Страница:
Тихий (Великий) океан – самый большой по площади и объему вод и соответственно по вкладу в массу и теплоемкость климатической системы. Важная особенность этого океана – система непериодических колебаний температуры поверхностных вод и нижней тропосферы в его тропической зоне – Эль-Ниньо (фаза Южного колебания), которое было изучено (не до конца!) сравнительно недавно. Название этого явления (Эль-Ниньо) происходит от испанского El Nino – мальчик, малыш, так как оно начинается в заметном объеме в конце года во время католического Рождества. Случается это не каждый год, а через промежутки в 2–5 лет с разной интенсивностью и продолжается весь следующий год, а иногда и дольше.
Зарождается Южное колебание в восточной части Тихого океана у берегов Перу. В обычных условиях в этом регионе властвует холодное Перуанское течение, несущее воды с юга на север. Вблизи экватора течение становится зональным, прогреваемый поверхностный слой воды, благодаря постоянно действующим пассатам, смещается в западном направлении (рис. 6). Здесь же имеет место апвеллинг — подъем холодных, богатых питательными веществами вод, что создает предпосылки для мировых рекордов вылова рыбы (анчоуса).
Современные исследования показывают, что влияние Эль-Ниньо сказывается также в Африке и в Атлантике, но уже в меньшей степени. Вообще же в последние годы стало «модным» приписывать влиянию Эль-Ниньо изменения климатических величин в самых разных уголках земного шара, однако делать заключения о том, насколько справедливы такие выводы, в условиях недостаточной изученности данного явления, преждевременно.
В другой фазе Южного колебания – Ла-Ниньо (от испан. La Nina – малышка, девочка) – температура поверхностного слоя океана мало отличается от ее среднего значения в этом регионе. В отсутствие Эль-Ниньо над Индонезией расположена область пониженного давления, поэтому уровень Тихого океана здесь выше, чем над западным побережьем Перу. Это обстоятельство позволяет характеризовать явления Эль-Ниньо и Ла-Ниньо с помощью индекса Южного колебания (ЮК). Этот индекс представляет собой разность средних величин приземного давления воздуха в Дарвине (Австралия) и на о. Таити (или Кальяо, Перу). Отрицательные его значения соответствуют фазе Эль-Ниньо, а положительные – фазе Ла-Ниньо.
Индийский океан находится в основном в Южном полушарии. В нем есть два крупных острова – Цейлон и Мадагаскар. Известен Индийский океан главным образом муссонной циркуляцией на полуострове Индостан.
Южный океан имеет особую циркуляцию вод и выполняет роль канала водообмена между «главными» океанами. В Южном океане нет препятствий течению вод в зональном направлении, вдоль кругов широты. Это самое мощное во всем Мировом океане Циркумполярное, или Антарктическое, круговое течение, обусловленное сильными и устойчивыми западными ветрами. Оно охватывает зону в 2500 км по ширине и километровые толщи по глубине, пронося каждую секунду около 200 млн т воды (для сравнения: крупнейшая река мира Амазонка несет лишь около 220 тыс. т воды в секунду). Такой перенос и обеспечивает водообмен между океанами, он также занимает важное место в «конвейере».
Несколько слов о вертикальной структуре океанических вод. Принято разделять толщу океана на два слоя. Верхний квазиоднородный слой имеет почти постоянные по глубине температуру и соленость, так как он перемешивается ветрами и дрейфовыми течениями. Его толщина сезонно изменяется от минимальной в конце зимы (до 100 м) до максимальной (в несколько сот метров) в конце лета в средних и высоких широтах вне зон льдообразования и переноса айсбергов. В тропической зоне толщина верхнего квазиоднородного слоя почти постоянна во времени. Соленость верхнего квазиоднородного слоя достаточно изменчива как во времени, так и в пространстве, она зависит от выпадения дождей и от испарения с поверхности океана, прежде всего в тропиках, а также от приноса больших масс пресной воды реками и стоками с населенных берегов.
Ниже верхнего квазиоднородного слоя располагается так называемый слой термоклина переменной толщины (до 1,0–1,5 км), где температура воды достаточно быстро падает от температуры верхнего квазиоднородного слоя до постоянной для глубинных вод величины в несколько градусов Цельсия. Столь низкая температура этих вод кажется непонятной: за многие миллионы лет существования Земли прогретые Солнцем воды верхнего слоя океана должны были бы при перемешивании с глубинными увеличить близкую к нулю температуру последних. Причина такой низкой температуры глубинного океана кроется в том же глобальном океаническом конвейере: его температуру регулярно поддерживают холодные поверхностные воды Северной Атлантики, опускающиеся в глубинные воды Мирового океана. Имеет место устойчивое расслоение этих вод (внизу холодные, соленые и тяжелые, выше – менее соленые, более теплые), мешающее вертикальному водообмену. Подъем глубинных вод в зонах апвеллинга происходит в основном по динамическим причинам, в том числе в результате взаимодействия морских течений с донным рельефом.
