Страница:
Александр Архипович Ивин
Логика
Предисловие
Логика — одна из самых старых наук. Её богатая событиями история началась ещё в Древней Греции и насчитывает две с половиной тысячи лет. В конце прошлого — начале нынешнего века в логике произошла научная революция, в результате которой в корне изменились стиль рассуждений, методы и наука как бы обрела второе дыхание. Теперь логика — одна из наиболее динамичных наук, образец строгости и точности даже для математических теорий.
Говорить о логике и легко, и одновременно сложно. Легко потому, что её законы лежат в основе нашего мышления. Интуитивно они известны каждому. Всякое движение мысли, постигающей истину и добро, опирается на эти законы и без них невозможно. В этом смысле логика общеизвестна.
Один из героев комедии Мольера только случайно обнаружил, что он всю жизнь говорил прозой. Так и с усвоенной нами стихийно логикой. Можно постоянно применять её законы — и притом весьма умело — и вместе с тем не иметь ясного представления ни об одном из них.
Однако, стихийно сложившиеся навыки логически совершённого мышления и научная теория такого мышления совсем разные вещи. Логическая теория своеобразна. Она высказывает об обычном — о человеческом мышлении — то, что кажется на первый взгляд необычным и без необходимости усложнённым. К тому же основное её содержание формулируется на особом, созданном специально для этих целей искусственном языке. Отсюда сложность первого знакомства с логикой: на привычное и устоявшееся надо взглянуть новыми глазами и увидеть глубину за тем, что представлялось само собою разумеющимся.
Подобно тому, как умение говорить существовало ещё задолго до грамматики, так и искусство правильно мыслить существовало до возникновения науки логики. Подавляющее большинство людей и сейчас размышляют и рассуждают, не обращаясь за помощью к особой науке и не рассчитывая на эту помощь. Некоторые склонны даже считать собственное мышление естественным процессом, требующим анализа и контроля не больше, чем, скажем, дыхание или ходьба.
Разумеется, это заблуждение. Знакомство уже с первыми разделами книги покажет необоснованность такого чрезмерного оптимизма в отношении наших стихийно сложившихся навыков правильного мышления.
Настоящий учебник рассчитан на представителей гуманитарных специальностей. Символические средства, широко используемые современной логикой, сведены к минимуму. Особое внимание уделяется естественному языку и тем логическим ошибкам, которые возможны при его употреблении. Гуманитарные науки отличаются от естественных, в частности, тем, что устанавливают эксплицитные оценки и нормы. В связи с этим в книге подробно обсуждаются проблемы, связанные с неописательными употреблениями языка и с аргументацией в поддержку оценок и норм. Понятие понимания — одно из центральных в методологии гуманитарного познания. В главе, посвящённой пониманию, анализируется логическая структура этой операции и три основных области её приложения: понимание поведения, понимание языковых выражений и понимание природы. При описании способов аргументации особое внимание уделяется теоретическим и контекстуальным аргументам, находящим широкое применение в гуманитарных науках.
Лет триста назад авторы книг по логике считали своим долгом предостеречь читателя от торопливости при чтении: «В водах логики не следует плыть с полными парусами». С тех пор логика сделала гигантский шаг вперёд. Её содержание расширилось и углубилось. И старый этот совет кажется теперь особенно полезным.
Говорить о логике и легко, и одновременно сложно. Легко потому, что её законы лежат в основе нашего мышления. Интуитивно они известны каждому. Всякое движение мысли, постигающей истину и добро, опирается на эти законы и без них невозможно. В этом смысле логика общеизвестна.
Один из героев комедии Мольера только случайно обнаружил, что он всю жизнь говорил прозой. Так и с усвоенной нами стихийно логикой. Можно постоянно применять её законы — и притом весьма умело — и вместе с тем не иметь ясного представления ни об одном из них.
Однако, стихийно сложившиеся навыки логически совершённого мышления и научная теория такого мышления совсем разные вещи. Логическая теория своеобразна. Она высказывает об обычном — о человеческом мышлении — то, что кажется на первый взгляд необычным и без необходимости усложнённым. К тому же основное её содержание формулируется на особом, созданном специально для этих целей искусственном языке. Отсюда сложность первого знакомства с логикой: на привычное и устоявшееся надо взглянуть новыми глазами и увидеть глубину за тем, что представлялось само собою разумеющимся.
Подобно тому, как умение говорить существовало ещё задолго до грамматики, так и искусство правильно мыслить существовало до возникновения науки логики. Подавляющее большинство людей и сейчас размышляют и рассуждают, не обращаясь за помощью к особой науке и не рассчитывая на эту помощь. Некоторые склонны даже считать собственное мышление естественным процессом, требующим анализа и контроля не больше, чем, скажем, дыхание или ходьба.
Разумеется, это заблуждение. Знакомство уже с первыми разделами книги покажет необоснованность такого чрезмерного оптимизма в отношении наших стихийно сложившихся навыков правильного мышления.
Настоящий учебник рассчитан на представителей гуманитарных специальностей. Символические средства, широко используемые современной логикой, сведены к минимуму. Особое внимание уделяется естественному языку и тем логическим ошибкам, которые возможны при его употреблении. Гуманитарные науки отличаются от естественных, в частности, тем, что устанавливают эксплицитные оценки и нормы. В связи с этим в книге подробно обсуждаются проблемы, связанные с неописательными употреблениями языка и с аргументацией в поддержку оценок и норм. Понятие понимания — одно из центральных в методологии гуманитарного познания. В главе, посвящённой пониманию, анализируется логическая структура этой операции и три основных области её приложения: понимание поведения, понимание языковых выражений и понимание природы. При описании способов аргументации особое внимание уделяется теоретическим и контекстуальным аргументам, находящим широкое применение в гуманитарных науках.
