При изучении влияния тканевых препаратов и биостимуляторов на морфологические показатели крови, многие авторы отмечают, что у животных наблюдается увеличение количества эритроцитов, гемоглобина и лейкоцитов (П.Ф. Симбирцев, 1962; В.В. Ковальский, 1962; В.И. Божко 1964; И.И. Заболожный, 1964; A.A. Ивановский, 1998; A.B. Коробко, 2000).
   На увеличение содержания общего белка в крови животных, под влиянием биостимуляторов указывают исследования С.Н. Тепловой (1969), Э.Р. Румянцевой (1999) и вместе с тем некоторое уменьшение его установлено И.П. Кондрахиным (2000).
   В опытах И.М. Голосова (1964) и установлено увеличение гамма-глобулинов за счет альбуминовой фракции, а В.В. Ковальский (1962) указывает их уменьшение при одновременном увеличении альбуминов. Различное действие биостимуляторов отмечено и на содержание кальция в крови, так. В.Н. Деряженцев (1997) указывает на его увеличение, а H.H. Ярошенко (1964) на его уменьшение, но при одновременном увеличении содержания фосфора.
   Тканевая подготовка оказывает влияние на состояние холинэстеразы крови животных. Оно выражается в снижении величины энергии активации ферментной системы. Такое состояние фермента, обеспечивающего течение биохимических реакций с меньшей затратой энергии, является благоприятным условием для организма. То обстоятельство, что тканевые препараты улучшают энергетические возможности организма (затраты энергии при этом снижаются), увеличиваются его потенциальные возможности.
   В.В. Ковальский и Ф.Б. Левин (1962) изучали изменение активности ферментов крови под действием тканевых препаратов. На основании проведенных опытов они пришли к выводу, что под влиянием тканевых препаратов увеличивается активность ферментов крови в таких направлениях, которые создают условия для интенсификации обменных процессов в организме. Они считают, что наблюдаемые изменения деятельности ферментов обусловлены лабильными изменениями структуры белковых носителей. По данным И.И, Заболожного (1964) и В.И. Божко (1964) установлено нарастание в периферической крови количества гранулофилоцитов, И.В. Триере (1964), отмечают увеличение активности холинэстеразы.
   Показательно влияние биостимуляторов на естественную резистентность.
   П.А. Федько (1964), И.К. Тутов (1997) отмечают, что тканевые препараты стимулируют иммунобиологическую реактивность организма, что выражается в повышении фагоцитоза. При применении низкомолекулярных органных белков – цитомединов из легочной ткани здорового крупного рогатого скота у подопытных животных повышалась фагоцитарная активность нейтрофилов и лизоцимная активность сыворотки крови (И.П. Кондрахин 2000).
   Е.С. Шулюмова (1962) получили положительный эффект при применении низкомолекулярных органных белков для лечении бронхопневмонии телят, И.С. Нагорный (1962) отметил не только их эффективность при лечении гинекологических заболеваний, но и повышение плодовитости у свиноматок.
   Об уменьшении количества больных животных и резком сокращении падежа указывается в работах Г.В. Макарова, (1973); М.И.Рабиновича, (1970) и др.
   Дальнейшими экспериментами было доказано наличие биогенных стимуляторов не только в тканях животного происхождения, но и в лиманной грязи, сапропеле, черноземе и растительных тканях (М.Г. Саморуков, 1985; В.К. Пестис, 1987; A.A. Алиханов, 1998).
   Отмечено стимулирующее действие на организм цыплят, поросят и телят тканевого препарата “Эраконд” (В.Н. Байматов, 1999; Н.К. Михайлов, 1999; Л.В. Миниярова, 2000; В.А. Казадаев, 2001).
   Оригинальный тканевой препарат получен Е.П. Дементьевым и Р.Г. Фазлаевым (1999) из селезенки крупного рогатого скота. Производственные его испытания показали высокую эффективность при выращивании поросят и телят.