В настоящее время особое внимание в мире вызывает рост уровня Мирового океана, что самым непосредственным образом «задевает» прибрежные регионы материков и острова, обычно густонаселенные, промышленно и экономически развитые. Для ряда малых островных государств на коралловых атоллах Тихого и Индийского океанов рост уровня воды ставит вопрос о возможности их существования в ближайшие десятилетия, поэтому представители этих малых стран – наиболее активные борцы с глобальным потеплением.
Измерения температуры верхнего слоя океана до глубины 700 м и ниже показали заметный рост теплосодержания за период с начала 1990-х гг. до 2009 г., причем темп этого роста близок к скорости увеличения содержания парниковых газов. Ввиду большей теплоемкости воды по сравнению с грунтом суши, температура воды в верхнем слое океана в среднем выросла на сотые доли градуса, а не на десятые, как на суше.
Каким образом эти пока незначительные изменения в океане могут отразиться на его динамике, на характере морских течений, определить трудно – наблюдений пока очень мало. Немногие модельные исследования указывают на возможные перестройки и самого глобального океанического конвейера, снижение его водооборота. По имеющимся палеоклиматическим данным, подобное уже происходило после окончания последнего ледникового периода. Тогда большое «озеро» талой воды с материка Северной Америки вылилось в Северную Атлантику, остановило опускание легких пресных поверхностных вод в глубины соленого океана, привело к сбоям в работе глобального конвейера и поспособствовало наблюдавшемуся похолоданию в Северном полушарии.
Надо сказать, что труднодоступный глубинный океан и его динамика стали систематически изучаться сравнительно недавно, фактически с середины ХХ века, и потому сведения о них пока далеко не полные. В этом смысле атмосфере «повезло» значительно больше.
Атмосфера
Суша и ледовый покров
Глава четвертая
Воздействие на климатическую систему земли извне
Зарождается Южное колебание в восточной части Тихого океана у берегов Перу. В обычных условиях в этом регионе властвует холодное Перуанское течение, несущее воды с юга на север. Вблизи экватора течение становится зональным, прогреваемый поверхностный слой воды, благодаря постоянно действующим пассатам, смещается в западном направлении (рис. 6). Здесь же имеет место апвеллинг — подъем холодных, богатых питательными веществами вод, что создает предпосылки для мировых рекордов вылова рыбы (анчоуса).
С наступлением Эль-Ниньо возникает температурная аномалия поверхностного слоя приэкваториальной части Тихого океана – температура повышается примерно на 0,5–1 °C. Одновременно ослабевают пассаты, и не подверженный их воздействию теплый поверхностный слой «растекается» и охватывает все бо́льшую площадь. В перуанскую акваторию с запада приходят теплые воды, отчасти подавляя апвеллинг. Как следствие, в этом регионе нарушается бесперебойное поступление планктона, возникает дефицит пищи для рыб и соответственно падают уловы. Обычно засушливый климат на западном перуанском побережье на время действия Эль-Ниньо резко меняется: приход с запада влажных воздушных масс сопровождается интенсивными осадками, ливнями. В Индонезию, напротив, Эль-Ниньо приносит засушливую погоду (рис. 6).Рис. 6. Схема явления Эль-Ниньо. Тропическая часть Тихого океана при «нормальных» условиях (а) и при наступлении Эль-Ниньо (б).
Современные исследования показывают, что влияние Эль-Ниньо сказывается также в Африке и в Атлантике, но уже в меньшей степени. Вообще же в последние годы стало «модным» приписывать влиянию Эль-Ниньо изменения климатических величин в самых разных уголках земного шара, однако делать заключения о том, насколько справедливы такие выводы, в условиях недостаточной изученности данного явления, преждевременно.