Лет триста назад авторы книг по логике считали своим долгом предостеречь читателя от торопливости при чтении: «В водах логики не следует плыть с полными парусами». С тех пор логика сделала гигантский шаг вперёд. Её содержание расширилось и углубилось. И старый этот совет кажется теперь особенно полезным.
Глава 1
ЗАДАЧИ ЛОГИКИ
1. ПРАВИЛЬНОЕ РАССУЖДЕНИЕ
Слово «логика» употребляется довольно часто, но в разных значениях.
Нередко говорят о логике событий, логике характера и т.п. В этих случаях имеется в виду определённая последовательность и взаимозависимость событий или поступков, наличие в них некоторой общей линии.
Слово «логика» употребляется также в связи с процессами мышления. Так, мы говорим о логичном и нелогичном мышлении, имея в виду присутствие или отсутствие таких его свойств, как последовательность, доказательность и т.п.
В третьем смысле «логика» является именем особой науки о мышлении, называемой также формальной логикой.
Трудно найти более многогранное и сложное явление, чем человеческое мышление. Оно изучается многими науками, и логика — одна из них. Её предмет — логические законы и логические операции мышления. Принципы, устанавливаемые логикой, необходимы, как и все научные законы. Мы можем не осознавать их, но вынуждены следовать им.
Формальная логика — наука о законах и операциях правильного мышления.
Основной задачей логики является отделение правильных способов рассуждения (выводов, умозаключений) от неправильных.
Правильные выводы называются также обоснованными, последовательными или логичными.
Рассуждение представляет собой определённую, внутренне обусловленную связь утверждений. От нашей воли зависит, на чем остановить свою мысль. В любое время мы можем прервать начатое рассуждение и перейти к другой теме. Но если мы решим провести его до конца, то сразу же попадём в сети необходимости, стоящей выше нашей воли и желаний. Согласившись с одними утверждениями, мы вынуждены принять и те, что из них следуют, независимо от того, нравятся они нам или нет, способствуют нашим целям или, напротив, препятствуют им. Допустив одно, мы тем самым автоматически лишаем себя возможности утверждать другое, несовместимое с уже допущенным.
Если мы убеждены, что все жидкости упруги, мы должны признать также, что вещества, не являющиеся упругими, не относятся к жидкостям. Убедив себя, что каждое водоплавающее существо обязательно дышит жабрами, мы исключаем из разряда водоплавающих дышащих лёгкими — китов и дельфинов.
В чем источник этой логической необходимости? Что именно следует считать несовместимым с принятыми уже утверждениями и что должно приниматься вместе с ними? Из размышления над этими вопросами и выросла особая наука о мышлении — логика. Отвечая на вопрос «что из чего следует?», она отделяет правильные способы рассуждения от неправильных и систематизирует первые.
Правильным является следующий вывод, использовавшийся в качестве стандартного примера ещё в Древней Греции:
Все люди смертны; Сократ — человек; следовательно, Сократ смертен.
Первые два высказывания — это посылки вывода, третье — его заключение.
Правильным будет, очевидно, и такое рассуждение:
Всякий металл электропроводен; натрий — металл; значит, натрий электропроводен.
Сразу же можно заметить сходство данных двух выводов, но не в содержании входящих в них утверждений, а в характере связи этих утверждений между собою. Можно даже почувствовать, что с точки зрения правильности эти выводы совершенно идентичны: если правильным является один из них, то таким же будет и другой, и притом в силу тех же самых оснований.
Ещё один пример правильного вывода, связанного со знаменитым опытом Фуко:
Если Земля вращается вокруг своей оси, маятники, качающиеся на её поверхности, постепенно изменяют плоскость своих колебаний; Земля вращается вокруг своей оси; значит, маятники на её поверхности постепенно изменяют плоскость своих колебаний.
Как протекает это рассуждение о Земле и маятниках? Сначала устанавливается условная связь между вращением Земли и изменением плоскости колебания маятников. Затем констатируется, что Земля действительно вращается. Из этого выводится, что маятники в самом деле постепенно изменяют плоскость своих колебаний. Это заключение вытекает с какой-то принудительной силой. Оно как бы навязывается всем, кто принял посылки рассуждения. Именно поэтому можно было бы сказать также, что маятники должны изменять плоскость своих колебаний, с необходимостью делают это.
Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе.
Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме — о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным.
Чтобы убедиться в этом, достаточно подставить в схему вместо слов «первое» и «второе» два утверждения с любым конкретным содержанием.
Изменим несколько данную схему и будем рассуждать так: если есть первое, то имеется второе; имеет место второе; значит, есть и первое.
Например:
Если идёт дождь, земля мокрая; земля мокрая; следовательно, идёт дождь.
Этот вывод, очевидно, неправилен. Верно, что всякий раз, когда идёт дождь, земля мокрая. Но из этого условного утверждения и того факта, что земля мокрая, вовсе не вытекает, что идёт дождь. Земля может оказаться мокрой и без дождя, её можно намочить, скажем, из шланга, она может быть мокрой после таяния снега и т.д.
Ещё один пример рассуждения по последней схеме подтвердит, что она способна приводить к ложным заключениям:
Если у человека повышенная температура — он болен; человек болен; значит, у него повышенная температура.
Однако такое заключение не вытекает с необходимостью: люди с повышенной температурой действительно больны, но далеко не у всех больных такая температура.
Отличительная особенность правильного вывода заключается в том, что от истинных посылок он всегда ведёт к истинному заключению.
