножении. Роль изменчивости заключается в том, что она «поставляет» новые генетические комбинации, подвергающиеся действию естественного отбора, а наследственность сохраняет эти комбинации.
К основным генетическим понятиям относятся следующие:
Ген – участок молекулы ДНК, в котором закодирована информация о последовательности аминокислот в одной молекуле белка.
Аллель – пара генов, отвечающих за альтернативное (различное) проявление одного и того же признака. Например, за цвет глаз отвечают два аллельных гена, расположенных в одинаковых локусах (местах) гомологичных хромосом. Только один из них может отвечать за развитие карих лаз, а другой – за развитие голубых глаз. В том случае, когда оба гена отвечают за одинаковое развитие признака, говорят о гомозиготном организме по данному признаку. Если аллельные гены определяют различное развитие признака, говорят о гетерозиготном организме.
Аллельные гены могут быть доминантными, подавляющими альтернативный ген, и рецессивными, подавляемыми.
Совокупность генов организма называется генотипом данного организма. Генотип организма описывается словами – «гомозиготный» или «гетерозиготный». Однако не все гены проявляются. Совокупность внешних признаков организма называется его фенотипом. Кареглазый, полный, высокий – это способ описания фенотипа организма. Говорят также о доминантном или рецессивном фенотипе.
Генетика изучает закономерности наследования признаков. Основным методом генетики является гибридологический метод или скрещивание. Этот метод был разработан австрийским ученым Грегором Менделем в 1865 г.
Развитие генетики повлекло за собой развитие многих научных направлений и, прежде всего, эволюционного учения, селекции растений и животных, медицины, биотехнологии, фармакологии и др.
На рубеже XX и XXI столетий расшифрован геном человека. Ученых поразило, что у нас всего 35 000 генов, а не 100 000, как думали раньше. У круглого червя 19 тыс. генов, у горчицы – 25 тыс. Различия между человеком и шимпанзе составляют 1 % генов, а с мышью – 10 %. Человеку достались в наследство и гены, которым 3 миллиарда лет и относительно молодые гены.
Что дает науке прочтение генома? Прежде всего, это знание позволяет целенаправленно вести генетические исследования по выявлению как патологических, так и нужных, полезных генов. Ученые не оставляют надежды на излечение людей от таких заболеваний, как рак и СПИД, диабет и др. Также не оставляют надежды и на преодоление дряхлой старости, преждевременной смертности и многих других бед человечества.
3.5. Закономерности наследственности, их цитологические основы. Моно– и дигибридное скрещивание. Закономерности наследования, установленные Г. Менделем. Сцепленное наследование признаков, нарушение сцепления генов. Законы Т. Моргана. Хромосомная теория наследственности. Генетика пола. Наследование признаков, сцепленных с полом. Генотип как целостная система. Развитие знаний о генотипе. Геном человека. Взаимодействие генов. Решение генетических задач. Составление схем скрещивания. Законы Г. Менделя и их цитологические основы
Термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, ген, генотип, гетерозиготность, гипотеза чистоты гамет, гомозиготность, дигибридное скрещивание, законы Менделя, моногибридное скрещивание, морганида, наследственность, независимое наследование, неполное доминирование, правило единообразия, расщепление, фенотип, хромосомная теория наследственности, цитологические основы законов Менделя.
Успех работы Грегора Менделя был связан с тем, что он правильно выбрал объект исследования и соблюдал принципы, ставшие основой гибридологического метода:
1. Объектом исследования стали растения гороха, принадлежавшие к одному виду.
2. Опытные растения четко отличались по своим признакам – высокие – низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами.
3. Первое поколение от исходных родительских форм всегда было одинаковым. Высокие родители давали высокое потомство, низкие родители давали растения маленького роста. Таким образом, исходные сорта были так называемые «чистые линии».
4. Г. Мендель вел количественный учет потомков второго и последующих поколений, у которых наблюдалось расщепление в признаках.
Законы Г. Менделя описывают характер наследования отдельных признаков на протяжении нескольких поколений.
Первый закон Менделя или правило единообразия. Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:
– форма семени (круглая / некруглая);
– окраска семени (желтая / зеленая);
– кожура семени (гладкая / морщинистая) и т. д.
При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами. Он назвал этот признак доминантным. Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).
Так экзаменационная работа требует от учащихся умения правильно оформлять записи при решении генетических задач, то мы покажем пример такой записи.
1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон. При скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам единообразными и похожими на родителя с доминантным признаком.
В случае неполного доминирования только 25 % особей фенотипически похожи на родителя с доминантным признаком и 25 % особей будут похожи на рецессивного по фентипу родителя. Остальные 50 % гетерозигот будут от них фенотипически отличаться. Например, от красноцветковых и белоцветковых растений львиного зева в потомстве 25 % особей красные, 25 % – белые, а 50 % – розовые.
2. Для выявления гетерозиготности особи по определенному аллелю, т. е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1
АА × аа → 100 % Аа
Аа × аа → 50 % Аа и 50 % аа
Второй закон Менделя или закон расщепления. При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3: 1 по фенотипу и 1: 2:1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.
Появляются семена как с желтой, так и с зеленой окраской.
Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании. Этот закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.
Для дальнейшей записи используется решетка Пеннета:
Во втором поколении возможно появление 4 фенотипов в отношении 9: 3: 3: 1 и 9 генотипов.