В другой фазе Южного колебания – Ла-Ниньо (от испан. La Nina – малышка, девочка) – температура поверхностного слоя океана мало отличается от ее среднего значения в этом регионе. В отсутствие Эль-Ниньо над Индонезией расположена область пониженного давления, поэтому уровень Тихого океана здесь выше, чем над западным побережьем Перу. Это обстоятельство позволяет характеризовать явления Эль-Ниньо и Ла-Ниньо с помощью индекса Южного колебания (ЮК). Этот индекс представляет собой разность средних величин приземного давления воздуха в Дарвине (Австралия) и на о. Таити (или Кальяо, Перу). Отрицательные его значения соответствуют фазе Эль-Ниньо, а положительные – фазе Ла-Ниньо.
Индийский океан находится в основном в Южном полушарии. В нем есть два крупных острова – Цейлон и Мадагаскар. Известен Индийский океан главным образом муссонной циркуляцией на полуострове Индостан.
Муссонная циркуляция – часть общей циркуляции атмосферы, характеризующаяся муссонами – достаточно устойчивым режимом ветра с определенным преобладающим направлением с материка на океан и обратно в зимний и летний сезоны соответственно.Значение данного явления для большого населения Индостана хорошо известно, менее «на слуху» значительные межгодовые колебания интенсивности осадков, приносимых летним муссоном, а также крупные погодные катастрофы (наводнения, засухи), происходящие на берегах этого океана.
Южный океан имеет особую циркуляцию вод и выполняет роль канала водообмена между «главными» океанами. В Южном океане нет препятствий течению вод в зональном направлении, вдоль кругов широты. Это самое мощное во всем Мировом океане Циркумполярное, или Антарктическое, круговое течение, обусловленное сильными и устойчивыми западными ветрами. Оно охватывает зону в 2500 км по ширине и километровые толщи по глубине, пронося каждую секунду около 200 млн т воды (для сравнения: крупнейшая река мира Амазонка несет лишь около 220 тыс. т воды в секунду). Такой перенос и обеспечивает водообмен между океанами, он также занимает важное место в «конвейере».
Несколько слов о вертикальной структуре океанических вод. Принято разделять толщу океана на два слоя. Верхний квазиоднородный слой имеет почти постоянные по глубине температуру и соленость, так как он перемешивается ветрами и дрейфовыми течениями. Его толщина сезонно изменяется от минимальной в конце зимы (до 100 м) до максимальной (в несколько сот метров) в конце лета в средних и высоких широтах вне зон льдообразования и переноса айсбергов. В тропической зоне толщина верхнего квазиоднородного слоя почти постоянна во времени. Соленость верхнего квазиоднородного слоя достаточно изменчива как во времени, так и в пространстве, она зависит от выпадения дождей и от испарения с поверхности океана, прежде всего в тропиках, а также от приноса больших масс пресной воды реками и стоками с населенных берегов.
Ниже верхнего квазиоднородного слоя располагается так называемый слой термоклина переменной толщины (до 1,0–1,5 км), где температура воды достаточно быстро падает от температуры верхнего квазиоднородного слоя до постоянной для глубинных вод величины в несколько градусов Цельсия. Столь низкая температура этих вод кажется непонятной: за многие миллионы лет существования Земли прогретые Солнцем воды верхнего слоя океана должны были бы при перемешивании с глубинными увеличить близкую к нулю температуру последних. Причина такой низкой температуры глубинного океана кроется в том же глобальном океаническом конвейере: его температуру регулярно поддерживают холодные поверхностные воды Северной Атлантики, опускающиеся в глубинные воды Мирового океана. Имеет место устойчивое расслоение этих вод (внизу холодные, соленые и тяжелые, выше – менее соленые, более теплые), мешающее вертикальному водообмену. Подъем глубинных вод в зонах апвеллинга происходит в основном по динамическим причинам, в том числе в результате взаимодействия морских течений с донным рельефом.
В настоящее время особое внимание в мире вызывает рост уровня Мирового океана, что самым непосредственным образом «задевает» прибрежные регионы материков и острова, обычно густонаселенные, промышленно и экономически развитые. Для ряда малых островных государств на коралловых атоллах Тихого и Индийского океанов рост уровня воды ставит вопрос о возможности их существования в ближайшие десятилетия, поэтому представители этих малых стран – наиболее активные борцы с глобальным потеплением.