Этим объясняется тот огромный интерес, который логика проявляет к правильным выводам. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью «чистого» рассуждения, без всякого обращения к опыту, интуиции и т.п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно даёт стопроцентную гарантию успеха, а не просто обеспечивает ту или иную — быть может, и высокую — вероятность истинного заключения.
Если посылки, или хотя бы одна из них, являются ложными, правильное рассуждение может давать в итоге как истину, так и ложь. Неправильные рассуждения могут от истинных посылок вести как к истинным, так и к ложным заключениям. Никакой определённости здесь нет. С логической необходимостью заключение вытекает только в случае правильных, обоснованных выводов.
Логика занимается, конечно, не только связями утверждений в правильных выводах, но и другими проблемами. В числе последних — смысл и значение выражений языка, различные отношения между понятиями, определение понятий, вероятностные и статистические рассуждения, софизмы и парадоксы и др. Но главная и доминирующая тема формальной логики — это, несомненно, анализ правильности рассуждения, исследование «принудительной силы речей», как говорил основатель этой науки — древнегреческий философ и логик Аристотель.
Нередко говорят о логике событий, логике характера и т.п. В этих случаях имеется в виду определённая последовательность и взаимозависимость событий или поступков, наличие в них некоторой общей линии.
Слово «логика» употребляется также в связи с процессами мышления. Так, мы говорим о логичном и нелогичном мышлении, имея в виду присутствие или отсутствие таких его свойств, как последовательность, доказательность и т.п.
В третьем смысле «логика» является именем особой науки о мышлении, называемой также формальной логикой.
Трудно найти более многогранное и сложное явление, чем человеческое мышление. Оно изучается многими науками, и логика — одна из них. Её предмет — логические законы и логические операции мышления. Принципы, устанавливаемые логикой, необходимы, как и все научные законы. Мы можем не осознавать их, но вынуждены следовать им.
Формальная логика — наука о законах и операциях правильного мышления.
Основной задачей логики является отделение правильных способов рассуждения (выводов, умозаключений) от неправильных.
Правильные выводы называются также обоснованными, последовательными или логичными.
Рассуждение представляет собой определённую, внутренне обусловленную связь утверждений. От нашей воли зависит, на чем остановить свою мысль. В любое время мы можем прервать начатое рассуждение и перейти к другой теме. Но если мы решим провести его до конца, то сразу же попадём в сети необходимости, стоящей выше нашей воли и желаний. Согласившись с одними утверждениями, мы вынуждены принять и те, что из них следуют, независимо от того, нравятся они нам или нет, способствуют нашим целям или, напротив, препятствуют им. Допустив одно, мы тем самым автоматически лишаем себя возможности утверждать другое, несовместимое с уже допущенным.
Если мы убеждены, что все жидкости упруги, мы должны признать также, что вещества, не являющиеся упругими, не относятся к жидкостям. Убедив себя, что каждое водоплавающее существо обязательно дышит жабрами, мы исключаем из разряда водоплавающих дышащих лёгкими — китов и дельфинов.
В чем источник этой логической необходимости? Что именно следует считать несовместимым с принятыми уже утверждениями и что должно приниматься вместе с ними? Из размышления над этими вопросами и выросла особая наука о мышлении — логика. Отвечая на вопрос «что из чего следует?», она отделяет правильные способы рассуждения от неправильных и систематизирует первые.
Правильным является следующий вывод, использовавшийся в качестве стандартного примера ещё в Древней Греции:
Все люди смертны; Сократ — человек; следовательно, Сократ смертен.
Первые два высказывания — это посылки вывода, третье — его заключение.
Правильным будет, очевидно, и такое рассуждение:
Всякий металл электропроводен; натрий — металл; значит, натрий электропроводен.
Сразу же можно заметить сходство данных двух выводов, но не в содержании входящих в них утверждений, а в характере связи этих утверждений между собою. Можно даже почувствовать, что с точки зрения правильности эти выводы совершенно идентичны: если правильным является один из них, то таким же будет и другой, и притом в силу тех же самых оснований.
Ещё один пример правильного вывода, связанного со знаменитым опытом Фуко:
Если Земля вращается вокруг своей оси, маятники, качающиеся на её поверхности, постепенно изменяют плоскость своих колебаний; Земля вращается вокруг своей оси; значит, маятники на её поверхности постепенно изменяют плоскость своих колебаний.
Как протекает это рассуждение о Земле и маятниках? Сначала устанавливается условная связь между вращением Земли и изменением плоскости колебания маятников. Затем констатируется, что Земля действительно вращается. Из этого выводится, что маятники в самом деле постепенно изменяют плоскость своих колебаний. Это заключение вытекает с какой-то принудительной силой. Оно как бы навязывается всем, кто принял посылки рассуждения. Именно поэтому можно было бы сказать также, что маятники должны изменять плоскость своих колебаний, с необходимостью делают это.
Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе.
Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме — о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным.
Чтобы убедиться в этом, достаточно подставить в схему вместо слов «первое» и «второе» два утверждения с любым конкретным содержанием.
Изменим несколько данную схему и будем рассуждать так: если есть первое, то имеется второе; имеет место второе; значит, есть и первое.
Например:
Если идёт дождь, земля мокрая; земля мокрая; следовательно, идёт дождь.
Этот вывод, очевидно, неправилен. Верно, что всякий раз, когда идёт дождь, земля мокрая. Но из этого условного утверждения и того факта, что земля мокрая, вовсе не вытекает, что идёт дождь. Земля может оказаться мокрой и без дождя, её можно намочить, скажем, из шланга, она может быть мокрой после таяния снега и т.д.