В результате проведенного анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:
– для диплоидных организмов;
– для генов, расположенных в разных гомологичных хромосомах;
– при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.
Указанные условия и являются цитологическими основами дигибридного скрещивания.
Те же закономерности распространяются на полигибридные скрещивания.
В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации.
В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.
Так как события случайны, то закономерность носит статистический характер, т. е. определяется большим числом равновероятных событий – встреч гамет, несущих разные (или одинаковые) альтернативные гены.
1) пара одинаковых по проявлению генов
2) один из двух аллельных генов
3) ген, подавляющий действие другого гена
4) подавляемый ген
А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о
1) нескольких признаках организма
2) одном признаке организма
3) нескольких белках
4) молекуле т-РНК
А3. Если признак не проявляется у гибридов первого поколения, то он называется
1) альтернативным
2) доминантным
3) не полностью доминирующим
4) рецессивным
А4. Аллельные гены расположены в
1) идентичных участках гомологичных хромосом
2) разных участках гомологичных хромосом
3) идентичных участках негомологичных хромосом
4) разных участках негомологичных хромосом
А5. Какая запись отражает дигетерозиготный организм:
1) ААВВ 2) АаВв 3) АаВвСс 4) ааВВсс
А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной
1) белая, шаровидная 3) желтая дисковидная
2) желтая, шаровидная 4) белая, дисковидная
А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.
1) все ВВ
2) все Вв
3) 50 % ВВ и 50 % Вв
4) 75 % ВВ и 25 % Вв
А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?
1) ААвв 2) АаВв 3) ааВВ 4) ААвВ
А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?
Успех работы Грегора Менделя был связан с тем, что он правильно выбрал объект исследования и соблюдал принципы, ставшие основой гибридологического метода:
1. Объектом исследования стали растения гороха, принадлежавшие к одному виду.
2. Опытные растения четко отличались по своим признакам – высокие – низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами.
3. Первое поколение от исходных родительских форм всегда было одинаковым. Высокие родители давали высокое потомство, низкие родители давали растения маленького роста. Таким образом, исходные сорта были так называемые «чистые линии».
4. Г. Мендель вел количественный учет потомков второго и последующих поколений, у которых наблюдалось расщепление в признаках.
Законы Г. Менделя описывают характер наследования отдельных признаков на протяжении нескольких поколений.
Первый закон Менделя или правило единообразия. Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:
– форма семени (круглая / некруглая);
– окраска семени (желтая / зеленая);
– кожура семени (гладкая / морщинистая) и т. д.
При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами. Он назвал этот признак доминантным. Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).
Так экзаменационная работа требует от учащихся умения правильно оформлять записи при решении генетических задач, то мы покажем пример такой записи.
1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон. При скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам единообразными и похожими на родителя с доминантным признаком.
В случае неполного доминирования только 25 % особей фенотипически похожи на родителя с доминантным признаком и 25 % особей будут похожи на рецессивного по фентипу родителя. Остальные 50 % гетерозигот будут от них фенотипически отличаться. Например, от красноцветковых и белоцветковых растений львиного зева в потомстве 25 % особей красные, 25 % – белые, а 50 % – розовые.
2. Для выявления гетерозиготности особи по определенному аллелю, т. е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1
АА × аа → 100 % Аа
Аа × аа → 50 % Аа и 50 % аа
Второй закон Менделя или закон расщепления. При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3: 1 по фенотипу и 1: 2:1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.
Появляются семена как с желтой, так и с зеленой окраской.
Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании. Этот закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.
Для дальнейшей записи используется решетка Пеннета:
Во втором поколении возможно появление 4 фенотипов в отношении 9: 3: 3: 1 и 9 генотипов.
В результате проведенного анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:
– для диплоидных организмов;
– для генов, расположенных в разных гомологичных хромосомах;
– при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.
Указанные условия и являются цитологическими основами дигибридного скрещивания.
Те же закономерности распространяются на полигибридные скрещивания.
В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации.
В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.
Так как события случайны, то закономерность носит статистический характер, т. е. определяется большим числом равновероятных событий – встреч гамет, несущих разные (или одинаковые) альтернативные гены.
ПРИМЕРЫ ЗАДАНИЙ[5]
Часть А
А1. Доминантный аллель – это1) пара одинаковых по проявлению генов
2) один из двух аллельных генов
3) ген, подавляющий действие другого гена
4) подавляемый ген
А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о
1) нескольких признаках организма
2) одном признаке организма
3) нескольких белках
4) молекуле т-РНК
А3. Если признак не проявляется у гибридов первого поколения, то он называется
1) альтернативным
2) доминантным
3) не полностью доминирующим
4) рецессивным
А4. Аллельные гены расположены в
1) идентичных участках гомологичных хромосом
2) разных участках гомологичных хромосом
3) идентичных участках негомологичных хромосом
4) разных участках негомологичных хромосом
А5. Какая запись отражает дигетерозиготный организм:
1) ААВВ 2) АаВв 3) АаВвСс 4) ааВВсс
А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной
1) белая, шаровидная 3) желтая дисковидная
2) желтая, шаровидная 4) белая, дисковидная
А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.
1) все ВВ
2) все Вв
3) 50 % ВВ и 50 % Вв
4) 75 % ВВ и 25 % Вв
А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?
1) ААвв 2) АаВв 3) ааВВ 4) ААвВ
А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?