Во всех прогнозах изменений климата ожидаемый рост уровня Мирового океана занимает центральное место, но точность и надежность этих цифр пока невелика. В ХХ веке данная скорость оценивалась в 1,7 ± 0,5 мм/год, но для последнего периода с использованием спутниковых измерений она определяется величиной 3,1 ± 0,7 мм/год, и пока неясно, как согласуется эта оценка с предыдущей.Вклад термического расширения воды в эти оценки измеряется 25 % до 1990-х гг. и почти 40 % для последних десятилетий. Остальную часть данного роста составляет приток воды от таяния ледников – как горных на материках и полярных островах, так и (в большей мере) ледниковых щитов Гренландии и Антарктиды. В последние годы для оценки состояния этих щитов начали использоваться спутниковые замеры их высоты и площадей. Они показали значительное уменьшение массы ледникового щита Гренландии, а также Канадского архипелага.
Согласно данным спутников, только от происходящего в настоящее время таяния льдов Гренландии и Антарктиды уровень океана может вырасти на 15 см к 2050 г. Указанные выше оценки скорости подъема уровня океана являются глобально средними, в регионах эти скорости могут отличаться в разы.Так, повышенные скорости роста отмечаются у восточного побережья Северной Америки и Австралии. Заметный вклад в этот рост вносят также стоки вод с поверхности суши, особенно в регионах с интенсивно развивающейся промышленностью и большим населением.
Измерения температуры верхнего слоя океана до глубины 700 м и ниже показали заметный рост теплосодержания за период с начала 1990-х гг. до 2009 г., причем темп этого роста близок к скорости увеличения содержания парниковых газов. Ввиду большей теплоемкости воды по сравнению с грунтом суши, температура воды в верхнем слое океана в среднем выросла на сотые доли градуса, а не на десятые, как на суше.
Каким образом эти пока незначительные изменения в океане могут отразиться на его динамике, на характере морских течений, определить трудно – наблюдений пока очень мало. Немногие модельные исследования указывают на возможные перестройки и самого глобального океанического конвейера, снижение его водооборота. По имеющимся палеоклиматическим данным, подобное уже происходило после окончания последнего ледникового периода. Тогда большое «озеро» талой воды с материка Северной Америки вылилось в Северную Атлантику, остановило опускание легких пресных поверхностных вод в глубины соленого океана, привело к сбоям в работе глобального конвейера и поспособствовало наблюдавшемуся похолоданию в Северном полушарии.
Ряд недавних модельных исследований показал, что значительное опреснение поверхностных вод Северной Атлантики может достаточно быстро (в масштабах изменений глубинных течений в океане, за одну – три тысячи лет) «закрыть» опускание поверхностных вод в этом регионе, а с ним становится возможной остановка глобального океанического конвейера. В таком случае, согласно модельным исследованиям, вероятны уход Гольфстрима из северо-западной Европы к Средиземному морю, общее охлаждение Западной Европы и прочие катастрофы.Восстановление обычного режима вышеупомянутого опускания поверхностных вод северной Атлантики, согласно указанным моделям, может произойти после их усиленного засоления до уровней несколько бо́льших, чем современные. Некоторое «распреснение» поверхностных вод региона возможно в результате таяния ледников Гренландии и Канадского архипелага, а также из-за усиления осадков в регионе при общем потеплении.
Надо сказать, что труднодоступный глубинный океан и его динамика стали систематически изучаться сравнительно недавно, фактически с середины ХХ века, и потому сведения о них пока далеко не полные. В этом смысле атмосфере «повезло» значительно больше.
Атмосфера
В последнее время – с начала эры спутникового мониторинга – банк атмосферных данных пополняется регулярно и очень интенсивно. В первую очередь это касается нижних слоев атмосферы – тропосферы и стратосферы. Но если исторически сложившееся разделение Мирового океана на четыре (или пять) частей довольно естественно, то аналогичное разбиение вроде бы однородной атмосферы может вызвать недоуменные вопросы. Для того чтобы устранить эту неясность, посмотрим как изменяется температура воздуха с высотой: сначала она падает, на некотором уровне достигает своего минимума, а выше – уже растет.
Далее этот рисунок будет дополнен рассказом об основных атмосферных движениях меньшего масштаба (к таковым относятся, к примеру, местные движения воздуха, скажем, ветры, дующие с моря в прибрежных районах). Здесь лишь добавим, что перенос воздушных масс вдоль меридианов описывают обычно тремя ячейками – Хэдли (в тропиках), Феррела (в средних широтах) и полярной.
Что такое ячейки? Теплый воздух поднимается и одновременно движется от экватора к полюсам. На высоте он остывает, опускается в приземный слой, где снова нагревается, и опять устремляется вверх (продолжая переноситься к полюсам). Такой цикл повторяется трижды, это и есть три вышеуказанные ячейки. Таким образом, возникает вертикальный цикл движения воздушных масс, названный ячейкой атмосферной циркуляции.
Атмосфера находится под непрерывным контролем метеослужб и специальных научных экспедиций. По результатам измерений составляются специальные обзоры. Например, в обзоре Дж. Хансена с соавт.[4] использованы и проанализированы данные сетей измерений приземного воздуха, состоящих примерно из 7 тыс. станций, расположенных на материках, островах и на кораблях, полученных в период с 1880 по июнь 2010 г. Произведены тщательный отбор и анализ данных при разных способах сочетания наземных и океанических результатов измерений. При этом специальным образом учитывался вклад измерений на станциях, расположенных в крупных городах или их окрестностях, где влияние «островов тепла» может исказить репрезентативность фоновых данных, ведь, как известно, температура в центральной части крупного города, как правило, на несколько градусов выше, чем вне его границ. Зимой это связано с обогревом зданий, работой заводов и фабрик и наличием подземных коммуникаций, которые до некоторой степени «обогревают» атмосферу, а также с тем, что энергия ветра, по мере приближения к центру города, все больше «гасится» зданиями. Таким образом, срабатывает локальный источник тепла, а распространение этого тепла от центра происходит относительно медленно (но все же происходит). Летом таким источником тепла может также служить, например, разогрев асфальта на солнцепеке. Отмечено, что при учете всех искажений и введении необходимых поправок получается достоверная картина среднегодовых отклонений температуры воздуха у поверхности (ΔTS) в ХХ веке (от средней в период 1961–1990 гг.) с минимумом 0,3–0,4 К (в метеорологии принято использовать именно градусы Кельвина) в 1910 г., максимумом в 0,03 К в 1940–1945 гг., малыми изменениями – в 0,02 К в 1950–1975 гг. и последующим ростом до 0,6 К к 2010 г. Данные измерений на суше и в океане хорошо согласуются между собой, скорость роста усредненных значений ΔTS остается примерно постоянной в последние 30 лет. В то же время в некоторых регионах отмечены кратковременные отклонения, часто связанные с явлениями ЭльНиньо – Ла-Ниньо, наиболее сильные в 1998 и 2010 гг.
В разных регионах происходят заметные отклонения от общего роста ΔTS, чаще в океаническом Южном полушарии, где наблюдается отставание роста температуры поверхности TS по сравнению с Северным полушарием. Величина тренда (скорости изменения) TS в целом выше на станциях, расположенных внутри больших участков суши (материков) по сравнению с прибрежными или островными станциями. Причина этого понятна: бо́льшая теплоемкость воды по сравнению с воздухом и почвой суши, тоже «пронизанной» воздухом. Более теплоемкие части акватории отбирают тепло из воздуха и подстилающей поверхности и медленнее повышают свою температуру и температуру прилежащего воздуха.
Именно поведение температуры лежит в основе разделения атмосферы на высотные слои. Нижний слой, где температура с высотой убывает, – тропосфера, а тот, где ее убывание сменяется ростом, – стратосфера. Границу их раздела называют тропопаузой.Высота тропопаузы неодинакова над различными областями земного шара: в тропиках и у полюсов она составляет примерно 15–17 и 8–10 км соответственно, а среднеглобальной величиной считается высота в 12 км. Характерные скорости перемещения воздушных масс выше, чем скорости в Мировом океане, и по динамичности атмосфера занимает первое место в климатической системе. Направления движения основных крупных воздушных потоков – движений планетарного масштаба – представлены на рис. 5 цв. вклейки.
Далее этот рисунок будет дополнен рассказом об основных атмосферных движениях меньшего масштаба (к таковым относятся, к примеру, местные движения воздуха, скажем, ветры, дующие с моря в прибрежных районах). Здесь лишь добавим, что перенос воздушных масс вдоль меридианов описывают обычно тремя ячейками – Хэдли (в тропиках), Феррела (в средних широтах) и полярной.
Что такое ячейки? Теплый воздух поднимается и одновременно движется от экватора к полюсам. На высоте он остывает, опускается в приземный слой, где снова нагревается, и опять устремляется вверх (продолжая переноситься к полюсам). Такой цикл повторяется трижды, это и есть три вышеуказанные ячейки. Таким образом, возникает вертикальный цикл движения воздушных масс, названный ячейкой атмосферной циркуляции.
Атмосфера находится под непрерывным контролем метеослужб и специальных научных экспедиций. По результатам измерений составляются специальные обзоры. Например, в обзоре Дж. Хансена с соавт.[4] использованы и проанализированы данные сетей измерений приземного воздуха, состоящих примерно из 7 тыс. станций, расположенных на материках, островах и на кораблях, полученных в период с 1880 по июнь 2010 г. Произведены тщательный отбор и анализ данных при разных способах сочетания наземных и океанических результатов измерений. При этом специальным образом учитывался вклад измерений на станциях, расположенных в крупных городах или их окрестностях, где влияние «островов тепла» может исказить репрезентативность фоновых данных, ведь, как известно, температура в центральной части крупного города, как правило, на несколько градусов выше, чем вне его границ. Зимой это связано с обогревом зданий, работой заводов и фабрик и наличием подземных коммуникаций, которые до некоторой степени «обогревают» атмосферу, а также с тем, что энергия ветра, по мере приближения к центру города, все больше «гасится» зданиями. Таким образом, срабатывает локальный источник тепла, а распространение этого тепла от центра происходит относительно медленно (но все же происходит). Летом таким источником тепла может также служить, например, разогрев асфальта на солнцепеке. Отмечено, что при учете всех искажений и введении необходимых поправок получается достоверная картина среднегодовых отклонений температуры воздуха у поверхности (ΔTS) в ХХ веке (от средней в период 1961–1990 гг.) с минимумом 0,3–0,4 К (в метеорологии принято использовать именно градусы Кельвина) в 1910 г., максимумом в 0,03 К в 1940–1945 гг., малыми изменениями – в 0,02 К в 1950–1975 гг. и последующим ростом до 0,6 К к 2010 г. Данные измерений на суше и в океане хорошо согласуются между собой, скорость роста усредненных значений ΔTS остается примерно постоянной в последние 30 лет. В то же время в некоторых регионах отмечены кратковременные отклонения, часто связанные с явлениями ЭльНиньо – Ла-Ниньо, наиболее сильные в 1998 и 2010 гг.
В разных регионах происходят заметные отклонения от общего роста ΔTS, чаще в океаническом Южном полушарии, где наблюдается отставание роста температуры поверхности TS по сравнению с Северным полушарием. Величина тренда (скорости изменения) TS в целом выше на станциях, расположенных внутри больших участков суши (материков) по сравнению с прибрежными или островными станциями. Причина этого понятна: бо́льшая теплоемкость воды по сравнению с воздухом и почвой суши, тоже «пронизанной» воздухом. Более теплоемкие части акватории отбирают тепло из воздуха и подстилающей поверхности и медленнее повышают свою температуру и температуру прилежащего воздуха.
Потепление климата в регионе часто выражается в увеличении числа и интенсивности «волн тепла» в летний период, а также в снижении числа и интенсивности «волн холода» в зимний период. Такая тенденция достаточно часто наблюдается в период глобального потепления. При этом летние «волны тепла» приводят к появлению большего числа смертей и ущерба, чем зимние «волны холода», – ситуация, идентичная с энергозатратами на кондиционирование и обогрев воздуха в помещениях.
В период глобального потепления наблюдаются сдвиги по широте некоторых атмосферных характеристик. Так, отмечается смещение на север путей циклонов, перемещающихся на Западную Европу и Европейскую Россию с Северной Атлантики. Это способствует усилению циклонической погоды в Северной Европе и в России в зимнее время и, как следствие, учащению теплых зим с обильными осадками. Циклоны несут в регионы России тепло и влагу с северной части Атлантики. Отмечено также смещение к полюсам границ тропической зоны (ее расширение). С начала систематических спутниковых слежений в 1979 г. до середины первого десятилетия XXI века зона субтропиков Северного полушария продвинулась на север на 5–8° широты. При этом сухая зона субтропиков, прилежащая к тропику Рака[5] с севера, сдвигается на южную часть сельскохозяйственной зоны средних широт, что наносит ей заметный ущерб.Все эти тенденции еще более ярко проявляются в прогнозах климатических изменений к середине и к концу текущего века, сделанных с использованием глобальных климатических моделей. Одновременно отмечается увеличение высоты тропической тропопаузы, происходят изменения в динамике (переносе) атмосферного озона, регистрируемые мировой озонометрической сетью.
Суша и ледовый покров
Наиболее быстрые и заметные изменения на суше и в ледовом покрове океана происходили и происходят в высоких северных широтах. С начала XXI века ускорился процесс сокращения площади ледового покрова в Северном Ледовитом океане.
Изменение климата отмечается и в средних широтах, на территориях с интенсивным антропогенным освоением.
Мегаполисы, промышленные и сельскохозяйственные регионы, орошаемые территории, водохранилища – все они создают вокруг себя отдельный, отличный от регионального климат, в котором ныне живет большинство населения развитых стран.
Например, в сельскохозяйственном производстве орошаемых регионов используют пониженную температуру и повышенную влажность воздуха для улучшения урожайности и комфортности проживания. «Острова тепла» в больших городах особенно хорошо заметны в холодный период: в центре города термометры показывают температуру города на 2–3, а иногда и 5 градусов выше, чем на окраинах, ветер в центре города также слабее; летом, например, при температуре +20 °C, более высокая температура (т. е. +22–23 °C) в центре почти не ощущается, но зимой разница очень заметна, например, – 23 °C с сильными порывами ветра на окраине – совсем не то, что -20 °C при небольшом ветерке или его отсутствии в центре. Однако закономерности формирования таких «островов» и их взаимодействия с климатом окружающего региона в близком и отдаленном будущем пока плохо обеспечены данными наблюдений, и это обстоятельство затрудняет прогнозирование и анализ этого феномена в модельных исследованиях. Можно лишь предположить, что по мере развития городских и промышленных агломераций погодно-климатические условия в них будут больше зависеть от структуры выбросов энергии самими агломерациями и меньше – от их климатических условий регионов их размещения.
Итак, наблюдения за природной средой дают представления о том, каким изменениям (далеко не всегда желательным) подвергались отдельные элементы климатической системы в недавнем прошлом. Очевидно, что подобные изменения будут происходить и в дальнейшем. Едва ли их можно предотвратить, но противостоять им в меру современного научно-технического обеспечения людям вполне по силам. А значит, напрашивается вопрос: что, как и в какой мере сказывается на климате Земли? Начнем с главного…
Недавно, 16 сентября 2012 г., было зафиксировано рекордно низкое значение площади арктического морского льда – 3,41 млн км2 (пал предыдущий рекорд 2007 г., когда этот минимум составлял 4,17 млн км2). Для сравнения: среднее значение минимальной площади арктических льдов за период с 1979 по 2000 г. составляет 6,71 млн км2.Данное сокращение сопровождается еще более существенным уменьшением (на 10–20 %) доли многолетних льдов в их общей площади и является следствием как общего глобального потепления, так и отдельных факторов, воздействующих на арктический регион. В частности, увеличения выноса теплых пресных вод реками Евразии в океан и роста сажевого загрязнения снега и льда от сжигания топлива зимой, сильно снижающего их отражательную способность и усиливающего приток солнечной радиации в регион в полярный день. Это загрязнение способствует увеличению теплообмена между холодным полярным воздухом и поверхностными водами, имеющими небольшую положительную температуру, и тем самым еще более ускоряет таяние морских льдов. В более мелком и согреваемом выносом вод рек Евразии восточном секторе Северного Ледовитого океана такое таяние происходит значительно быстрее, чем в западном.
Очень заметно потепление Арктики на арктических островах и берегах, сложенных в основном из мягких грунтов, пронизанных ледяными «линзами» и «островками» мерзлой почвы.Таяние в таких грунтах приводит к обвалу в воду береговых участков на значительных площадях, нарушению устойчивости элементов хозяйственной инфраструктуры в арктических регионах. Этого нельзя не учитывать в преддверии ожидаемого хозяйственного освоения богатых месторождений ископаемых в регионе.
Изменение климата отмечается и в средних широтах, на территориях с интенсивным антропогенным освоением.
Мегаполисы, промышленные и сельскохозяйственные регионы, орошаемые территории, водохранилища – все они создают вокруг себя отдельный, отличный от регионального климат, в котором ныне живет большинство населения развитых стран.
Например, в сельскохозяйственном производстве орошаемых регионов используют пониженную температуру и повышенную влажность воздуха для улучшения урожайности и комфортности проживания. «Острова тепла» в больших городах особенно хорошо заметны в холодный период: в центре города термометры показывают температуру города на 2–3, а иногда и 5 градусов выше, чем на окраинах, ветер в центре города также слабее; летом, например, при температуре +20 °C, более высокая температура (т. е. +22–23 °C) в центре почти не ощущается, но зимой разница очень заметна, например, – 23 °C с сильными порывами ветра на окраине – совсем не то, что -20 °C при небольшом ветерке или его отсутствии в центре. Однако закономерности формирования таких «островов» и их взаимодействия с климатом окружающего региона в близком и отдаленном будущем пока плохо обеспечены данными наблюдений, и это обстоятельство затрудняет прогнозирование и анализ этого феномена в модельных исследованиях. Можно лишь предположить, что по мере развития городских и промышленных агломераций погодно-климатические условия в них будут больше зависеть от структуры выбросов энергии самими агломерациями и меньше – от их климатических условий регионов их размещения.
Итак, наблюдения за природной средой дают представления о том, каким изменениям (далеко не всегда желательным) подвергались отдельные элементы климатической системы в недавнем прошлом. Очевидно, что подобные изменения будут происходить и в дальнейшем. Едва ли их можно предотвратить, но противостоять им в меру современного научно-технического обеспечения людям вполне по силам. А значит, напрашивается вопрос: что, как и в какой мере сказывается на климате Земли? Начнем с главного…
Глава четвертая
Солнце – «наше все»
Единственный Бог, на которого с научной точки зрения следует молиться землянам, – это Солнце.
Неизвестный автор
Воздействие на климатическую систему земли извне
«Из всех искусств для нас важнейшим является кино» – такова расхожая, правда не совсем точная, цитата из наследия вождя мирового пролетариата. В переложении для темы нашего разговора она могла бы гласить: из всех факторов, определяющих климат Земли, важнейшим является Солнце. Причем, в отличие от кино, Солнце не имеет в этом качестве достойных конкурентов.
О ключевой роли светила в жизни нашей планеты люди догадывались еще на заре человечества. Догадки сменились обожествлением Солнца и природных стихий (cм. рис. 7 цв. вклейки). Вряд ли в истории отыщется народ, не возведший Бога Солнца в Пантеон. А в ряде случаев ему был придан статус Верховного Бога (самый известный пример тому – египетский Ра). Исключительность Солнца зиждилась на понимании того, что именно оно обеспечивает людям тепло, свет и пропитание, одним словом, – жизнь. «Дарующим жизнь» и называли древние греки проживающего в окружении времен года Гелиоса. И кому же, как не всемилостивейшему и могущественнейшему Богу, выступать судьей над грешными людьми. Древние римляне почитали бога Соля как блюстителя справедливости, а древние египтяне связывали летний зной с гневом Ра на людей. Велик был соблазн погреться в лучах такого могущества (и погреть на нем руки) у сильных Древнего мира. И вот уже, как на дрожжах, растут и множатся «сыновья» (с «дочерьми» в ту эпоху было напряженно) Богов Солнца, правящие за себя и за «того бога». Ну чем не «сыновья лейтенанта Шмидта»?! В последующие века накапливаемые знания (слава Богам!) мало-помалу вытесняют слепые верования.
Еще в Древней Греции обратили внимание на то, что климат каждой территории прежде всего определяется средней высотой Солнца днем над горизонтом: на севере оно располагается ниже, на юге – выше. Интересно, что само слово «климат» происходит от греческого klima – наклон Солнца.
О ключевой роли светила в жизни нашей планеты люди догадывались еще на заре человечества. Догадки сменились обожествлением Солнца и природных стихий (cм. рис. 7 цв. вклейки). Вряд ли в истории отыщется народ, не возведший Бога Солнца в Пантеон. А в ряде случаев ему был придан статус Верховного Бога (самый известный пример тому – египетский Ра). Исключительность Солнца зиждилась на понимании того, что именно оно обеспечивает людям тепло, свет и пропитание, одним словом, – жизнь. «Дарующим жизнь» и называли древние греки проживающего в окружении времен года Гелиоса. И кому же, как не всемилостивейшему и могущественнейшему Богу, выступать судьей над грешными людьми. Древние римляне почитали бога Соля как блюстителя справедливости, а древние египтяне связывали летний зной с гневом Ра на людей. Велик был соблазн погреться в лучах такого могущества (и погреть на нем руки) у сильных Древнего мира. И вот уже, как на дрожжах, растут и множатся «сыновья» (с «дочерьми» в ту эпоху было напряженно) Богов Солнца, правящие за себя и за «того бога». Ну чем не «сыновья лейтенанта Шмидта»?! В последующие века накапливаемые знания (слава Богам!) мало-помалу вытесняют слепые верования.
Еще в Древней Греции обратили внимание на то, что климат каждой территории прежде всего определяется средней высотой Солнца днем над горизонтом: на севере оно располагается ниже, на юге – выше. Интересно, что само слово «климат» происходит от греческого klima – наклон Солнца.