роятно, внесли существенный вклад в общий фонд органи ческих соединений на примитивной Земле, в настоящее время кажется наиболее правдоподобным, что условия на самой Земле имели восстановительный характер в такой степени, что стало возможным образование органического вещества, приведшее к возникновению жизни.
Эксперименты
в области предбиологической химии: синтез мономеров
Опарин, по всей видимости, не пытался проверить свою теорию экспериментально. Возможно, он понимал, что су ществующие аналитические методы непригодны для того, чтобы охарактеризовать сложные смеси органических ве ществ, которые могли бы образовагься в результате раз нообразных реакций между углеводородами, аммиаком и водой. Или, быть может, он довольствовался логической разработкой общих принципов, не считая нужным вникать в многочисленные детали. Как бы то ни было, но теория Опарина никогда не подвергалась проверке до тех пор, пока к ней не обратился Юри. А в 1957 г. его аспирант Стэнли Миллер поставил свой знаменитый эксперимент, благодаря которому проблема происхождения жизни превратилась из чисто умозрительной в научную, в самостоятельный раздел экспериментальной химии.
Моделируя условия па первобытной Земле, Миллер на лил на дно колбы немного воды и заполнил ее смесью газов, которые, по мнению Юри, должны были составлять при митивную атмосферу: водорода, метана, аммиака. Затем через газовую смесь пропускался электрический разряд. К концу недели, проводя химический анализ растворенных в воде продуктов, ученый обнаружил среди них значительное количество биологически важных соединений, включая гли цин, аланин, аспарагиновую и глутаминовую кислоты - четы ре аминокислоты, входящие в состав белков. В дальнейшем эксперимент был повторен с использованием более совер шенных аналитических методов и газовой смеси, в большей степени соответствующей принятым ныне моделям прими тивной атмосферы. При этом аммиак (который, вероятно, был растворен в первичном океане) в основном заменили азотом, а водород вообще исключили, поскольку сейчас
предполагается, что в самом лучшем случае его содержание в примитивной атмосфере было незначительным. В этом экс перименте образовались 12 аминокислот, входящих в состав белков*, а также ряд других, небелковых соединений, что представляло не меньший интерес по причинам, о которых мы расскажем впоследствии.
Изучение этих необычных реакций синтеза показало, что электрический разряд вызывает образование определенных первичных продуктов, которые в свою очередь участвуют в последующих реакциях до тех пор, пока полностью не растворятся в воде, образуя конечные продукты. К числу наиболее важных первичных продуктов, возникающих в процессе синтеза, относятся цианистый водород (HCN), фор мальдегид (НСНО), другие альдегиды и цианоацетилен (HCCCN). Аминокислоты образуются из цианистого во дорода по крайней мере двумя путями: в результате взаи модействия в растворе цианида, альдегида и аммиака и путем превращения самого HCN в аминокислоты-через сложную последовательность реакций, протекающих в вод ном растворе.
По всей вероятности, основным источником энергии на примитивной Земле, как и в настоящее время, было излу чение Солнца, а не электрические разряды. Поэтому раз личные исследователи пробовали использовать в качестве источника энергии, необходимой для синтеза аминокислот, ультрафиолетовое (УФ) излучение. Эксперимент дал поло жительные результаты. Максимальный выход аминокислот был получен, когда в газовую смесь, предложенную Юри, включали сероводород (H^S), который поглощает более длинноволновое УФ-излучение, преобладающее на поверх ности Земли. Аминокислоты образовались и в том случае, когда источником энергии служили ударные волны, порож дающие короткие "всплески" высокой температуры и дав ления. Источники энергии такого типа, вероятно, возникали в первичном океане под действием волн, а в атмосфере создавались раскатами грома, электрическими разрядами и падающими метеоритами.
Важным дополнением к опытам Миллера явились экспе рименты Хуана Оро, Лесли Оргела и их сотрудников. Они показали, что четыре основания РНК (три из них встре
* Этими аминокислотами были глицин, аланин, валин, лейцин, изолейцин, пролин, аспарагиновая кислота, глутаминовая кислота, серии, треонин, аспарагин и глутамин.
чаются и в ДНК) образуются в последующих реакциях, в которые вступают первичные продукты реакций, вызванных искровым разрядом. Характерно, что в серии реакций, про исходящих в водном растворе, цианистый водород само конденсируется с образованием пуринового основания аде нина; другая разновидность реакций такого типа производит еще один пурин-гуанин. Пиримидиновые основания цито зин и урацил получаются в заметных количествах из циа ноацетилена в реакциях, которые также, возможно, про исходили на примитивной Земле. Однако до сих пор не было сообщений о получении в таком "предбиологическом син тезе" тимина, который входит в молекулу ДНК вместо урацила.
Давно известно.. что при определенных условиях фор мальдегид конденсируется в растворе, образуя различные сахара. Одним из продуктов этой реакции является ри боза-углеводный компонент РНК. Таким образом, как ви дим, большая часть молекулярных компонентов, форми рующих генетическую систему, может возникать в резуль тате ряда реакций, вполне вероятных в условиях прими тивной Земли.
Метеориты и облака межзвездной пыли
Недавние открытия, касающиеся химического состава метеоритов и межзвездных газово-пылевых облаков, сви детельствуют о том, что в нашей Галактике, как прежде, так и теперь, происходит в широких масштабах синтез био логически важных молекул. Метеориты, о которых пойдет речь, относятся к классу углистых хондритов и составляют около 5% от общего числа метеоритов, ежегодно падающих на поверхность Земли. Эти интересные объекты представ ляют собой не претерпевшие существенных изменений "об ломки" протосолнечной туманности. Они считаются первич ными, поскольку образовались одновременно с Солнечной системой, т. с. 4,5 млрд. лет назад. Метеориты слишком малы, чтобы иметь собственную атмосферу, но по отно сительному содержанию нелетучих элементов углистые хондриты весьма сходны с Солнцем. Их минеральный состав свидетельствует о том, что они сформировались при низкой температуре и действию высоких температур никогда не подвергались. Они содержат до 20% воды (связанной в виде гидратов минералов) и до 10% органического вещества. С прошлого столетия углистые хондриты привлекали к
себе внимание из-за их возможной биологической значи мости. Шведский химик Якоб Берцелиус, обнаружив в ме теорите Алэ (упавшем в 1806 г. на территорию Франции) органические вещества, поставил вопрос, свидетельствует ли их наличие в веществе метеорита о существовании внеземной жизни? Сам он полагал, что нет. Говорят, что у Пастера был зонд специальной конструкции для получения незагрязнен ных проб из внутренних частей метеорита Оргейль-другого известного хондрита, упавшего также во Франции в 1864 г. Произведя анализ проб на содержание в них микроорга низмов, Пастер получил отрицательные результаты.