   По данным P.P. Гизатуллина (2001) прирост живой массы телят при применении тканевого препарата “Биостим” увеличился на 12,82 %, одновременно установлено повышение лизоцимной активности в 1,37, бактерицидной – 1,12 и комплементарной активности сыворотки крови – в 1,84 раза.
   Несомненно, что биогенные стимуляторы, введенные путем подсадок кусочков тканей или инъекции взвесей и экстрактов, приготовленных из консервированных тканей, могут стимулировать животный организм, ослабленный болезнью, но нельзя требовать, чтобы они вдохнули жизнь в организм, находящийся на грани гибели. Биогенные стимуляторы действуют путем мобилизации естественных защитных сил организма, поэтому лечение биогенными стимуляторами должно сочетаться с полноценным кормлением и созданием нормальных условий содержания заболевших животных (И.А. Калашник. 1960, В.М. Ковбасенко 1971).

4. Иммунная система птиц и коррекция

   Птицеводство является одной из наиболее перспективных отраслей в сельском хозяйстве, так как в отличие от других отраслей, не имеет сезонности и обеспечивает продовольственный рынок своей продукцией в течение года (И.А. Болотников, 1999; В.М. Кравченко, 2000). Но кроме явных преимуществ промышленного содержания птицы имеется целый ряд проблем, обусловленных как биологией птицы, так и влиянием различных стрессовых факторов.
   Антибиотики (левомицетин, тетрациклин, аминогликозиды), применяемые на молодняке птицы в терапевтических дозах оказывают отрицательное влияние на формирование иммунитета после вакцинаций. Кроме того, указанные препараты подавляют нормальную микрофлору кишечника, которая, продуцируя различные биологически активные вещества, участвует в становлении и регуляции иммунной системы. Ряд вирусов, бактериальные инфекции также снижают иммунный статус или вызывает иммуносупрессию.
   В промышленном птицеводстве иммунная система птиц подвергается воздействию многочисленных факторов. В условиях этого регистрируется целый комплекс заболеваний, которые протекают на фоне проведения плановых вакцинаций (Л.С. Колабская, Т.И. Горецкая, Т.Б. Кузина, 1991).
   Под естественной резистентностью понимают способность организма противостоять неблагоприятному воздействию факторов внешней среды. Состояние естественной резистентности определяется неспецифическими защитными факторами организма, связанными с деятельностью гормональной, вегетативной и центральной нервной систем, с функцией биологических механизмов: клеточных, гуморальных, секреторных систем, обладающих многогранным воздействием и зависящих от породных, возрастных и индивидуальных особенностей организма, а также от условий кормления и технологии содержания птицы.
   Естественная резистентность и специфический иммунитет – это звенья одной цепи механизмов защитных систем организма. Характер неспецифической защиты влияет на механизмы специфического иммунитета.
   Иммунологическую функцию выполняет специализированная система клеток и тканей органов. Иммунологическая система имеет три особенности: генерализуется по всему телу, её клетки постоянно рециркулируют через кровоток, она обладает способностью вырабатывать специфические молекулы антител к различным антигенам. Совокупность лимфоидных органов и тканей (тимуса, селезенки, групповых лимфатических фолликулов, клоакальной бурсы, клеток костного мозга и лимфоцитов периферической крови) составляют единую систему иммунитета (G. Astaldi, 1971; D. Bellamy, 1982; М.А. Qureshi, 1998).
   Иммунная система защищает организм от микроорганизмов, возбудителей инфекционных болезней, злокачественных клеток, участвует в отторжении чужеродных клеток и тканей, обеспечивает корректировку и нормальное функционирование кроветворных и других систем, следит за нормальным внутриутробным развитием плода, защищает его, удаляя и утилизируя отмирающие клетки и ткани.