Ещё один пример рассуждения по последней схеме подтвердит, что она способна приводить к ложным заключениям:
Если у человека повышенная температура — он болен; человек болен; значит, у него повышенная температура.
Однако такое заключение не вытекает с необходимостью: люди с повышенной температурой действительно больны, но далеко не у всех больных такая температура.
Отличительная особенность правильного вывода заключается в том, что от истинных посылок он всегда ведёт к истинному заключению.
Этим объясняется тот огромный интерес, который логика проявляет к правильным выводам. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью «чистого» рассуждения, без всякого обращения к опыту, интуиции и т.п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно даёт стопроцентную гарантию успеха, а не просто обеспечивает ту или иную — быть может, и высокую — вероятность истинного заключения.
Если посылки, или хотя бы одна из них, являются ложными, правильное рассуждение может давать в итоге как истину, так и ложь. Неправильные рассуждения могут от истинных посылок вести как к истинным, так и к ложным заключениям. Никакой определённости здесь нет. С логической необходимостью заключение вытекает только в случае правильных, обоснованных выводов.
Логика занимается, конечно, не только связями утверждений в правильных выводах, но и другими проблемами. В числе последних — смысл и значение выражений языка, различные отношения между понятиями, определение понятий, вероятностные и статистические рассуждения, софизмы и парадоксы и др. Но главная и доминирующая тема формальной логики — это, несомненно, анализ правильности рассуждения, исследование «принудительной силы речей», как говорил основатель этой науки — древнегреческий философ и логик Аристотель.
2. ЛОГИЧЕСКАЯ ФОРМА
Формальная логика, как уже говорилось, отделяет правильные способы рассуждения от неправильных и систематизирует первые.
Своеобразие формальной логики связано прежде всего с её основным принципом, в соответствии с которым правильность рассуждения зависит только от его логической формы.
Самым общим образом форму рассуждения можно определить как способ связи входящих в это рассуждение содержательных частей.
Основной принцип формальной логики предполагает — и это следует специально подчеркнуть, что каждое наше рассуждение, каждая мысль, выраженная в языке, имеет не только определённое содержание, но и определённую форму. Предполагается также, что содержание и форма отличаются друг от друга и могут быть разделены. Содержание мысли не оказывает никакого влияния на правильность рассуждений, и поэтому от него следует отвлечься. Для оценки правильности мысли существенной является лишь её форма. Её необходимо выделить в чистом виде, чтобы затем на основе такой «бессодержательной» формы решить вопрос о правильности рассматриваемого рассуждения.
Как известно, все предметы, явления и процессы имеют как содержание, так и форму. Наши мысли не являются исключением из этого общего правила. То, что они обладают определённым, меняющимся от одной мысли к другой содержанием, известно каждому. Но мысли имеют также форму, что обычно ускользает от внимания.
Смысл понятия логической формы лучше всего раскрыть на примерах.
Сравним два высказывания:
«Все вороны — птицы»,
»Все шахматисты — гроссмейстеры».
По содержанию они совершенно различны, к тому же первое является истинным, а второе ложным. И тем не менее сходство их несомненно. Это сходство, а точнее говоря, тождество, в их строении, форме. Чтобы выявить такое сходство, нужно отвлечься от содержания высказываний, а значит и от обусловленных им различий. Оставим поэтому в стороне ворон и шахматистов, птиц и гроссмейстеров. Заменим все содержательные компоненты высказываний латинскими буквами, скажем S и Р, не несущими никакого содержания. В итоге получим в обоих случаях одно и то же:
«Все S есть Р ».
Это и есть форма рассматриваемых высказываний. Она получена в результате отвлечения от конкретного их содержания. Но сама эта форма имеет все-таки некоторое содержание. Из неё мы узнаем, что у всякого предмета, обозначаемого буквой S, есть признак, обозначаемый буквой Р. Это не особенно богатое, но все-таки содержание, «формальное содержание».
Этот простой пример хорошо показывает одну из особенностей подхода формальной логики к анализу рассуждений — его высокую абстрактность.
В самом деле, все началось с очевидной мысли, что утверждения о воронах, которые являются птицами, и о шахматистах, сплошь являющихся гроссмейстерами, совершенно различны. И если бы не цели логического анализа, на этом различии мы и остановились бы, не увидев ничего общего между высказываниями «Все вороны — птицы» и «Все шахматисты — гроссмейстеры».
Отвлечение от содержания и выявление формы привело нас, однако, к прямо противоположному мнению: рассматриваемые высказывания имеют одну и ту же логическую форму и, следовательно, они полностью совпадают. Начав с мысли о полном различии высказываний, мы пришли к выводу об абсолютной их тождественности.
Рассмотрим далее два более сложных высказывания:
«Если число делится на 2, то оно чётное»,
»Если сейчас ночь, то сейчас темно».
Для выявления логической формы этих высказываний подставим вместо их содержательных компонентов слова «первое» и «второе», не несущие конкретного содержания. В результате получим, что оба эти высказывания имеют одну и ту же логическую форму:
«Если первое, то второе», т.е. каждое из них устанавливает условную связь, выражаемую словами «если, то», между двумя ситуациями, обозначаемыми словами «первое» и «второе». Если вместо последних слов использовать буквенные переменные, скажем, А и В, получим:
«Если А, то В ».
Это и есть логическая форма данных сложных высказываний.
Легко понять, что такое пространственная форма. Скажем, форма здания характеризует не то, из каких элементов оно сложено, а только то, как эти элементы связаны друг с другом. Здание одной и той же формы может быть и кирпичным, и железобетонным.