До недавнего времени идентификации органических сое динений в углистых хондритах не придавалось большого значения, поскольку довольно трудно выявить различия между соединениями, входящими в состав самого метеорита, и загрязнениями, приобретенными при вхождении в атмос феру Земли, ударе о ее поверхность или внесенными впо следствии человеком при сборе образцов. Сейчас благодаря разработке сверхчувствительных аналитических методов и тщательным мерам предосторожности при сборе образцов отношение к этому вопросу в корне изменилось. Два недавно изученных хондрита-метеориты, упавшие в 1969 г. в районе Мерчисона (Австралия) и в 1950 г. в Мюррее (США) содержали ряд эндогенных аминокислот*.
Имеются убедительные свидетельства в пользу того, что в основном обнаруженные аминокислоты не есть загрязне ния. Так, многие из них относятся к аминокислотам нео бычного типа, которые не входят в состав земных ор ганизмов. Другое доказательство: некоторые широко рас пространенные аминокислоты, наличие которых обычно вы зывается загрязнением, в метеоритах не обнаруживаются. И наконец, аминокислоты в углистых хондритах встречаются в виде двух оптических изомеров, т. е. в разных пространствен ных формах, представляющих собой зеркальные отражения друг друга,-это характерно только для аминокислот, син тезированных небиологическим путем, но не тех, которые имеются в живых организмах (см. гл. 1). Набор аминокислот, обнаруженный в метеоритах, на
* В Мерчисонском метеорите их было идентифицировано около 50, причем восемь из них входят в состав белков: глицин, аланин, валин, лейцин, изолейцин. пролин, аспарагиновая кислота, глутами новая кислота. Были обнаружены также серии и треонин, но не исключено, что их наличие связано с загрязнением.
поминает аминокислоты, которые были получены в экспе риментах с искровыми разрядами. Наборы эти не идентич ны, но сходство настолько заметно, что позволяет пред положить, что механизмы синтеза в обоих случаях совпа дают. Другой возможный механизм синтеза аминокислот в метеоритах-реакция Фишера-Тропша, названная так в честь двух немецких химиков, которые разработали ката литический процесс получения бензина и других углево дородов из моноксида углерода (СО) и водорода. Оба этих газа широко распространены во Вселенной, как и необ ходимые для реакции катализаторы, например железо или силикаты. Пытаясь объяснить относительное содержание органических веществ в космическом пространстве на основе этой реакции, Эдвард Андерс и его коллеги из Чикагского университета установили, что при введении в реакционную смесь аммиака образуются аминокислоты, пурины и пи римидины. В этой реакции возникают те же самые про межуточные продукты-водород, цианид, альдегиды, циа ноацетилен,-которые получаются в реакциях, происходящих под действием электрических разрядов. По-видимому, при сутствие в метеоритах углеводородов, а также пуринов и пиримидинов легче объяснить реакцией синтеза Фишера Тропша, чем реакцией под действием электрического раз ряда. До сих пор, однако, ни в одном лабораторном опыте не удалось в точности воспроизвести набор веществ, об наруженных в метеоритах.
Содержание в метеоритах пуриновых и пиримидиновых оснований исследовано в меньшей степени, нежели наличие аминокислот. Тем не менее в Мерчисонском метеорите идентифицированы аденин, гуанин и урацил. Аденин и гуа нин найдены в концентрации приблизительно 1-10 частей на миллион, что близко к относительному содержанию ами нокислот. Концентрация урацила значительно ниже.
Недавно радиоастрономы открыли органические моле кулы в межзвездном пространстве, что. безусловно, попол нило наши знания об органической химии Вселенной. Ор ганические молекулы были обнаружены в гигантских га зово-пылевых облаках, которые находятся в тех областях космического пространства, где, как полагают, формируют ся новые звезды и планетные системы. К моменту написания этой книги помимо присутствующих там, как и ожидалось, молекул водорода было обнаружено около 60 соединений. Наиболее распространен моноксид углерода. Гораздо реже встречаются такие в равной степени интересные соединения,
как аммиак, цианистый водород, формальдегид, ацеталь дегид (СНОСНО), цианоацетилен и вода, т.е. молекулы, которые в лабораторных опытах по химической эволюции рассматриваются как предшественники аминокислот, пури нов, пиримидинов и углеводов.
Эти открытия свидетельствуют о том, что повсюду во Вселенной происходит в широких масштабах синтез ор ганического вещества и среди его конечных продуктов много биологически важных соединений, в том числе основных мономеров генетической системы и их предшественников. Не исключено даже (как предполагалось когда-то), что орга нические соединения-или, во всяком случае, часть их, которые легли в основу первых живых организмов, имели внеземное происхождение. Эти открытия позволили осо знать тот важный факт, что синтез биологических соеди нений не есть какой-то специфический химический процесс, возможный лишь в особо благоприятных условиях, харак терных для нашей планеты, но представляет собой явление космического масштаба. Это сразу наводит на мысль, что в любой области Вселенной жизнь должна быть основана на химии углерода, сходной с той, что наблюдается на Земле, хотя и не обязательно ей идентичной.