   Тканевые макрофаги защищают все ткани организма. Макрофаги обычно представлены гранулоцитами, реже эозинофилами. Фундаментальными исследованиями доказано, что иммуноглобулины, лизоцим, комплемент, бета-лизин, гликопротеиды, пропердин, фагоцитарная и бактерицидная активность лейкоцитов являются факторами защиты организма. Наиболее значительным иммунологическим барьером всей лимфоидной системы микроорганизма является субэпителиальная ткань дыхательного и пищеварительного трактов (макро– и микрофаги).
   Важную роль в устойчивости организма птиц к инфекции играют макрофаги. Они выступают как первичный фактор неспецифической защиты благодаря способности к фагоцитозу микроорганизмов, антигенов и иммунных комплексов (B.C. Бузлама, 1978; Е.К. Олейник, 1982; Я.Е. Коляков, 1986; С. Kirk, 1998). После захвата чужеродного агента макрофагом происходит его утилизация (ферментативное переваривание с участием комплекса ферментов и перекиси водорода).
   Специфическое лечение и профилактика, основанное на вакцинации, действенны при ограниченном числе инфекций. При таких инфекциях, как кишечные и грипп, эффективность вакцинации остается недостаточной. Высокий процент смешанных инфекций, полиэтиологичность септицимий, вызываемых грамотрицательными бактериями, делает создание специфических препаратов для иммунизации против каждого из возможных возбудителей нереальным. Введение сывороток или иммунных лимфоцитов оказывается эффективным только на ранних этапах инфекционного процесса. Кроме того, сами вакцины в определенные фазы иммунизации способны подавлять сопротивляемость организма к инфекции. Вместе с тем, в связи с быстрым увеличением числа возбудителей, обладающих множественной устойчивостью к антимикробным средствам, а также с появлением мутировавших штаммов вирусов, борьба с ними становится все более сложной (С.И. Теплова, 1969; С.И. Плягценков 1979; А. Роит, 1991).
   Течение инфекционного процесса осложняется, а трудности терапии существенно усугубляются при поражении иммунной системы, механизмов неспецифической защиты и стрессовых факторах, действующих постоянно на организм животных и птиц, находящихся в условиях поточно-конвейерной промышленной технологии их выращивания. В современных условиях промышленного животноводства иммунологическая недостаточность возникает на фоне несбалансированности рационов по питательным веществам, энергии, витаминам микро– и макроэлементам, некачественного кормления, присутствия в кормах простейших грибов, бактерий и их токсинов, нарушения параметров микроклимата в помещениях, где содержатся животные (Д.Н. Лазарева, 1995; Е.К. Алехин, 1993).
   В настоящее время особый интерес представляют исследования влияния нервной системы и ее структур на процессы иммунитета. Основные выводы этих исследований сводятся к признанию в целостном организме регулирующего воздействия нервных и нервноэдокринных влияний на интенсивность иммунного ответа (В.В. Абрамов, 1998).
   Процессы циркуляции, пролиферации и дифференцировки должны находиться под нейроэндокринным контролем. В противном случае воспалительные процессы и иммунные ответы не будут адекватны повреждающим агентам, следствием чего может быть развитие аллергических и аутоиммунных заболеваний, снижение противоопухолевого и противоинфекционного иммунитета (Е.А. Корнеева, 1978; Б.С. Утешев, 1981).
   В связи со становлением концепции нейрогуморального обеспечения иммунного гомеостаза, появлением препаратов с высокой избирательностью воздействия на центральные и периферические нейрохимические структуры, интерес исследователей к проблеме нейротропных влияний на иммунитет значительно возрос. Проводятся работы, раскрывающие механизм участия симпатической системы в регуляции иммуноаллергических процессов.
   Имеются предположения о возможности восприятия афферентным нейроном информации (в том числе и специфической) в процессе развертывания иммунной реакции в организме (Е.Я. Коляков, 1986).
   Существуют два предполагаемых пути: непосредственное воздействие чужеродных антигенов на нервные окончания и опосредованное – через активированные иммунокомпетентные клетки (Е.А. Корнеева, 1978). Второе – в процессе стимуляции клеток различными химическими веществами в смешанной культуре лимфоцитов происходит потеря частого отрицательного заряда на поверхности клеточных элементов (Т. Challenger, 1954).