Достаточно просты также многие непространственные представления о форме. Говорят, например, о форме классического романа, предполагающего постепенную завязку действия, кульминацию и, наконец, развязку. Все такие романы, независимо о их содержания, сходны в своей форме, способе связи содержательных частей.
В сущности, не намного более сложным для понимания является и понятие логической формы. Наши мысли слагаются из некоторых содержательных частей, как здание из кирпичей, блоков, панелей и т.п. Эти «кирпичики» мысли определённым образом связаны друг с другом. Способ их связи и представляет собой форму мысли.
Для выявления формы надо отвлечься от содержания мысли, заменить содержательные её части какими-нибудь пробелами или буквами. Останется только связь этих частей. В обычном языке она выражается словами: «все … есть …», «некоторые … есть…», «если…, то…», «… и …», «… или …», «неверно, что …» и т.п.
Своеобразие формальной логики связано прежде всего с её основным принципом, в соответствии с которым правильность рассуждения зависит только от его логической формы.
Самым общим образом форму рассуждения можно определить как способ связи входящих в это рассуждение содержательных частей.
Основной принцип формальной логики предполагает — и это следует специально подчеркнуть, что каждое наше рассуждение, каждая мысль, выраженная в языке, имеет не только определённое содержание, но и определённую форму. Предполагается также, что содержание и форма отличаются друг от друга и могут быть разделены. Содержание мысли не оказывает никакого влияния на правильность рассуждений, и поэтому от него следует отвлечься. Для оценки правильности мысли существенной является лишь её форма. Её необходимо выделить в чистом виде, чтобы затем на основе такой «бессодержательной» формы решить вопрос о правильности рассматриваемого рассуждения.
Как известно, все предметы, явления и процессы имеют как содержание, так и форму. Наши мысли не являются исключением из этого общего правила. То, что они обладают определённым, меняющимся от одной мысли к другой содержанием, известно каждому. Но мысли имеют также форму, что обычно ускользает от внимания.
Смысл понятия логической формы лучше всего раскрыть на примерах.
Сравним два высказывания:
«Все вороны — птицы»,
»Все шахматисты — гроссмейстеры».
По содержанию они совершенно различны, к тому же первое является истинным, а второе ложным. И тем не менее сходство их несомненно. Это сходство, а точнее говоря, тождество, в их строении, форме. Чтобы выявить такое сходство, нужно отвлечься от содержания высказываний, а значит и от обусловленных им различий. Оставим поэтому в стороне ворон и шахматистов, птиц и гроссмейстеров. Заменим все содержательные компоненты высказываний латинскими буквами, скажем S и Р, не несущими никакого содержания. В итоге получим в обоих случаях одно и то же:
«Все S есть Р ».
Это и есть форма рассматриваемых высказываний. Она получена в результате отвлечения от конкретного их содержания. Но сама эта форма имеет все-таки некоторое содержание. Из неё мы узнаем, что у всякого предмета, обозначаемого буквой S, есть признак, обозначаемый буквой Р. Это не особенно богатое, но все-таки содержание, «формальное содержание».
Этот простой пример хорошо показывает одну из особенностей подхода формальной логики к анализу рассуждений — его высокую абстрактность.
В самом деле, все началось с очевидной мысли, что утверждения о воронах, которые являются птицами, и о шахматистах, сплошь являющихся гроссмейстерами, совершенно различны. И если бы не цели логического анализа, на этом различии мы и остановились бы, не увидев ничего общего между высказываниями «Все вороны — птицы» и «Все шахматисты — гроссмейстеры».
Отвлечение от содержания и выявление формы привело нас, однако, к прямо противоположному мнению: рассматриваемые высказывания имеют одну и ту же логическую форму и, следовательно, они полностью совпадают. Начав с мысли о полном различии высказываний, мы пришли к выводу об абсолютной их тождественности.
Рассмотрим далее два более сложных высказывания:
«Если число делится на 2, то оно чётное»,
»Если сейчас ночь, то сейчас темно».
Для выявления логической формы этих высказываний подставим вместо их содержательных компонентов слова «первое» и «второе», не несущие конкретного содержания. В результате получим, что оба эти высказывания имеют одну и ту же логическую форму:
«Если первое, то второе», т.е. каждое из них устанавливает условную связь, выражаемую словами «если, то», между двумя ситуациями, обозначаемыми словами «первое» и «второе». Если вместо последних слов использовать буквенные переменные, скажем, А и В, получим:
«Если А, то В ».
Это и есть логическая форма данных сложных высказываний.
Легко понять, что такое пространственная форма. Скажем, форма здания характеризует не то, из каких элементов оно сложено, а только то, как эти элементы связаны друг с другом. Здание одной и той же формы может быть и кирпичным, и железобетонным.
Достаточно просты также многие непространственные представления о форме. Говорят, например, о форме классического романа, предполагающего постепенную завязку действия, кульминацию и, наконец, развязку. Все такие романы, независимо о их содержания, сходны в своей форме, способе связи содержательных частей.
В сущности, не намного более сложным для понимания является и понятие логической формы. Наши мысли слагаются из некоторых содержательных частей, как здание из кирпичей, блоков, панелей и т.п. Эти «кирпичики» мысли определённым образом связаны друг с другом. Способ их связи и представляет собой форму мысли.
Для выявления формы надо отвлечься от содержания мысли, заменить содержательные её части какими-нибудь пробелами или буквами. Останется только связь этих частей. В обычном языке она выражается словами: «все … есть …», «некоторые … есть…», «если…, то…», «… и …», «… или …», «неверно, что …» и т.п.
3. ДЕДУКЦИЯ И ИНДУКЦИЯ
Умозаключение — это логическая операция, в результате которой из одного или нескольких принятых утверждений (посылок) получается новое утверждение — заключение (следствие).