Синтез полимеров в предбиологических условиях
Образование основных мономеров белков и нуклеиновых кислот из газов протосолнечной туманности-это только первый шаг в создании генетической системы. Чтобы сфор мировать необходимые полимеры, мономеры должны затем соединиться в цепочки. Это трудная проблема, и, хотя на нее обращается пристальное внимание, пока еще не предложено надежных способов образования полимеров, несущих ге нетическую информацию, из мономеров, существовавших, вероятно, на примитивной Земле.
Синтез полимеров как в живых системах, так и в ла боратории включает в себя этап присоединения очередного мономера к концу растущей цепи. На каждом таком этапе потребляется энергия и происходит выделение молекулы воды. При синтезе белков из аминокислот связь, образую щаяся между мономерными звеньями полимера, называется пептидной. На рисунке показана схема образования пептид ной связи между двумя молекулами аминокислот.
Буквой R обозначена любая из 20 различных боковых цепей белковых аминокислот. Когда гретья молекула аминокис лоты прикрепляется к концу дипептида, образуется три пептид и т.д., пока не сформируется полипептид. Такие реакции обратимы: например, дипептид, показанный выше, может, присоединив молекулу воды, вновь превратиться в аминокислоты: этот процесс сопровождается выделением энергии. Белковая молекула представляет собой полипеп тидную цепь с определенной последовательностью амино кислот, которая придает ей особые свойства и является продуктом длительной эволюции. Каждая цепь состоит из сотен соединенных в одну последовательность аминокислот, а молекулы некоторых белков включают две и более по добных цепей. В результате взаимодействия между составля ющими их аминокислотами полипептиды формируют трех мерную структуру, которая и является активной формой белковой молекулы.
Полимеризация нуклеотидов, повторяющихся мономер ных звеньев нуклеиновых кислот, приводит к образованию полинуклеотидов, или нуклеиновых кислот. Образование динуклеотида из двух нуклеотидов выглядит следующим образом:
Здесь буквой В обозначено любое из четырех оснований ДНК или РНК; цепочки из атомов углерода (С) соответству ют пятиуглеродному сахару с -ОН-группой, связанной с третьим атомом углерода. (Истинные циклические обозначе
ния структуры углеводов приведены ранее на рис. 1.) Фос форная кислота присоединена сначала к пятому атому угле рода, а затем к углеродным атомам 5 и 3.
Для синтеза полимеров-как белков, так и нуклеиновых кислот-живые клетки вырабатывают богатые энергией мо лекулы, которые с помощью специфических белков-фермен тов обеспечивают энергией каждый этап присоединения мо номера. Помимо того что ферменты катализируют соответ ствующие реакции, они создают условия, необходимые для нормального ее протекания, устраняя все другие мешающие молекулы. Это существенно в случае, когда нужные для реакции молекулы составляют лишь небольшую часть из всех присутствующих в реакционной среде. Удаляются, на пример, молекулы воды, которые неизменно мешают проте канию реакции дегидратации.
Биологические полимеры могут быть синтезированы в лабораторных условиях и без участия ферментов. Синтез полипептидов и полинуклеотидов стал теперь обычным де лом. Белки, идентичные тем. которые синтезируются клет кой, могут быть получены и получаются в лаборатории. При этом используют безводные растворители, очищенные моно меры высокой концентрации, прибегают к разного рода ухищрениям для защиты реакционных групп и применяют реагенты, обеспечивающие реакции энергией, что в сущности соответствует функциям, выполняемым обычно фермента ми.
Попробуем сопоставить эти два высокосовершенных спо соба синтеза биополимеров - реализуемых в клетке и в лабо ратории-с условиями, по-видимому, существовавшими на примитивной Земле. Единственным растворителем тогда была вода, необходимые для синтеза мономеры составляли лишь часть общего количества растворенных органических и неорганических веществ, реагенты, имевшиеся в достаточном количестве, были, вероятно, довольно просты, и, разумеется, полностью отсутствовали ферменты. До сих пор не ясно, как при столь неблагоприятных условиях могли образоваться даже короткие полимеры. По всей видимости, первобытный бульон состоял из множесгва самых разнообразных органи ческих соединений. Чтобы произошел синтез полипептида или полинуклеотида, в бульоне должна была возникнуть особая группа соединений, которые сконцентрировались бы и соединились друг с другом. Представить себе этот первый этап. наверное, особенно трудно. Простой концентрации первичного бульона здесь явно недостаточно. Скорее всего,
этот бульон представлял собой сложную смесь многих со единений, которые должны были мешать образованию поли меров, прикрепляясь, например, к концу растущей цепи и останавливая тем самым ее рост.
Возможное решение этой проблемы связано с адсорбцией необходимых молекул на поверхности глинистых минералов. Этому механизму особое значение придавал покойный Дж.Д.Бернал (1901-1971), известный английский ученый кристаллограф. По сравнению с органическими соедине ниями глинистые минералы обладают большой адсорбцион ной способностью. Кроме того, они по-разному взаимодей ствуют с различными типами соединений, которые адсорби руют. Сам Бернал не был уверен в правильности своего предположения; это объяснялось тем, что кремний, основной составляющий элемент глин, не играет почти никакой роли в современной биохимии. Тем не менее адсорбция считается самым вероятным механизмом (хотя это и не доказано) предбиологических процессов разделения и концентрации.