   Изменение мембранного потенциала имеет место при стимуляции полиморфноядерных лейкоцитов в культуре и на разных популяциях иммунокомпетентных клеток в процессе их активации антигенами (В. Seligman, 1981; R. Niemzow, 1981; J.G.Monroe, J.C. Cambier, 1982; R.Y. Tsien, 1982).
   Среди факторов, влияющих на иммунитет, отмечают: генетические (иммунологические дефекты), физические (ионизирующая радиация, тепло, холод, высокая относительная влажность), химические, хирургические (удаление лимфоидной ткани), микробную вирусную инфекцию, воздействие микотоксинов и других токсических субстанций, включая гербициды и инсектициды, недостаточность корма, возраст птицы и социальный стресс.
   Большинство иммунодепрессивных болезней связано с определенными инфекциями, а также с афлатоксинами. Микроорганизмы, вызывающие иммунодепрессию можно разделить следующим образом: вирусы, выбирающие клетками-мишенями структуры иммунной системы (болезнь Марека, лимфоидный лейкоз, болезнь Гамборо); вирусы и бактерии, при которых ткани иммунной системы не являются клетками-мишенями, но могут быть пораженными, что и вызывает иммунодепрессию – вирусы болезни Ньюкасла, инфекционный бронхит, инфекционный ларинготрахеит, геморрагический энтерит (R.F. Gordon, 1982).
   На счет опасности афлотоксинов существует и альтернативная точка зрения. Смертельная концентрация афлотоксинов B₁ и В₂ по данным (J.J. Giambrone, 1985) не влияет отрицательно на формирование иммунитета против болезни Ньюкасла или гуморальный иммунитет в целом, вопреки распространенному мнению.
   Была установлена роль микроорганизмов, пыли и аммиака на формирование иммунного ответа против болезней. Оказалось, что высокие концентрации этих субстанций отрицательно сказываются на состоянии иммунной системы птиц, а при сильном нарушении зоогигиенических норм по этим показателям наблюдалось значительное снижение антителообразования (C.A. Воробьев, И.Е. Филин, Л.А. Ладыгина и др. 1985).
   Отрицательное действие на организм также оказывает резкая смена климатических условий. У птиц, содержащихся в условиях низких или высоких температур, не происходит формирование достаточного иммунного ответа против различных антигенов (Я.Е. Коляков, 1975; В.С. Бузлама, 1978; Л.С. Колабская, 1987; F.M. Bruent, 1962; P.J. Bjorkman, 1987).
   Проведенные исследования (Б.Ф. Бессаров, 1996), выявили прямую зависимость между снижением уровня резистентности и увеличением отхода птицы от заболеваний и поствакцинальных осложнений. При выборе способа борьбы с какой-либо инфекционной болезнью птицы бактериальной этиологии специалисты основное внимание уделяют патогенным микроорганизмами – возбудителям заболевания и нередко забывают о так называемой сопутствующей микрофлоре ЖКТ. Но в ряде случаев именно эта обычная микрофлора играет большую роль в возникновении или развитии болезни, способствуя либо препятствуя её проявлению (С.Н.Теплова, 1969; Б.С. Утешев, 1981; Н.Д. Придыбайло, 1990; В.Г. Ярцев, 1992; Г.А. Горошева, 2000; W.F. Hughes, 1979; I.D. Aitken,1982; R.H. Meloen, 1995).
   Поэтому в настоящее время одним из перспективных направлений в области профилактики болезней птицы, вызываемых условно-патогенной микрофлорой, стало применение биостимуляторов. При благоприятных условиях микроклимата количество микроорганизмов и их состав находятся в состоянии динамичного равновесия. Птица остается здоровой. Однако поддержание равновесного состояния небезразлично для организма птицы с энергетической точки зрения.
   
Конец бесплатного ознакомительного фрагмента