В зависимости от того, существует ли между посылками и заключением связь логического следования, можно выделить два вида умозаключений.
В дедуктивном умозаключении эта связь опирается на логический закон, в силу чего заключение с логической необходимостью вытекает из принятых посылок. Как уже отмечалось, отличительная особенность такого умозаключения в том, что оно от истинных посылок всегда ведёт к истинному заключению.
К дедуктивным относятся, например, такие умозаключения:
Если данное число делится на 6, то оно делится на 3.
Данное число делится на 6.
Данное число делится на 3.
Если гелий металл, он электропроводен.
Гелий не электропроводен.
Гелий не металл.
Черта, отделяющая посылки от заключения, заменяет слово «следовательно».
В индуктивном умозаключении связь посылок и заключения опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера. В таком умозаключении заключение не следует логически из посылок и может содержать информацию, отсутствующую в них. Достоверность посылок не означает поэтому достоверности выведенного из них индуктивно утверждения. Индукция даёт только вероятные, или правдоподобные, заключения, нуждающиеся в дальнейшей проверке.
Примерами индукции могут служить рассуждения:
Аргентина является республикой; Бразилия — республика; Венесуэла — республика;
Эквадор — республика.
Аргентина, Бразилия, Венесуэла, Эквадор — латиноамериканские государства.
Все латиноамериканские государства являются республиками.
Италия — республика; Португалия — республика; Финляндия — республика;
Франция — республика.
Италия, Португалия, Финляндия, Франция — западноевропейские страны.
Все западноевропейские страны являются республиками.
Индукция не даёт полной гарантии получения новой истины из уже имеющихся. Максимум, о котором можно говорить, это определённая степень вероятности выводимого утверждения. Так, посылки и первого и второго индуктивного умозаключения истинны, но заключение первого из них истинно, а второго — ложно. Действительно, все латиноамериканские государства — республики; но среди западноевропейских стран имеются не только республики, но и монархии, например, Англия, Бельгия и Испания.
Особенно характерными дедукциями являются логические переходы от общего знания к частному. Во всех случаях, когда требуется рассмотреть какое-то явление на основании уже известного общего принципа и вывести в отношении этого явления необходимое заключение, мы умозаключаем в форме дедукции (Все поэты — писатели; Лермонтов — поэт; следовательно, Лермонтов — писатель).
Рассуждения, ведущие от знания о части предметов к общему знанию обо всех предметах определённого класса, — это типичные индукции, поскольку всегда остаётся вероятность того, что обобщение окажется поспешным и необоснованным (Платон — философ; Аристотель — философ; значит, все люди — философы).
Нельзя вместе с тем отождествлять дедукцию с переходом от общего к частному, а индукцию — с переходом от частного к общему. Дедукция — это логический переход от одной истины к другой, индукция — переход от достоверного знания к вероятному. К индуктивным умозаключениям относятся не одни обобщения, но и уподобления, или аналогии, заключения о причинах явлений и др.
Дедукция играет особую роль в обосновании утверждений. Если рассматриваемое положение логически следует из уже установленных положений, оно обосновано и приемлемо в той же мере, что и последние. Это — собственно логический способ обоснования утверждений, использующий чистое рассуждение и не требующий обращения к наблюдению, интуиции и т.д.
Подчёркивая важность дедукции в процессе обоснования, не следует, однако, отрывать её от индукции или недооценивать последнюю. Почти все общие положения, включая, конечно, и научные законы, являются результатом индуктивного обобщения. В этом смысле индукция — основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности. Но она порождает предположения, связывает их с опытом и тем самым сообщает им определённое правдоподобие, более или менее высокую степень вероятности. Опыт — источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обобщения и систематизации.
Дедукция — это выведение заключений, столь же достоверных, как и принятые посылки.
В обычных рассуждениях дедукция только в редких случаях предстаёт в полной и развёрнутой форме. Чаще всего мы указываем не все используемые посылки, а лишь некоторые из них. Общие утверждения, о которых можно предполагать, что они хорошо известны, как правило, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выводимыми утверждениями, лишь иногда отмечается словами, подобными «следовательно» и «значит».
Нередко дедукция является настолько сокращённой, что о ней можно только догадываться. Восстановить её в полной форме, с указанием всех необходимых элементов и их связей бывает нелегко.
Проводить дедуктивное рассуждение, ничего не опуская и не сокращая, обременительно. Человек, указывающий все предпосылки своих заключений, создаёт впечатление какого-то педанта. И вместе с тем всякий раз, когда возникает сомнение в обоснованности сделанного вывода, следует возвращаться к самому началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже просто невозможно обнаружить допущенную ошибку.
Многие литературные критики полагают, что Шерлок Холмс был «списан» А.Конан-Дойлом с профессора медицины Эдинбургского университета Джозефа Белла. Последний был известен как талантливый учёный, обладавший редкой наблюдательностью и отлично владевший методом дедукции. Среди его студентов был и будущий создатель образа знаменитого детектива.
Однажды, рассказывает в своей автобиографии Конан-Дойл, в клинику пришёл больной, и Белл спросил его:
— Вы служили в армии?
— Так точно! — став по стойке смирно, ответил пациент.
— В горно-стрелковом полку?
— Так точно, господин доктор!
— Недавно ушли в отставку?
— Так точно!
— Были сержантом?
— Так точно! — лихо ответил больной.
— Стояли на Барбадосе?
— Так точно, господин доктор!
Студенты, присутствовавшие при этом диалоге, изумлённо смотрели на профессора. Белл объяснил, насколько просты и логичны его выводы.