Несмотря на сомнения Бернала, другие ученые без коле баний отвели глинистым минералам главную роль в проис хождении жизни. В самом деле, А. Г. Кернс-Смит, химик из университета в Глазго, предположил, что жизнь началась с кристаллов, образующих минералы. Обладая способностью воспроизводить себе подобных, неорганические кристаллы как бы демонстрируют тем самым зачаточные генетические свойства. У них обнаруживается также ограниченная способ ность к мутациям, которая проявляется в том, что в регуляр ном расположении атомов в кристалле могут возникать дефекты. Такие обладающие слоистой структурой минералы, как глины, склонны копировать дефекты одного слоя в структуре следующего, что можно рассматривать как свое образную генетическую память. Замечено, что дефекты в структуре кристаллических граней часто оказываются участ ками химической активности, включая катализ. Кернс-Смит высказал предположение, что такое простое органическое соединение, как формальдегид, синтез которого мог катали зироваться минералом, несущим подобный дефект, обладало способностью ускорять процесс воспроизведения дефектного кристалла и повышать точность копирования, в результате чего численность таких кристаллов по сравнению с другими типами быстро возрастала. С этого началась эволюция белково-нуклеиновой генетической системы, которая в даль нейшем отделилась от своего минерального предка. Однако
это весьма умозрительное предположение, не имеющее поч ти никаких экспериментальных подтверждений.
При всех немалых трудностях, связанных с пониманием условий возникновения первых биологически важных поли меров, следует иметь в виду некоторые "смягчающие обстоятельства". Вполне возможно, что для построения первой генетической системы сначала потребовались не большие, сложно организованные молекулы, которые мы находим в современных организмах, а только короткие полимеры. Первому организму не обязательно следовало быть высокоэффективным. Поскольку его жизнь протекала в "райских кущах" при отсутствии врагов и проблем, связан ных с добыванием пищи, ему достаточно было просто способности довольно быстро воспроизводить самого себя, чтобы опережать свою собственную химическую деграда цию. Кроме того, химические процессы, предшествовавшие появлению жизни, протекали широко как в пространстве, так и во времени. В течение сотен миллионов лет примитивная Земля представляла собой грандиозную лабораторию, где в силу гигантских масштабов происходящего могли реализо ваться даже такие процессы, которые кажутся нам малове роятными.
Такие соображения, конечно, не дают нам права утверж дать, что мы понимаем, как образовались первые биополи меры. Однако они позволяют предполагать, что проблема, по-видимому, не столь трудна, как считается. Последние результаты, полученные в лаборатории Оргела, показали возможность образования полинуклеотидов на исходной полинуклеотидной цепи способом, аналогичным естественной дупликации генов, но без участия фермента. Этого замеча тельного результата удалось достичь благодаря тому. что был найден метод введения в реакцию энергии: несмотря на отсутствие ферментов, этот метод сходен с естественным механизмом, с помощью которого клетка обеспечивает энер гией синтез полинуклеотидов. Эти данные делают более правдоподобным предположение, что аналогичный процесс мог играть важную роль на ранних стадиях эволюции генетической системы. Кроме того, недавно было доказано, что некоторые виды РНК обладают каталитическими свой ствами, которые обычно приписывались только белкам. Все эти результаты позволяют предположить, что примитивная генетическая система могла быть построена без белков лишь из одной РНК. Если это было действительно так, то
загадки, связанные с происхождением жизни, значительно упрощаются.
Проблемы, касающиеся появления первой молекулы нук леиновой кислоты, генетического кода и всего механизма переноса информации от нуклеиновых кислот к белкам, по-прежнему остаются нерешенными, однако и здесь заметен некоторый прогресс, насколько это позволяет современный уровень знаний. Поэтому, заканчивая наш краткий обзор современных представлений о природе и происхождении жизни на пашей планете, мы обходимся без претенциозных рассуждений о возникновении "первичной протоплазменной первобытно-атомпой глобулы". Нет сомнений, что движение вперед, к решению проблемы происхождения жизни, будет продолжаться. Между тем изложенные нами принципы име ют настолько общий характер, что вполне применимы к проблемам возникновения жизни в любой области Вселен ной. Теперь мы обратимся к обсуждению вопросов о жизни на других планетах Солнечной системы - этот предмет и составляет содержание остальных глав нашей книги.
Глава 4
Есть ли жизнь на других планетах?
Тем не менее большинство планет, несомнен но, обитаемы, а необитаемые со временем будут населены.
Таким образом, я могу все изложенное выше выразить в следующем общем виде: вещест во, из которого состоят обитатели различных планет, в том числе животные и растения из них, вообще должно быть тем легче и тоньше . .. чем дальше планеты отстоят от Солнца. Совершенство мыслящих существ, быстрота их представлений. . . становятся тем прекрас нее и совершеннее, чем дальше от Солнца находится небесное тело, на котором они обитают.
Так как степень вероятия этой зависимости настолько велика, что она близка к полной достоверности, то перед нами открывается простор для любопытных предположений, основанных на сравнении свойств обитателей различных планет.
Иммануил Кант. "Всеобщая естественная ис тория и теория неба" [II]
В XVII-XVIII вв. люди были убеждены, что планеты Солнечной системы обитаемы. Христиан Гюйгенс (1629 1695), которого по праву можно считать одним из основате лей современной астрономии, полагал, что на Меркурии, Марсе, Юпитере и Сатурне есть поля, "согреваемые добрым теплом Солнца и орошаемые плодотворными росами и ливнями". В полях, думал Гюйгенс, обитают растения и животные. В противном случае эти планеты "были бы хуже нашей Земли", что он считал абсолютно неприемлемым. Такой довод, столь странно звучащий в наши дни, основы вался на развитых Коперником представлениях об окружаю щем мире, согласно которым Земля не занимает особого места среди планет, и Гюйгенс разделял эти взгляды. По той же причине он полагал, что на планетах должны жить разумные существа, "возможно, не в точности такие люди, как мы сами, но живые существа или какие-то иные создания, наделенные разумом". Подобное заключение казалось Гюй генсу настолько бесспорным, что он писал: "Если я ошиба
юсь в этом, то уже и не знаю, когда могу доверять своему разуму, и мне остается довольствоваться ролью жалкого судьи при истинной оценке вещей".
Хотя Гюйгенс и заблуждался в данном вопросе (оказа лось, что другие планеты все же намного "хуже" Земли, по крайней мере как место существования жизни), его репутация ученого от этого не пострадала. Его гений был всеобъемлю щим, а открытия в области математики, механики, астроно мии и оптики заложили основы современной науки. Для нас же урок заключается в том, что, когда речь идет о проблеме существования внеземной жизни, даже самые талантливые ученые могут идти по ложному пути.