Этот человек, проявив при входе в кабинет вежливость и учтивость, все же не снял шляпу. Сказалась армейская привычка. Если бы пациент был в отставке длительное время, то давно усвоил бы гражданские манеры. В осанке властность, по национальности он явно шотландец, а это говорит за то, что он был командиром. Что касается пребывания на Барбадосе, то пришедший болен элефантизмом (слоновостью) — такое заболевание распространено среди жителей тех мест.
Здесь дедуктивное рассуждение чрезвычайно сокращено. Опущены, в частности, все общие утверждения, без которых дедукция была бы невозможной.
Введённое ранее понятие «правильное рассуждение (умозаключение)» относится только к дедуктивному умозаключению. Лишь оно может быть правильным или неправильным. В индуктивном умозаключении вывод не связан логически с принятыми посылками. Поскольку «правильность» — это характеристика логической связи между посылками и заключением, а индуктивным умозаключением данная связь не предполагается, такое умозаключение не может быть ни правильным, ни неправильным. Иногда на этом основании индуктивные рассуждения вообще не включаются в число умозаключений.
В зависимости от того, существует ли между посылками и заключением связь логического следования, можно выделить два вида умозаключений.
В дедуктивном умозаключении эта связь опирается на логический закон, в силу чего заключение с логической необходимостью вытекает из принятых посылок. Как уже отмечалось, отличительная особенность такого умозаключения в том, что оно от истинных посылок всегда ведёт к истинному заключению.
К дедуктивным относятся, например, такие умозаключения:
Если данное число делится на 6, то оно делится на 3.
Данное число делится на 6.
Данное число делится на 3.
Если гелий металл, он электропроводен.
Гелий не электропроводен.
Гелий не металл.
Черта, отделяющая посылки от заключения, заменяет слово «следовательно».
В индуктивном умозаключении связь посылок и заключения опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера. В таком умозаключении заключение не следует логически из посылок и может содержать информацию, отсутствующую в них. Достоверность посылок не означает поэтому достоверности выведенного из них индуктивно утверждения. Индукция даёт только вероятные, или правдоподобные, заключения, нуждающиеся в дальнейшей проверке.
Примерами индукции могут служить рассуждения:
Аргентина является республикой; Бразилия — республика; Венесуэла — республика;
Эквадор — республика.
Аргентина, Бразилия, Венесуэла, Эквадор — латиноамериканские государства.
Все латиноамериканские государства являются республиками.
Италия — республика; Португалия — республика; Финляндия — республика;
Франция — республика.
Италия, Португалия, Финляндия, Франция — западноевропейские страны.
Все западноевропейские страны являются республиками.
Индукция не даёт полной гарантии получения новой истины из уже имеющихся. Максимум, о котором можно говорить, это определённая степень вероятности выводимого утверждения. Так, посылки и первого и второго индуктивного умозаключения истинны, но заключение первого из них истинно, а второго — ложно. Действительно, все латиноамериканские государства — республики; но среди западноевропейских стран имеются не только республики, но и монархии, например, Англия, Бельгия и Испания.
Особенно характерными дедукциями являются логические переходы от общего знания к частному. Во всех случаях, когда требуется рассмотреть какое-то явление на основании уже известного общего принципа и вывести в отношении этого явления необходимое заключение, мы умозаключаем в форме дедукции (Все поэты — писатели; Лермонтов — поэт; следовательно, Лермонтов — писатель).
Рассуждения, ведущие от знания о части предметов к общему знанию обо всех предметах определённого класса, — это типичные индукции, поскольку всегда остаётся вероятность того, что обобщение окажется поспешным и необоснованным (Платон — философ; Аристотель — философ; значит, все люди — философы).
Нельзя вместе с тем отождествлять дедукцию с переходом от общего к частному, а индукцию — с переходом от частного к общему. Дедукция — это логический переход от одной истины к другой, индукция — переход от достоверного знания к вероятному. К индуктивным умозаключениям относятся не одни обобщения, но и уподобления, или аналогии, заключения о причинах явлений и др.
Дедукция играет особую роль в обосновании утверждений. Если рассматриваемое положение логически следует из уже установленных положений, оно обосновано и приемлемо в той же мере, что и последние. Это — собственно логический способ обоснования утверждений, использующий чистое рассуждение и не требующий обращения к наблюдению, интуиции и т.д.
Подчёркивая важность дедукции в процессе обоснования, не следует, однако, отрывать её от индукции или недооценивать последнюю. Почти все общие положения, включая, конечно, и научные законы, являются результатом индуктивного обобщения. В этом смысле индукция — основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности. Но она порождает предположения, связывает их с опытом и тем самым сообщает им определённое правдоподобие, более или менее высокую степень вероятности. Опыт — источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обобщения и систематизации.
Дедукция — это выведение заключений, столь же достоверных, как и принятые посылки.
В обычных рассуждениях дедукция только в редких случаях предстаёт в полной и развёрнутой форме. Чаще всего мы указываем не все используемые посылки, а лишь некоторые из них. Общие утверждения, о которых можно предполагать, что они хорошо известны, как правило, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выводимыми утверждениями, лишь иногда отмечается словами, подобными «следовательно» и «значит».
Нередко дедукция является настолько сокращённой, что о ней можно только догадываться. Восстановить её в полной форме, с указанием всех необходимых элементов и их связей бывает нелегко.
Проводить дедуктивное рассуждение, ничего не опуская и не сокращая, обременительно. Человек, указывающий все предпосылки своих заключений, создаёт впечатление какого-то педанта. И вместе с тем всякий раз, когда возникает сомнение в обоснованности сделанного вывода, следует возвращаться к самому началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже просто невозможно обнаружить допущенную ошибку.