Эксперименты
в области предбиологической химии: синтез мономеров
Опарин, по всей видимости, не пытался проверить свою теорию экспериментально. Возможно, он понимал, что су ществующие аналитические методы непригодны для того, чтобы охарактеризовать сложные смеси органических ве ществ, которые могли бы образовагься в результате раз нообразных реакций между углеводородами, аммиаком и водой. Или, быть может, он довольствовался логической разработкой общих принципов, не считая нужным вникать в многочисленные детали. Как бы то ни было, но теория Опарина никогда не подвергалась проверке до тех пор, пока к ней не обратился Юри. А в 1957 г. его аспирант Стэнли Миллер поставил свой знаменитый эксперимент, благодаря которому проблема происхождения жизни превратилась из чисто умозрительной в научную, в самостоятельный раздел экспериментальной химии.
Моделируя условия па первобытной Земле, Миллер на лил на дно колбы немного воды и заполнил ее смесью газов, которые, по мнению Юри, должны были составлять при митивную атмосферу: водорода, метана, аммиака. Затем через газовую смесь пропускался электрический разряд. К концу недели, проводя химический анализ растворенных в воде продуктов, ученый обнаружил среди них значительное количество биологически важных соединений, включая гли цин, аланин, аспарагиновую и глутаминовую кислоты - четы ре аминокислоты, входящие в состав белков. В дальнейшем эксперимент был повторен с использованием более совер шенных аналитических методов и газовой смеси, в большей степени соответствующей принятым ныне моделям прими тивной атмосферы. При этом аммиак (который, вероятно, был растворен в первичном океане) в основном заменили азотом, а водород вообще исключили, поскольку сейчас
предполагается, что в самом лучшем случае его содержание в примитивной атмосфере было незначительным. В этом экс перименте образовались 12 аминокислот, входящих в состав белков*, а также ряд других, небелковых соединений, что представляло не меньший интерес по причинам, о которых мы расскажем впоследствии.
Изучение этих необычных реакций синтеза показало, что электрический разряд вызывает образование определенных первичных продуктов, которые в свою очередь участвуют в последующих реакциях до тех пор, пока полностью не растворятся в воде, образуя конечные продукты. К числу наиболее важных первичных продуктов, возникающих в процессе синтеза, относятся цианистый водород (HCN), фор мальдегид (НСНО), другие альдегиды и цианоацетилен (HCCCN). Аминокислоты образуются из цианистого во дорода по крайней мере двумя путями: в результате взаи модействия в растворе цианида, альдегида и аммиака и путем превращения самого HCN в аминокислоты-через сложную последовательность реакций, протекающих в вод ном растворе.
По всей вероятности, основным источником энергии на примитивной Земле, как и в настоящее время, было излу чение Солнца, а не электрические разряды. Поэтому раз личные исследователи пробовали использовать в качестве источника энергии, необходимой для синтеза аминокислот, ультрафиолетовое (УФ) излучение. Эксперимент дал поло жительные результаты. Максимальный выход аминокислот был получен, когда в газовую смесь, предложенную Юри, включали сероводород (H^S), который поглощает более длинноволновое УФ-излучение, преобладающее на поверх ности Земли. Аминокислоты образовались и в том случае, когда источником энергии служили ударные волны, порож дающие короткие "всплески" высокой температуры и дав ления. Источники энергии такого типа, вероятно, возникали в первичном океане под действием волн, а в атмосфере создавались раскатами грома, электрическими разрядами и падающими метеоритами.
Важным дополнением к опытам Миллера явились экспе рименты Хуана Оро, Лесли Оргела и их сотрудников. Они показали, что четыре основания РНК (три из них встре
* Этими аминокислотами были глицин, аланин, валин, лейцин, изолейцин, пролин, аспарагиновая кислота, глутаминовая кислота, серии, треонин, аспарагин и глутамин.
чаются и в ДНК) образуются в последующих реакциях, в которые вступают первичные продукты реакций, вызванных искровым разрядом. Характерно, что в серии реакций, про исходящих в водном растворе, цианистый водород само конденсируется с образованием пуринового основания аде нина; другая разновидность реакций такого типа производит еще один пурин-гуанин. Пиримидиновые основания цито зин и урацил получаются в заметных количествах из циа ноацетилена в реакциях, которые также, возможно, про исходили на примитивной Земле. Однако до сих пор не было сообщений о получении в таком "предбиологическом син тезе" тимина, который входит в молекулу ДНК вместо урацила.
Давно известно.. что при определенных условиях фор мальдегид конденсируется в растворе, образуя различные сахара. Одним из продуктов этой реакции является ри боза-углеводный компонент РНК. Таким образом, как ви дим, большая часть молекулярных компонентов, форми рующих генетическую систему, может возникать в резуль тате ряда реакций, вполне вероятных в условиях прими тивной Земли.
Метеориты и облака межзвездной пыли
Недавние открытия, касающиеся химического состава метеоритов и межзвездных газово-пылевых облаков, сви детельствуют о том, что в нашей Галактике, как прежде, так и теперь, происходит в широких масштабах синтез био логически важных молекул. Метеориты, о которых пойдет речь, относятся к классу углистых хондритов и составляют около 5% от общего числа метеоритов, ежегодно падающих на поверхность Земли. Эти интересные объекты представ ляют собой не претерпевшие существенных изменений "об ломки" протосолнечной туманности. Они считаются первич ными, поскольку образовались одновременно с Солнечной системой, т. с. 4,5 млрд. лет назад. Метеориты слишком малы, чтобы иметь собственную атмосферу, но по отно сительному содержанию нелетучих элементов углистые хондриты весьма сходны с Солнцем. Их минеральный состав свидетельствует о том, что они сформировались при низкой температуре и действию высоких температур никогда не подвергались. Они содержат до 20% воды (связанной в виде гидратов минералов) и до 10% органического вещества. С прошлого столетия углистые хондриты привлекали к
себе внимание из-за их возможной биологической значи мости. Шведский химик Якоб Берцелиус, обнаружив в ме теорите Алэ (упавшем в 1806 г. на территорию Франции) органические вещества, поставил вопрос, свидетельствует ли их наличие в веществе метеорита о существовании внеземной жизни? Сам он полагал, что нет. Говорят, что у Пастера был зонд специальной конструкции для получения незагрязнен ных проб из внутренних частей метеорита Оргейль-другого известного хондрита, упавшего также во Франции в 1864 г. Произведя анализ проб на содержание в них микроорга низмов, Пастер получил отрицательные результаты.
До недавнего времени идентификации органических сое динений в углистых хондритах не придавалось большого значения, поскольку довольно трудно выявить различия между соединениями, входящими в состав самого метеорита, и загрязнениями, приобретенными при вхождении в атмос феру Земли, ударе о ее поверхность или внесенными впо следствии человеком при сборе образцов. Сейчас благодаря разработке сверхчувствительных аналитических методов и тщательным мерам предосторожности при сборе образцов отношение к этому вопросу в корне изменилось. Два недавно изученных хондрита-метеориты, упавшие в 1969 г. в районе Мерчисона (Австралия) и в 1950 г. в Мюррее (США) содержали ряд эндогенных аминокислот*.
Имеются убедительные свидетельства в пользу того, что в основном обнаруженные аминокислоты не есть загрязне ния. Так, многие из них относятся к аминокислотам нео бычного типа, которые не входят в состав земных ор ганизмов. Другое доказательство: некоторые широко рас пространенные аминокислоты, наличие которых обычно вы зывается загрязнением, в метеоритах не обнаруживаются. И наконец, аминокислоты в углистых хондритах встречаются в виде двух оптических изомеров, т. е. в разных пространствен ных формах, представляющих собой зеркальные отражения друг друга,-это характерно только для аминокислот, син тезированных небиологическим путем, но не тех, которые имеются в живых организмах (см. гл. 1). Набор аминокислот, обнаруженный в метеоритах, на
* В Мерчисонском метеорите их было идентифицировано около 50, причем восемь из них входят в состав белков: глицин, аланин, валин, лейцин, изолейцин. пролин, аспарагиновая кислота, глутами новая кислота. Были обнаружены также серии и треонин, но не исключено, что их наличие связано с загрязнением.
поминает аминокислоты, которые были получены в экспе риментах с искровыми разрядами. Наборы эти не идентич ны, но сходство настолько заметно, что позволяет пред положить, что механизмы синтеза в обоих случаях совпа дают. Другой возможный механизм синтеза аминокислот в метеоритах-реакция Фишера-Тропша, названная так в честь двух немецких химиков, которые разработали ката литический процесс получения бензина и других углево дородов из моноксида углерода (СО) и водорода. Оба этих газа широко распространены во Вселенной, как и необ ходимые для реакции катализаторы, например железо или силикаты. Пытаясь объяснить относительное содержание органических веществ в космическом пространстве на основе этой реакции, Эдвард Андерс и его коллеги из Чикагского университета установили, что при введении в реакционную смесь аммиака образуются аминокислоты, пурины и пи римидины. В этой реакции возникают те же самые про межуточные продукты-водород, цианид, альдегиды, циа ноацетилен,-которые получаются в реакциях, происходящих под действием электрических разрядов. По-видимому, при сутствие в метеоритах углеводородов, а также пуринов и пиримидинов легче объяснить реакцией синтеза Фишера Тропша, чем реакцией под действием электрического раз ряда. До сих пор, однако, ни в одном лабораторном опыте не удалось в точности воспроизвести набор веществ, об наруженных в метеоритах.
Содержание в метеоритах пуриновых и пиримидиновых оснований исследовано в меньшей степени, нежели наличие аминокислот. Тем не менее в Мерчисонском метеорите идентифицированы аденин, гуанин и урацил. Аденин и гуа нин найдены в концентрации приблизительно 1-10 частей на миллион, что близко к относительному содержанию ами нокислот. Концентрация урацила значительно ниже.
Недавно радиоастрономы открыли органические моле кулы в межзвездном пространстве, что. безусловно, попол нило наши знания об органической химии Вселенной. Ор ганические молекулы были обнаружены в гигантских га зово-пылевых облаках, которые находятся в тех областях космического пространства, где, как полагают, формируют ся новые звезды и планетные системы. К моменту написания этой книги помимо присутствующих там, как и ожидалось, молекул водорода было обнаружено около 60 соединений. Наиболее распространен моноксид углерода. Гораздо реже встречаются такие в равной степени интересные соединения,
как аммиак, цианистый водород, формальдегид, ацеталь дегид (СНОСНО), цианоацетилен и вода, т.е. молекулы, которые в лабораторных опытах по химической эволюции рассматриваются как предшественники аминокислот, пури нов, пиримидинов и углеводов.
Эти открытия свидетельствуют о том, что повсюду во Вселенной происходит в широких масштабах синтез ор ганического вещества и среди его конечных продуктов много биологически важных соединений, в том числе основных мономеров генетической системы и их предшественников. Не исключено даже (как предполагалось когда-то), что орга нические соединения-или, во всяком случае, часть их, которые легли в основу первых живых организмов, имели внеземное происхождение. Эти открытия позволили осо знать тот важный факт, что синтез биологических соеди нений не есть какой-то специфический химический процесс, возможный лишь в особо благоприятных условиях, харак терных для нашей планеты, но представляет собой явление космического масштаба. Это сразу наводит на мысль, что в любой области Вселенной жизнь должна быть основана на химии углерода, сходной с той, что наблюдается на Земле, хотя и не обязательно ей идентичной.
Синтез полимеров в предбиологических условиях
Образование основных мономеров белков и нуклеиновых кислот из газов протосолнечной туманности-это только первый шаг в создании генетической системы. Чтобы сфор мировать необходимые полимеры, мономеры должны затем соединиться в цепочки. Это трудная проблема, и, хотя на нее обращается пристальное внимание, пока еще не предложено надежных способов образования полимеров, несущих ге нетическую информацию, из мономеров, существовавших, вероятно, на примитивной Земле.
Синтез полимеров как в живых системах, так и в ла боратории включает в себя этап присоединения очередного мономера к концу растущей цепи. На каждом таком этапе потребляется энергия и происходит выделение молекулы воды. При синтезе белков из аминокислот связь, образую щаяся между мономерными звеньями полимера, называется пептидной. На рисунке показана схема образования пептид ной связи между двумя молекулами аминокислот.
Буквой R обозначена любая из 20 различных боковых цепей белковых аминокислот. Когда гретья молекула аминокис лоты прикрепляется к концу дипептида, образуется три пептид и т.д., пока не сформируется полипептид. Такие реакции обратимы: например, дипептид, показанный выше, может, присоединив молекулу воды, вновь превратиться в аминокислоты: этот процесс сопровождается выделением энергии. Белковая молекула представляет собой полипеп тидную цепь с определенной последовательностью амино кислот, которая придает ей особые свойства и является продуктом длительной эволюции. Каждая цепь состоит из сотен соединенных в одну последовательность аминокислот, а молекулы некоторых белков включают две и более по добных цепей. В результате взаимодействия между составля ющими их аминокислотами полипептиды формируют трех мерную структуру, которая и является активной формой белковой молекулы.
Полимеризация нуклеотидов, повторяющихся мономер ных звеньев нуклеиновых кислот, приводит к образованию полинуклеотидов, или нуклеиновых кислот. Образование динуклеотида из двух нуклеотидов выглядит следующим образом:
Здесь буквой В обозначено любое из четырех оснований ДНК или РНК; цепочки из атомов углерода (С) соответству ют пятиуглеродному сахару с -ОН-группой, связанной с третьим атомом углерода. (Истинные циклические обозначе
ния структуры углеводов приведены ранее на рис. 1.) Фос форная кислота присоединена сначала к пятому атому угле рода, а затем к углеродным атомам 5 и 3.
Для синтеза полимеров-как белков, так и нуклеиновых кислот-живые клетки вырабатывают богатые энергией мо лекулы, которые с помощью специфических белков-фермен тов обеспечивают энергией каждый этап присоединения мо номера. Помимо того что ферменты катализируют соответ ствующие реакции, они создают условия, необходимые для нормального ее протекания, устраняя все другие мешающие молекулы. Это существенно в случае, когда нужные для реакции молекулы составляют лишь небольшую часть из всех присутствующих в реакционной среде. Удаляются, на пример, молекулы воды, которые неизменно мешают проте канию реакции дегидратации.
Биологические полимеры могут быть синтезированы в лабораторных условиях и без участия ферментов. Синтез полипептидов и полинуклеотидов стал теперь обычным де лом. Белки, идентичные тем. которые синтезируются клет кой, могут быть получены и получаются в лаборатории. При этом используют безводные растворители, очищенные моно меры высокой концентрации, прибегают к разного рода ухищрениям для защиты реакционных групп и применяют реагенты, обеспечивающие реакции энергией, что в сущности соответствует функциям, выполняемым обычно фермента ми.
Попробуем сопоставить эти два высокосовершенных спо соба синтеза биополимеров - реализуемых в клетке и в лабо ратории-с условиями, по-видимому, существовавшими на примитивной Земле. Единственным растворителем тогда была вода, необходимые для синтеза мономеры составляли лишь часть общего количества растворенных органических и неорганических веществ, реагенты, имевшиеся в достаточном количестве, были, вероятно, довольно просты, и, разумеется, полностью отсутствовали ферменты. До сих пор не ясно, как при столь неблагоприятных условиях могли образоваться даже короткие полимеры. По всей видимости, первобытный бульон состоял из множесгва самых разнообразных органи ческих соединений. Чтобы произошел синтез полипептида или полинуклеотида, в бульоне должна была возникнуть особая группа соединений, которые сконцентрировались бы и соединились друг с другом. Представить себе этот первый этап. наверное, особенно трудно. Простой концентрации первичного бульона здесь явно недостаточно. Скорее всего,
этот бульон представлял собой сложную смесь многих со единений, которые должны были мешать образованию поли меров, прикрепляясь, например, к концу растущей цепи и останавливая тем самым ее рост.
Возможное решение этой проблемы связано с адсорбцией необходимых молекул на поверхности глинистых минералов. Этому механизму особое значение придавал покойный Дж.Д.Бернал (1901-1971), известный английский ученый кристаллограф. По сравнению с органическими соедине ниями глинистые минералы обладают большой адсорбцион ной способностью. Кроме того, они по-разному взаимодей ствуют с различными типами соединений, которые адсорби руют. Сам Бернал не был уверен в правильности своего предположения; это объяснялось тем, что кремний, основной составляющий элемент глин, не играет почти никакой роли в современной биохимии. Тем не менее адсорбция считается самым вероятным механизмом (хотя это и не доказано) предбиологических процессов разделения и концентрации.
Несмотря на сомнения Бернала, другие ученые без коле баний отвели глинистым минералам главную роль в проис хождении жизни. В самом деле, А. Г. Кернс-Смит, химик из университета в Глазго, предположил, что жизнь началась с кристаллов, образующих минералы. Обладая способностью воспроизводить себе подобных, неорганические кристаллы как бы демонстрируют тем самым зачаточные генетические свойства. У них обнаруживается также ограниченная способ ность к мутациям, которая проявляется в том, что в регуляр ном расположении атомов в кристалле могут возникать дефекты. Такие обладающие слоистой структурой минералы, как глины, склонны копировать дефекты одного слоя в структуре следующего, что можно рассматривать как свое образную генетическую память. Замечено, что дефекты в структуре кристаллических граней часто оказываются участ ками химической активности, включая катализ. Кернс-Смит высказал предположение, что такое простое органическое соединение, как формальдегид, синтез которого мог катали зироваться минералом, несущим подобный дефект, обладало способностью ускорять процесс воспроизведения дефектного кристалла и повышать точность копирования, в результате чего численность таких кристаллов по сравнению с другими типами быстро возрастала. С этого началась эволюция белково-нуклеиновой генетической системы, которая в даль нейшем отделилась от своего минерального предка. Однако
это весьма умозрительное предположение, не имеющее поч ти никаких экспериментальных подтверждений.
При всех немалых трудностях, связанных с пониманием условий возникновения первых биологически важных поли меров, следует иметь в виду некоторые "смягчающие обстоятельства". Вполне возможно, что для построения первой генетической системы сначала потребовались не большие, сложно организованные молекулы, которые мы находим в современных организмах, а только короткие полимеры. Первому организму не обязательно следовало быть высокоэффективным. Поскольку его жизнь протекала в "райских кущах" при отсутствии врагов и проблем, связан ных с добыванием пищи, ему достаточно было просто способности довольно быстро воспроизводить самого себя, чтобы опережать свою собственную химическую деграда цию. Кроме того, химические процессы, предшествовавшие появлению жизни, протекали широко как в пространстве, так и во времени. В течение сотен миллионов лет примитивная Земля представляла собой грандиозную лабораторию, где в силу гигантских масштабов происходящего могли реализо ваться даже такие процессы, которые кажутся нам малове роятными.
Такие соображения, конечно, не дают нам права утверж дать, что мы понимаем, как образовались первые биополи меры. Однако они позволяют предполагать, что проблема, по-видимому, не столь трудна, как считается. Последние результаты, полученные в лаборатории Оргела, показали возможность образования полинуклеотидов на исходной полинуклеотидной цепи способом, аналогичным естественной дупликации генов, но без участия фермента. Этого замеча тельного результата удалось достичь благодаря тому. что был найден метод введения в реакцию энергии: несмотря на отсутствие ферментов, этот метод сходен с естественным механизмом, с помощью которого клетка обеспечивает энер гией синтез полинуклеотидов. Эти данные делают более правдоподобным предположение, что аналогичный процесс мог играть важную роль на ранних стадиях эволюции генетической системы. Кроме того, недавно было доказано, что некоторые виды РНК обладают каталитическими свой ствами, которые обычно приписывались только белкам. Все эти результаты позволяют предположить, что примитивная генетическая система могла быть построена без белков лишь из одной РНК. Если это было действительно так, то
загадки, связанные с происхождением жизни, значительно упрощаются.
Проблемы, касающиеся появления первой молекулы нук леиновой кислоты, генетического кода и всего механизма переноса информации от нуклеиновых кислот к белкам, по-прежнему остаются нерешенными, однако и здесь заметен некоторый прогресс, насколько это позволяет современный уровень знаний. Поэтому, заканчивая наш краткий обзор современных представлений о природе и происхождении жизни на пашей планете, мы обходимся без претенциозных рассуждений о возникновении "первичной протоплазменной первобытно-атомпой глобулы". Нет сомнений, что движение вперед, к решению проблемы происхождения жизни, будет продолжаться. Между тем изложенные нами принципы име ют настолько общий характер, что вполне применимы к проблемам возникновения жизни в любой области Вселен ной. Теперь мы обратимся к обсуждению вопросов о жизни на других планетах Солнечной системы - этот предмет и составляет содержание остальных глав нашей книги.
Глава 4
Есть ли жизнь на других планетах?
Тем не менее большинство планет, несомнен но, обитаемы, а необитаемые со временем будут населены.
Таким образом, я могу все изложенное выше выразить в следующем общем виде: вещест во, из которого состоят обитатели различных планет, в том числе животные и растения из них, вообще должно быть тем легче и тоньше . .. чем дальше планеты отстоят от Солнца. Совершенство мыслящих существ, быстрота их представлений. . . становятся тем прекрас нее и совершеннее, чем дальше от Солнца находится небесное тело, на котором они обитают.
Так как степень вероятия этой зависимости настолько велика, что она близка к полной достоверности, то перед нами открывается простор для любопытных предположений, основанных на сравнении свойств обитателей различных планет.
Иммануил Кант. "Всеобщая естественная ис тория и теория неба" [II]
В XVII-XVIII вв. люди были убеждены, что планеты Солнечной системы обитаемы. Христиан Гюйгенс (1629 1695), которого по праву можно считать одним из основате лей современной астрономии, полагал, что на Меркурии, Марсе, Юпитере и Сатурне есть поля, "согреваемые добрым теплом Солнца и орошаемые плодотворными росами и ливнями". В полях, думал Гюйгенс, обитают растения и животные. В противном случае эти планеты "были бы хуже нашей Земли", что он считал абсолютно неприемлемым. Такой довод, столь странно звучащий в наши дни, основы вался на развитых Коперником представлениях об окружаю щем мире, согласно которым Земля не занимает особого места среди планет, и Гюйгенс разделял эти взгляды. По той же причине он полагал, что на планетах должны жить разумные существа, "возможно, не в точности такие люди, как мы сами, но живые существа или какие-то иные создания, наделенные разумом". Подобное заключение казалось Гюй генсу настолько бесспорным, что он писал: "Если я ошиба
юсь в этом, то уже и не знаю, когда могу доверять своему разуму, и мне остается довольствоваться ролью жалкого судьи при истинной оценке вещей".
Хотя Гюйгенс и заблуждался в данном вопросе (оказа лось, что другие планеты все же намного "хуже" Земли, по крайней мере как место существования жизни), его репутация ученого от этого не пострадала. Его гений был всеобъемлю щим, а открытия в области математики, механики, астроно мии и оптики заложили основы современной науки. Для нас же урок заключается в том, что, когда речь идет о проблеме существования внеземной жизни, даже самые талантливые ученые могут идти по ложному пути.