Многие литературные критики полагают, что Шерлок Холмс был «списан» А.Конан-Дойлом с профессора медицины Эдинбургского университета Джозефа Белла. Последний был известен как талантливый учёный, обладавший редкой наблюдательностью и отлично владевший методом дедукции. Среди его студентов был и будущий создатель образа знаменитого детектива.
Однажды, рассказывает в своей автобиографии Конан-Дойл, в клинику пришёл больной, и Белл спросил его:
— Вы служили в армии?
— Так точно! — став по стойке смирно, ответил пациент.
— В горно-стрелковом полку?
— Так точно, господин доктор!
— Недавно ушли в отставку?
— Так точно!
— Были сержантом?
— Так точно! — лихо ответил больной.
— Стояли на Барбадосе?
— Так точно, господин доктор!
Студенты, присутствовавшие при этом диалоге, изумлённо смотрели на профессора. Белл объяснил, насколько просты и логичны его выводы.
Этот человек, проявив при входе в кабинет вежливость и учтивость, все же не снял шляпу. Сказалась армейская привычка. Если бы пациент был в отставке длительное время, то давно усвоил бы гражданские манеры. В осанке властность, по национальности он явно шотландец, а это говорит за то, что он был командиром. Что касается пребывания на Барбадосе, то пришедший болен элефантизмом (слоновостью) — такое заболевание распространено среди жителей тех мест.
Здесь дедуктивное рассуждение чрезвычайно сокращено. Опущены, в частности, все общие утверждения, без которых дедукция была бы невозможной.
Введённое ранее понятие «правильное рассуждение (умозаключение)» относится только к дедуктивному умозаключению. Лишь оно может быть правильным или неправильным. В индуктивном умозаключении вывод не связан логически с принятыми посылками. Поскольку «правильность» — это характеристика логической связи между посылками и заключением, а индуктивным умозаключением данная связь не предполагается, такое умозаключение не может быть ни правильным, ни неправильным. Иногда на этом основании индуктивные рассуждения вообще не включаются в число умозаключений.
4. ИНТУИТИВНАЯ ЛОГИКА
Под интуитивной логикой обычно понимают интуитивные представления о правильности рассуждений, сложившиеся стихийно в процессе повседневной практики мышления.
Интуитивная логика, как правило, успешно справляется со своими задачами в повседневной жизни, но совершенно недостаточна для критики неправильных рассуждений. Правильно ли рассуждает человек, когда говорит: «Если бы барий был металлом, он проводил бы электрический ток; барий проводит электрический ток; следовательно, он металл?». Чаще всего на основе логической интуиции отвечают: правильно, барий металл, и он проводит ток. Этот ответ, однако, неверен. Логическая правильность, как гласит теория, зависит только от способа связи утверждений. Она не зависит от того, истинны используемые в выводе утверждения или нет. Хотя все три утверждения, входящие в рассуждение, верны, между ними нет логической связи. Рассуждение построено по неправильной схеме: «Если есть первое, то есть второе; второе есть; значит, есть и первое». Такая схема от истинных исходных положений может вести не только к истинному, но и к ложному заключению, она не гарантирует получения новых истин из имеющихся. В рассуждении: «Если у человека повышенная температура, он болен; человек болен; следовательно, у него повышенная температура» обе посылки могут быть истинными, а заключение ложным: многие болезни протекают без повышения температуры. Другой пример: «Если бы шёл дождь, земля была бы мокрой; но дождя нет; значит, земля не мокрая». Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого рассуждения, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если дождя нет, из этого вовсе не следует, что она сухая: земля может быть просто полита или быть мокрой после таяния снега. Рассуждение опять-таки идёт по неправильной схеме: «Если первое, то второе; но первого нет; значит, нет и второго». Эта схема может привести от истинных посылок к ошибочному заключению: «Если человек художник, он рисует; человек рисует; значит, человек художник». Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадёжной.
Интуитивная логика, как правило, успешно справляется со своими задачами в повседневной жизни, но совершенно недостаточна для критики неправильных рассуждений. Правильно ли рассуждает человек, когда говорит: «Если бы барий был металлом, он проводил бы электрический ток; барий проводит электрический ток; следовательно, он металл?». Чаще всего на основе логической интуиции отвечают: правильно, барий металл, и он проводит ток. Этот ответ, однако, неверен. Логическая правильность, как гласит теория, зависит только от способа связи утверждений. Она не зависит от того, истинны используемые в выводе утверждения или нет. Хотя все три утверждения, входящие в рассуждение, верны, между ними нет логической связи. Рассуждение построено по неправильной схеме: «Если есть первое, то есть второе; второе есть; значит, есть и первое». Такая схема от истинных исходных положений может вести не только к истинному, но и к ложному заключению, она не гарантирует получения новых истин из имеющихся. В рассуждении: «Если у человека повышенная температура, он болен; человек болен; следовательно, у него повышенная температура» обе посылки могут быть истинными, а заключение ложным: многие болезни протекают без повышения температуры. Другой пример: «Если бы шёл дождь, земля была бы мокрой; но дождя нет; значит, земля не мокрая». Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого рассуждения, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если дождя нет, из этого вовсе не следует, что она сухая: земля может быть просто полита или быть мокрой после таяния снега. Рассуждение опять-таки идёт по неправильной схеме: «Если первое, то второе; но первого нет; значит, нет и второго». Эта схема может привести от истинных посылок к ошибочному заключению: «Если человек художник, он рисует; человек рисует; значит, человек художник». Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадёжной.