Греки делили Землю на широтные полосы – климаты. Сначала климатов было пять: северный холодный, северный умеренный, жаркий (где «кипит океан»), южный умеренный и южный холодный. Затем их число возросло: Гиппарх (ок. 180 или 190–125 гг. до н. э., к слову, тот самый, который ввел географические координаты) предложил рассматривать 12, а чуть позже Посидоний (ок. 135–51 гг. до н. э.) – 13 климатов. Однако все это «дела давно минувших дней, преданья старины глубокой».
Сегодня всестороннее теоретическое изучение процессов, происходящих на Солнце, и их влияния на климатическую систему Земли, подкрепляемое регулярными комплексными наблюдениями, идет полным ходом. Но, несмотря на безусловный и значительный прогресс в исследованиях солнечно-земных связей, неясностей, в том числе даже в основополагающих их принципах и механизмах, еще достаточно много. Показательно, что в вышедшем в 1997 г. в Великобритании учебнике климатологии[6] авторы называют «до сих пор не понятным чудом» способ транспортировки энергии Солнца через космическое пространство к атмосфере Земли. Нельзя не сказать об объективных сложностях, возникающих у специалистов при изучении как Солнца, так и климата нашей планеты. Дело в том, что эти специалисты (в отличие, скажем, от химиков) лишены возможности проводить исследования с помощью лабораторных экспериментов и вынуждены ограничиваться лишь натурными наблюдениями. Следовательно, крупные прорывы в этих областях знаний могут произойти или при накоплении большой базы данных и последующем ее анализе (диалектический закон перехода количества в качество), или в результате гениального озарения (помните известный конфликт между яблоком и головой Исаака Ньютона?). Базы данных сейчас пополняются постоянно и интенсивно, осталось дождаться, когда их «масса» превзойдет «критическую». Что же касается второго пути, то тут, понятно, что-либо предсказать невозможно, остается только надеяться… Может, таким открывателем окажется кто-то из наших читателей, увлеченный романтикой научного поиска.
И все же давайте вернемся к объекту повествования – Солнцу. Дабы показать масштабы зависимости от Солнца всего происходящего на Земле, приведем два факта. Дадим слово Г. Кинсу, представляющему фонд Desertec[7]: «За 6 часов пустыня Сахара получает больше энергии от Солнца, чем человечество тратит за год». Площадь Сахары составляет примерно 7 млн км2. Для сравнения: площадь поверхности Земли около 509,5 млн км2, т. е. Сахара занимает всего лишь примерно 1,4 % земной поверхности.
Второй факт можно условно назвать «украденное Солнце» (помните такое стихотворение К. И. Чуковского?). Лет 10–15 назад американские исследователи задались вопросом, как долго будет продолжаться циркуляция воздуха и океана на Земле, если Солнце вдруг «потухнет». Разница в потоках солнечной энергии к экватору и полюсам порождает различную степень нагрева там обеих субстанций – воздуха и воды. В соответствии с физическими законами для газов и жидкостей, давление в них на экваторе и полюсах оказывается неодинаковым, что вызывает перенос обеих субстанций, стремящийся это давление выровнять. Образуется система ветров и течений, другими словами, возникает циркуляция. Если же Солнце «выключить», приток энергии, естественно, станет всюду равным нулю, но энергозапас – инерция, в первую очередь океана – не позволит циркуляции немедленно прекратиться. Такую гипотетическую ситуацию и исследовали американцы, заложив соответствующие установки в климатическую модель. Согласно их расчетам, циркуляция климатической системы «продержалась на внутренних резервах» около трех месяцев, после чего остановилась. Вот такой запас прочности имеет наша климатическая система. К разговору об альтернативных источниках энергии (главным образом, электрической), равно как и о модельных исследованиях климата, мы еще вернемся. А пока…
Как мы уже знаем, климат местности напрямую зависит от того, сколько солнечной энергии достигает земной поверхности. В соответствии с законами физики, Земля, являясь серым телом[8], как поглощает энергию, так и излучает ее, и эти процессы определяют температуру подстилающей поверхности, а также земной атмосферы. Напомним, что Земля поглощает солнечное (часто именуемое коротковолновым) излучение с длиной волны (λ), не превышающей 4 мкм[9], а излучает радиацию с длинами волн, большими 4 мкм. В среднем на каждый квадратный метр приходится поток солнечной энергии, равный 1370 Вт[10], эту величину называют солнечной постоянной. Если же мысленно построить сферу, проходящую по верхней границе атмосферы, то на 1 м2 ее поверхности попадает приблизительно 343 Вт солнечной энергии. Примерно 31 % этого потока отражается атмосферой и подстилающей поверхностью и лишь около половины достигает поверхности Земли и поглощается ею (остальные 19 % поглощаются в атмосфере, главным образом, облаками). В свою очередь, земная поверхность испускает в атмосферу длинноволновое (тепловое) излучение. Если бы все это тепловое излучение беспрепятственно покидало атмосферу, то среднегодовая среднеглобальная температура воздуха у поверхности Земли была бы -19 °C, однако в действительности она составляет +14 °C! Комфортную добавку в 33 °C обеспечивает нам сопровождаемая выделением тепла способность атмосферы, точнее – ее некоторых газов и облаков, задерживать и поглощать уходящую длинноволновую радиацию (с длиной волны λ > 4 мкм). В свете сказанного обратим особое внимание на двоякую роль облаков в радиационном режиме системы «Земля – атмосфера»: с одной стороны, они сокращают приток солнечной радиации, отражая ее, с другой, благодаря поглощению ими солнечного и особенно длинноволнового излучения, столь существенен нагрев атмосферы. Преобладание одного из этих процессов над другим зависит от типа облаков, их плотности и высоты расположения.
Несложно сообразить, что в среднем за год количество энергии, полученной и отданной системой «Земля – атмосфера», примерно одинаково: ведь в противном случае среднегодовая среднеглобальная температура воздуха у подстилающей поверхности имела бы сохраняющуюся тысячелетиями тенденцию либо к регулярному увеличению, либо к регулярному уменьшению. Но с началом ХХ в. приборы стали фиксировать устойчивое возрастание средней температуры от десятилетия к десятилетию…
Какие же причины способны вызвать нарушение сложившегося веками баланса? Первое подозрение, очевидно, падает на нашего героя – Солнце или, говоря строго, на изменение потока солнечного излучения.
С целью охарактеризовать текущее состояние светила, швейцарский астроном Р. Вольф (1816–1896) предложил использовать относительное число солнечных пятен, получившее впоследствии его имя. Число Вольфа определяется как сумма удесятеренного числа групп пятен и общего количества пятен во всех группах на одном полушарии Солнца (второе остается невидимым). Число Вольфа – не единственный, но, пожалуй, наиболее популярный индекс солнечной активности у специалистов. И это при том, что едва ли кто-то из них в состоянии объяснить физический смысл этого индекса.
Как видно на рис. 8, 11-летние циклы различаются еще и по количеству пятен, т. е. по интенсивности. Рекорд здесь принадлежит максимуму 1957 г., когда среднегодовое число Вольфа достигало 190. Наименьшие значения в максимумах приходятся на первую четверть XIX в. – в этот период они едва «переваливали» через отметку 40. Однако в анналах цюрихских наблюдений присутствует еще один временной интервал – с 1645 по 1715 г., характеризуемый малым числом солнечных пятен и ослаблением солнечной активности, получивший название «маундеровского минимума» (по имени давшего его описание английского исследователя Е. Маундера). Нумерация 11-летних циклов берет отсчет с 1775 г., таким образом, сейчас идет 24-й цикл.
Рис. 7. Кривая среднегодичных цюрихских относительных чисел солнечных пятен (W, чисел Вольфа) за 1755–1980 гг. В кружке – максимальное значение за весь период наблюдений
В несколько «облагороженном» виде схема 11-летнего цикла представлена на рис. 8.
Рис. 8. Схема кривой 11-летнего цикла солнечной активности
Процессы на Солнце также подвержены изменениям в пределах 22-летнего и 80–90-летнего циклов. Первый из них вовсе не «сумма» двух последовательных 11-летних циклов, хотя его природа тоже связана с солнечными пятнами. Гелиофизики говорят, что под действием мощного магнитного поля в среднем каждые 22 года меняется полярность пятен. И если с наличием 22-летнего цикла сегодня согласны большинство специалистов, то к существованию 80–90-летнего цикла многие относятся скептически. Понятно, что делать далеко идущие выводы, имея под рукой один-единственный ряд наблюдений длиной всего в три таких цикла, весьма опрометчиво. Не будучи специалистами в области гелиофизики, воздержимся от комментариев по данному вопросу, ограничась только нижеприведенной иллюстрацией (рис. 9).
Рис. 9. Усредненная кривая изменения максимальных среднегодовых чисел Вольфа Wm за весь период измерений. По оси абсцисс – номера 11-летних циклов согласно цюрихским данным
Важно отметить, что основной «удар» солнечной активности принимают на себя верхние слои атмосферы, но его «отголоски» чувствуются и в ее нижних слоях, и у земной поверхности. Наиболее существенным последствием пертурбаций в верхней атмосфере является изменение циркуляции воздушных масс в ее нижних слоях. Есть основания полагать, что во время максимумов 11-летнего цикла имеет место усиление циклонов и антициклонов.
Выше говорилось о том, что в ходе 11-летнего цикла изменения затрагивают в основном ультрафиолетовую часть спектра. Сколь значительны эти изменения, показано на рис. 10. Ультрафиолетовый участок спектра приблизительно соответствует длинам волн 170 < λ < 320 нм[11]. Однако только для длин волн λ < 205 нм интенсивность излучения в максимуме солнечной активности превосходит на 5–17 % ее в минимуме 11-летнего цикла, на бо́льших же длинах волн они почти равны. Следить за такими незначительными изменениями на верхней границе атмосферы очень трудно, это стало возможным только в последние 20–30 лет с появлением искусственных спутников Земли.
Рис. 10. Соотношение интенсивности солнечного излучения на верхней границе атмосферы в максимальной (Imax) и минимальной (Imin) фазах 11-летнего цикла на разных длинах волн по данным измерений
Изменения такого масштаба практически никак не сказываются на солнечной постоянной: спутниковая аппаратура зафиксировала лишь незначительные ее колебания – с амплитудой 0,1 % – в ходе 11-летнего цикла солнечной активности. Косвенные данные указывают на значительно бо́льшие ее изменения (десятые доли процента) в XVII в. Многие исследователи тем не менее полагают, что небольшой рост солнечной постоянной имел место с середины XVIII в. по настоящее время. Однако его трудно выделить и оценить, так как спутниковых измерений тогда не было, а точность наземных измерений, которым мешали и облачность, и недостаточная прозрачность атмосферы, не позволяет достаточно определенно судить о ее росте за последние 250 лет. Но даже изменения на десятую долю процента очень существенно отражаются на эффективности химических превращений в атмосфере, порождая эволюцию содержания газов в составе атмосферного воздуха, в том числе – парниковых газов, подробный разговор о которых еще впереди.
Глава пятая
Что мы знаем о климате далекого прошлого
Глава шестая
Циклы миланковича
Сегодня всестороннее теоретическое изучение процессов, происходящих на Солнце, и их влияния на климатическую систему Земли, подкрепляемое регулярными комплексными наблюдениями, идет полным ходом. Но, несмотря на безусловный и значительный прогресс в исследованиях солнечно-земных связей, неясностей, в том числе даже в основополагающих их принципах и механизмах, еще достаточно много. Показательно, что в вышедшем в 1997 г. в Великобритании учебнике климатологии[6] авторы называют «до сих пор не понятным чудом» способ транспортировки энергии Солнца через космическое пространство к атмосфере Земли. Нельзя не сказать об объективных сложностях, возникающих у специалистов при изучении как Солнца, так и климата нашей планеты. Дело в том, что эти специалисты (в отличие, скажем, от химиков) лишены возможности проводить исследования с помощью лабораторных экспериментов и вынуждены ограничиваться лишь натурными наблюдениями. Следовательно, крупные прорывы в этих областях знаний могут произойти или при накоплении большой базы данных и последующем ее анализе (диалектический закон перехода количества в качество), или в результате гениального озарения (помните известный конфликт между яблоком и головой Исаака Ньютона?). Базы данных сейчас пополняются постоянно и интенсивно, осталось дождаться, когда их «масса» превзойдет «критическую». Что же касается второго пути, то тут, понятно, что-либо предсказать невозможно, остается только надеяться… Может, таким открывателем окажется кто-то из наших читателей, увлеченный романтикой научного поиска.
И все же давайте вернемся к объекту повествования – Солнцу. Дабы показать масштабы зависимости от Солнца всего происходящего на Земле, приведем два факта. Дадим слово Г. Кинсу, представляющему фонд Desertec[7]: «За 6 часов пустыня Сахара получает больше энергии от Солнца, чем человечество тратит за год». Площадь Сахары составляет примерно 7 млн км2. Для сравнения: площадь поверхности Земли около 509,5 млн км2, т. е. Сахара занимает всего лишь примерно 1,4 % земной поверхности.
Вдумайтесь: для обеспечения годовой потребности в электроэнергии человечество прилагает титанические усилия, сопровождаемые колоссальными материальными затратами, ухудшением состояния природной среды и даже людскими потерями. А результат этих усилий соизмерим с энергией, получаемой относительно небольшим кусочком Земли за четверть суток!Оговоримся, приведенное здесь сопоставление площадей не совсем корректно, так как не ко всем областям Земли Солнце одинаково щедро: на экваториальную зону приходится максимум энергии светила, а в качестве «бедных родственников» выступают полярные регионы (см. рис. 2 цв. вклейки). И все равно факт, согласитесь, впечатляет.
Второй факт можно условно назвать «украденное Солнце» (помните такое стихотворение К. И. Чуковского?). Лет 10–15 назад американские исследователи задались вопросом, как долго будет продолжаться циркуляция воздуха и океана на Земле, если Солнце вдруг «потухнет». Разница в потоках солнечной энергии к экватору и полюсам порождает различную степень нагрева там обеих субстанций – воздуха и воды. В соответствии с физическими законами для газов и жидкостей, давление в них на экваторе и полюсах оказывается неодинаковым, что вызывает перенос обеих субстанций, стремящийся это давление выровнять. Образуется система ветров и течений, другими словами, возникает циркуляция. Если же Солнце «выключить», приток энергии, естественно, станет всюду равным нулю, но энергозапас – инерция, в первую очередь океана – не позволит циркуляции немедленно прекратиться. Такую гипотетическую ситуацию и исследовали американцы, заложив соответствующие установки в климатическую модель. Согласно их расчетам, циркуляция климатической системы «продержалась на внутренних резервах» около трех месяцев, после чего остановилась. Вот такой запас прочности имеет наша климатическая система. К разговору об альтернативных источниках энергии (главным образом, электрической), равно как и о модельных исследованиях климата, мы еще вернемся. А пока…
Как мы уже знаем, климат местности напрямую зависит от того, сколько солнечной энергии достигает земной поверхности. В соответствии с законами физики, Земля, являясь серым телом[8], как поглощает энергию, так и излучает ее, и эти процессы определяют температуру подстилающей поверхности, а также земной атмосферы. Напомним, что Земля поглощает солнечное (часто именуемое коротковолновым) излучение с длиной волны (λ), не превышающей 4 мкм[9], а излучает радиацию с длинами волн, большими 4 мкм. В среднем на каждый квадратный метр приходится поток солнечной энергии, равный 1370 Вт[10], эту величину называют солнечной постоянной. Если же мысленно построить сферу, проходящую по верхней границе атмосферы, то на 1 м2 ее поверхности попадает приблизительно 343 Вт солнечной энергии. Примерно 31 % этого потока отражается атмосферой и подстилающей поверхностью и лишь около половины достигает поверхности Земли и поглощается ею (остальные 19 % поглощаются в атмосфере, главным образом, облаками). В свою очередь, земная поверхность испускает в атмосферу длинноволновое (тепловое) излучение. Если бы все это тепловое излучение беспрепятственно покидало атмосферу, то среднегодовая среднеглобальная температура воздуха у поверхности Земли была бы -19 °C, однако в действительности она составляет +14 °C! Комфортную добавку в 33 °C обеспечивает нам сопровождаемая выделением тепла способность атмосферы, точнее – ее некоторых газов и облаков, задерживать и поглощать уходящую длинноволновую радиацию (с длиной волны λ > 4 мкм). В свете сказанного обратим особое внимание на двоякую роль облаков в радиационном режиме системы «Земля – атмосфера»: с одной стороны, они сокращают приток солнечной радиации, отражая ее, с другой, благодаря поглощению ими солнечного и особенно длинноволнового излучения, столь существенен нагрев атмосферы. Преобладание одного из этих процессов над другим зависит от типа облаков, их плотности и высоты расположения.
Несложно сообразить, что в среднем за год количество энергии, полученной и отданной системой «Земля – атмосфера», примерно одинаково: ведь в противном случае среднегодовая среднеглобальная температура воздуха у подстилающей поверхности имела бы сохраняющуюся тысячелетиями тенденцию либо к регулярному увеличению, либо к регулярному уменьшению. Но с началом ХХ в. приборы стали фиксировать устойчивое возрастание средней температуры от десятилетия к десятилетию…
Какие же причины способны вызвать нарушение сложившегося веками баланса? Первое подозрение, очевидно, падает на нашего героя – Солнце или, говоря строго, на изменение потока солнечного излучения.
Солнце – гигантский (даром, что по астрономической градации – карлик), раскаленный, плазменный шар с эффективной температурой поверхности, равной 5770 К (напомним, что градус Кельвина – К равен более привычному нам градусу Цельсия, но шкала Кельвина сдвинута на 273,15 К, т. е. 273,15 К соответствуют 0 °C). Лишь ничтожная доля (около 5·10-8 %) излучаемой им энергии достается Земле. Вещество Солнца находится в постоянном движении, на его теле регулярно возникают неоднородности – пятна, факелы, протуберанцы, случаются вспышки и т. д. Именно с неоднородностями, в первую очередь с пятнами, связана солнечная активность – изменение потока его излучения.Наличие на Солнце пятен было замечено людьми очень давно: авторы, освещающие эту проблему, обожают приводить выдержку из древнерусских хроник о том, как «сквозь дым лесных пожаров люди видели “темные пятна, аки гвозди”», считавшиеся дурным предзнаменованием. В начале XVII в. Г. Галилей впервые направил на Солнце свое изобретение – телескоп, положив начало наблюдениям за Солнцем, а с середины XIX в. такие наблюдения ведутся на ежедневной основе. Еще раньше (с 1749 г.) приступили к регулярным наблюдениям солнечных пятен в Цюрихской обсерватории, благодаря чему сегодня имеется ряд измерений солнечных пятен длиной в 260 лет.
С целью охарактеризовать текущее состояние светила, швейцарский астроном Р. Вольф (1816–1896) предложил использовать относительное число солнечных пятен, получившее впоследствии его имя. Число Вольфа определяется как сумма удесятеренного числа групп пятен и общего количества пятен во всех группах на одном полушарии Солнца (второе остается невидимым). Число Вольфа – не единственный, но, пожалуй, наиболее популярный индекс солнечной активности у специалистов. И это при том, что едва ли кто-то из них в состоянии объяснить физический смысл этого индекса.
Тем не менее связь между числом Вольфа и интенсивностью ультрафиолетовой солнечной радиации считается установленным научным фактом. Замечено, что с увеличением числа Вольфа (т. е. количества пятен на Солнце), – а происходит это периодически, – возрастает интенсивность излучения в ультрафиолетовой области спектра.Периодичность эта – особая: согласно данным Цюрихской обсерватории, интервалы колебались от 7 до 17 лет между годами максимумов чисел Вольфа и от 9 до 14 лет – между их минимумами. В среднем же такой солнечный цикл длится около 11 лет, вследствие чего он и получил свое широко распространенное название – 11-летний (рис. 7).
Как видно на рис. 8, 11-летние циклы различаются еще и по количеству пятен, т. е. по интенсивности. Рекорд здесь принадлежит максимуму 1957 г., когда среднегодовое число Вольфа достигало 190. Наименьшие значения в максимумах приходятся на первую четверть XIX в. – в этот период они едва «переваливали» через отметку 40. Однако в анналах цюрихских наблюдений присутствует еще один временной интервал – с 1645 по 1715 г., характеризуемый малым числом солнечных пятен и ослаблением солнечной активности, получивший название «маундеровского минимума» (по имени давшего его описание английского исследователя Е. Маундера). Нумерация 11-летних циклов берет отсчет с 1775 г., таким образом, сейчас идет 24-й цикл.
Рис. 7. Кривая среднегодичных цюрихских относительных чисел солнечных пятен (W, чисел Вольфа) за 1755–1980 гг. В кружке – максимальное значение за весь период наблюдений
В несколько «облагороженном» виде схема 11-летнего цикла представлена на рис. 8.
Рис. 8. Схема кривой 11-летнего цикла солнечной активности
Процессы на Солнце также подвержены изменениям в пределах 22-летнего и 80–90-летнего циклов. Первый из них вовсе не «сумма» двух последовательных 11-летних циклов, хотя его природа тоже связана с солнечными пятнами. Гелиофизики говорят, что под действием мощного магнитного поля в среднем каждые 22 года меняется полярность пятен. И если с наличием 22-летнего цикла сегодня согласны большинство специалистов, то к существованию 80–90-летнего цикла многие относятся скептически. Понятно, что делать далеко идущие выводы, имея под рукой один-единственный ряд наблюдений длиной всего в три таких цикла, весьма опрометчиво. Не будучи специалистами в области гелиофизики, воздержимся от комментариев по данному вопросу, ограничась только нижеприведенной иллюстрацией (рис. 9).
Рис. 9. Усредненная кривая изменения максимальных среднегодовых чисел Вольфа Wm за весь период измерений. По оси абсцисс – номера 11-летних циклов согласно цюрихским данным
Важно отметить, что основной «удар» солнечной активности принимают на себя верхние слои атмосферы, но его «отголоски» чувствуются и в ее нижних слоях, и у земной поверхности. Наиболее существенным последствием пертурбаций в верхней атмосфере является изменение циркуляции воздушных масс в ее нижних слоях. Есть основания полагать, что во время максимумов 11-летнего цикла имеет место усиление циклонов и антициклонов.
Данные ряда исследований свидетельствуют о наличии зависимости засух от фаз 11– и 22-летних циклов солнечной активности, причем среднеазиатские засухи коррелируют (т. е. имеют большой коэффициент корреляции) с 11-летним циклом, в то время как североамериканские – с 22-летним. Горячих защитников 80–90-летний цикл солнечной активности нашел в лице дендрологов, утверждающих, что он отчетливо прослеживается при изучении годовых колец деревьев-долгожителей.Здесь необходимо маленькое отступление. Когда нужно подтвердить или опровергнуть связь между какими-либо явлениями, нередко прибегают к поиску коэффициента корреляции. Коэффициент этот, широко используемый в математической статистике, может изменяться по абсолютной величине от нуля до единицы. Он характеризует степень зависимости между явлениями: чем ближе его значение к единице, тем теснее эта связь. Такой вот универсальный критерий. Но в его определении есть важный нюанс: коэффициент корреляции выполняет возложенную на него миссию лишь в том случае, если достоверно известно, что такая зависимость существует. Иными словами, если вам вздумалось оценить с помощью коэффициента корреляции связь, к примеру, между ежемесячным ростом успеваемости группы школьников после прихода в их класс талантливого учителя и увеличением в тот же период поголовья бегемотов в Африке (вследствие создавшейся особо благоприятной для этого обстановки), то вышеозначенный коэффициент, вероятно, окажется очень высоким, но… Как часто исследователь, умилившись полученным большим значением коэффициента корреляции, не удосуживается привести хоть какие-нибудь резоны в обоснование наличия исследуемой связи. Сказанное, отнюдь, не отрицает применимость коэффициента корреляции, а только служит напоминанием об осторожности в выводах, которая нужна при его использовании.
Выше говорилось о том, что в ходе 11-летнего цикла изменения затрагивают в основном ультрафиолетовую часть спектра. Сколь значительны эти изменения, показано на рис. 10. Ультрафиолетовый участок спектра приблизительно соответствует длинам волн 170 < λ < 320 нм[11]. Однако только для длин волн λ < 205 нм интенсивность излучения в максимуме солнечной активности превосходит на 5–17 % ее в минимуме 11-летнего цикла, на бо́льших же длинах волн они почти равны. Следить за такими незначительными изменениями на верхней границе атмосферы очень трудно, это стало возможным только в последние 20–30 лет с появлением искусственных спутников Земли.
Рис. 10. Соотношение интенсивности солнечного излучения на верхней границе атмосферы в максимальной (Imax) и минимальной (Imin) фазах 11-летнего цикла на разных длинах волн по данным измерений
Изменения такого масштаба практически никак не сказываются на солнечной постоянной: спутниковая аппаратура зафиксировала лишь незначительные ее колебания – с амплитудой 0,1 % – в ходе 11-летнего цикла солнечной активности. Косвенные данные указывают на значительно бо́льшие ее изменения (десятые доли процента) в XVII в. Многие исследователи тем не менее полагают, что небольшой рост солнечной постоянной имел место с середины XVIII в. по настоящее время. Однако его трудно выделить и оценить, так как спутниковых измерений тогда не было, а точность наземных измерений, которым мешали и облачность, и недостаточная прозрачность атмосферы, не позволяет достаточно определенно судить о ее росте за последние 250 лет. Но даже изменения на десятую долю процента очень существенно отражаются на эффективности химических превращений в атмосфере, порождая эволюцию содержания газов в составе атмосферного воздуха, в том числе – парниковых газов, подробный разговор о которых еще впереди.
Итак, вышеупомянутый рост температуры в течение ХХ века едва ли обусловлен увеличением потока солнечного излучения. Похоже, здесь у Солнца – надежное алиби. Более того, считается, что и прежде, в том числе и в далеком прошлом, потоки солнечной энергии не подвергались заметным колебаниям. Однако колебания климата в истории Земли случались…
Глава пятая
Задача со многими неизвестными
Прошедшее нужно знать не потому, что оно прошло, а потому, что уходя, не умело убрать своих последствий.
В. О. Ключевский
Что мы знаем о климате далекого прошлого
Возраст Земли по современным представлениям составляет приблизительно 4,6 миллиардов лет. За это время наша планета прошла много стадий в своем развитии. Конечно же, эволюция коснулась и ее климата. Каков был климат в столь давние времена, мы вряд ли когда-нибудь узнаем достоверно (да это и не имеет большого практического значения). Однако проследить изменения климата на достаточно большом временно́м промежутке очень заманчиво: ведь если удастся понять их причины, это может стать ключом к пониманию оснований для его изменения сегодня. Занимается подобным специальная наука – палеоклиматология.
Основой для всякой теории, как известно, являются факты. В нашем случае необходимые факты чаще сокрыты под толщей Земли и лишь иногда в прямом и переносном смыслах лежат на поверхности. Их сбором занимаются геологи, археологи, палеоклиматологи, палеонтологи. Получаемые ими сведения очень разнородны: это и количественный и качественный состав воздуха и грунта, и перечень обнаруженных древних представителей флоры и фауны, и особенности быта наших далеких предков. На основе анализа всей информации воссоздается картина соответствующей эпохи: какие компоненты содержались в воздухе, какая часть земной поверхности была покрыта водой, теплым или холодным был климат и т. д. При этом если, например, концентрацию компонентов воздуха можно непосредственно измерить в воздушных пузырьках, вмерзших в лед на глубине нескольких десятков или сотен метров, то судить о характерной температуре эпохи можно лишь косвенно: по преобладанию теплолюбивых или, наоборот, морозостойких растений, по одежде людей. Согласитесь, картина получается, мягко говоря, неполная, а потому недостаточная для сколь-нибудь обоснованных выводов. Эту картину исследователи стремятся дополнить, исходя из универсальных законов природы, модельных оценок, наконец, здравого смысла. Однако представьте ситуацию, когда каждому из десяти выдающихся мастеров предложили восстановить античный сосуд по его небольшому фрагменту, найденному в ходе археологической экспедиции. В результате появится десять прекрасных, но различных версий сосуда, и нет никакой гарантии, что хотя бы одна из них в точности соответствует оригиналу! Так же и к реконструкциям климата прошлых эпох, произведенным в условиях недостатка объективной информации, следует относиться с долей здорового скепсиса, но в то же время стараться «отделить зерна от плевел», т. е. принять выводы, соответствующие современному уровню развития науки.
Много определеннее наша осведомленность о состоянии атмосферного воздуха в те далекие времена. Концентрация основных парниковых газов (подробный разговор о них еще впереди) значительно отличалась от современной: так, согласно измерениям в ледниковых щитах Антарктиды и Гренландии, содержание углекислого газа, метана и оксида азота(I) было меньше примерно на 25, 60 и 25 % соответственно в последний межледниковый период (около 120 тыс. лет назад) и на 50, 80 и 40 % в последний ледниковый период (около 18 тыс. лет назад).
При этом изменения содержания вышеперечисленных парниковых газов и температуры происходили синхронно, т. е. когда росла концентрация, возрастала и температура, падение же концентрации сопровождалось снижением температуры. Климатологи спорят лишь об одном: что здесь причина, а что – следствие? То ли увеличение содержания парниковых газов влекло за собой разогрев атмосферы, то ли начавшееся по каким-то иным причинам потепление способствовало обогащению атмосферы парниковыми газами (климатический аналог дискуссии, что было прежде: курица или яйцо?). Есть косвенные данные о том, что изменения содержания парниковых газов предшествовали изменениям температуры воздуха, но они еще нуждаются в подтверждении.
Основой для всякой теории, как известно, являются факты. В нашем случае необходимые факты чаще сокрыты под толщей Земли и лишь иногда в прямом и переносном смыслах лежат на поверхности. Их сбором занимаются геологи, археологи, палеоклиматологи, палеонтологи. Получаемые ими сведения очень разнородны: это и количественный и качественный состав воздуха и грунта, и перечень обнаруженных древних представителей флоры и фауны, и особенности быта наших далеких предков. На основе анализа всей информации воссоздается картина соответствующей эпохи: какие компоненты содержались в воздухе, какая часть земной поверхности была покрыта водой, теплым или холодным был климат и т. д. При этом если, например, концентрацию компонентов воздуха можно непосредственно измерить в воздушных пузырьках, вмерзших в лед на глубине нескольких десятков или сотен метров, то судить о характерной температуре эпохи можно лишь косвенно: по преобладанию теплолюбивых или, наоборот, морозостойких растений, по одежде людей. Согласитесь, картина получается, мягко говоря, неполная, а потому недостаточная для сколь-нибудь обоснованных выводов. Эту картину исследователи стремятся дополнить, исходя из универсальных законов природы, модельных оценок, наконец, здравого смысла. Однако представьте ситуацию, когда каждому из десяти выдающихся мастеров предложили восстановить античный сосуд по его небольшому фрагменту, найденному в ходе археологической экспедиции. В результате появится десять прекрасных, но различных версий сосуда, и нет никакой гарантии, что хотя бы одна из них в точности соответствует оригиналу! Так же и к реконструкциям климата прошлых эпох, произведенным в условиях недостатка объективной информации, следует относиться с долей здорового скепсиса, но в то же время стараться «отделить зерна от плевел», т. е. принять выводы, соответствующие современному уровню развития науки.
О чем же можно говорить с изрядной долей уверенности? Разочаруем сочинителей различных климатических страшилок: палеонтологические данные демонстрируют непрерывность развития жизни на Земле, а значит, за весь охваченный наблюдениями период никаких климатических катастроф не происходило!В монографии А. С. Монина и Ю. А. Шишкова[12] говорится, что за все время существования жизни на планете «температура на Земле всегда оставалась в пределах жидкой воды». Палеоданные также свидетельствуют о том, что в истории Земли ее поверхность – материки и океаны – и климат подвергались существенным изменениям. Популярная ныне «эпоха динозавров», составляющая небольшую часть этой истории, характеризовалась более теплым климатом (среднеглобальная температура была выше современной на 5–10 °C) и отсутствием полярных снежно-ледовых областей. Ледниковый щит Антарктиды, по современным оценкам, образовался примерно 15–20 миллионов лет назад, его объем постепенно увеличивался и достигает сегодня около 24 миллионов кубических километров (приблизительно 90 % всего объема ледников на планете; из оставшихся десяти процентов девять приходится на Гренландский ледовый щит и 1 % – на все остальные).
Такое количество льда, если он полностью растает, обеспечит подъем воды в Мировом океане примерно на 55 метров. Однако в так называемой четвертичной эпохе (геологическом периоде, начавшемся примерно 2,6 миллиона лет назад и продолжающемся по настоящее время) наступления и отступления ледников происходили почти регулярно.Изменялись площадь и положение материков на земной поверхности вследствие дрейфа континентов – они сдвигаются ежегодно в среднем на 1–2 см. Совсем немного. Однако, скажем за 100 миллионов лет, это перемещение составляет величину порядка тысячи километров! Такое смещение континентов напрямую не сказывается на весьма грубых оценках климата соответствующих палеопериодов, но помогает интерпретировать некоторые находки палеонтологов: следы коралловых рифов в Арктике, каменного угля – на Шпицбергене и в Антарктиде, останки динозавров – в Южной Патагонии (Аргентина). В результате пополнение базы палеоданных всегда сопряжено с трудностями их интерпретации и обобщения.
Много определеннее наша осведомленность о состоянии атмосферного воздуха в те далекие времена. Концентрация основных парниковых газов (подробный разговор о них еще впереди) значительно отличалась от современной: так, согласно измерениям в ледниковых щитах Антарктиды и Гренландии, содержание углекислого газа, метана и оксида азота(I) было меньше примерно на 25, 60 и 25 % соответственно в последний межледниковый период (около 120 тыс. лет назад) и на 50, 80 и 40 % в последний ледниковый период (около 18 тыс. лет назад).
При этом изменения содержания вышеперечисленных парниковых газов и температуры происходили синхронно, т. е. когда росла концентрация, возрастала и температура, падение же концентрации сопровождалось снижением температуры. Климатологи спорят лишь об одном: что здесь причина, а что – следствие? То ли увеличение содержания парниковых газов влекло за собой разогрев атмосферы, то ли начавшееся по каким-то иным причинам потепление способствовало обогащению атмосферы парниковыми газами (климатический аналог дискуссии, что было прежде: курица или яйцо?). Есть косвенные данные о том, что изменения содержания парниковых газов предшествовали изменениям температуры воздуха, но они еще нуждаются в подтверждении.
Как ни удивительно, но нет полной определенности с арктической ледовой шапкой: здесь даже в относительно теплую и недавнюю «эпоху викингов» (IX–XII вв.), по мнению А. С. Монина, «возможно, не было или было лишь немного многолетних льдов». Затем наступило похолодание, и последующие четыре века (1430–1850 гг.) часто называют малым ледниковым периодом.Вот так обстоят дела с изучением климата прошлых веков. Как мог заметить внимательный читатель, в этом небольшом разделе неоднократно встречалось словосочетание «ледниковый период». Дальнейший рассказ как раз о ледниковых периодах.
Глава шестая
Земля в ледяном плену
Тот, кто глядит в прошлое, так же видит будущее, как видно в зеркале глубоких вод высокое небо.
Ш. Петефи
Циклы миланковича
Найдется немало людей в нашей стране, у которых слова «ледниковый период» ассоциируются исключительно с некогда популярной передачей на одном из центральных телеканалов или одноименным мультфильмом. Мы же, естественно, будем вести речь о ледниковых периодах, случавшихся в истории Земли. Чтобы «добраться» до них, придется совершить виртуальное путешествие в глубь даже не веков, но десятков тысячелетий. А вот доказательства того, что такие периоды действительно существовали, в буквальном смысле лежат на поверхности: становление «большого льда» и, главным образом, его сход оставляли отметины на «теле» планеты в виде цепей холмов (ледниковых морен), гигантских валунов, возникших на ранее сухих местах болот и мохового покрова и пр. (геологи легко «расширят и углубят» этот перечень). «Ну, существовали… – и ладно! Что нам сегодня до этого?» – пробурчит прагматичный читатель. Но кое-какой интерес у нас имеется. Уже само название «ледниковый период» справедливо подразумевает наличие в ту пору очень холодного климатического режима. А с чего бы вдруг, спрашивается, ему установиться? Какие такие могущественные силы, отличные от современных, довлели при его формировании? И что сводило на нет их действие ближе к окончанию каждого из ледниковых периодов? Очевидно, другие не менее могущественные природные силы (человек, конечно же, тут непричастен). Какие? Хотелось бы знать, желательно – поименно. Проявляются ли они сейчас или «затаились на время», чтобы в самый неподходящий момент восстать, как птица Феникс из пепла? Не удружат ли они нам очередным витком всемирного обледенения и не окажутся ли на его фоне наши треволнения о глобальном потеплении никчемной суетой?
Ледниковые периоды стали возникать в четвертичный период истории Земли, около двух миллионов лет назад. За это время масштабное оледенение наступало, по крайней мере, четырежды, а последний ледниковый период случился около 18 тыс. лет назад. На рис. 6 цв. вклейки показаны зоны обледенения поверхности Земли в течение последнего ледникового периода. Обращает на себя внимание тот факт, что в Северном полушарии область, покрытая льдом, много больше своего южного антипода. Различно и распределение льдов в Западном и Восточном полушариях: главный ледниковый щит Западного полушария – Лаврентийский – охватывал пространство Аляски, Канады и Гренландии, а в Восточном подо льдом оказывались Скандинавия, Таймыр, небольшие площади севера европейской России. В то же время Северная Азия и Чукотский «хвост» были почти безледными с замерзшей почвой – той, что сегодня именуется вечной мерзлотой. В Северном полушарии медленное наступление ледников каждый раз начиналось на суше с севера на юг, с вершин гор к их подножиям, также с севера на юг смещались морские границы льда. В Антарктиде первый ледниковый щит появился примерно 20 миллионов лет назад. Тогда же между Антарктидой и Южной Америкой образовался пролив, много позже названный именем Дрейка, и круговое течение, блокировавшее приток теплых вод из тропиков к самому южному континенту.
Чем объясняется такая неравномерность ледяного покрова? Недавние исследования с применением климатических моделей помогли установить две основные причины. Первая – лед может расширять свои «владения» только на суше. В море от «языка» ледника откалываются айсберги, которые дрейфуют в более теплые воды (больше некуда!), где и прекращают свое существование, и, как следствие, общая площадь морского льда почти не увеличивается. Таким образом, в богатом морями Южном полушарии (площадь суши – 49 млн км2) рост материкового льда ограничивается Антарктидой, и его площадь не увеличивается при понижении температуры. В Северном полушарии (площадь суши – 100 млн км2) таких сдерживающих факторов нет, и материковый лед может беспрепятственно распространяться на юг.
Вторая причина обусловлена обратной связью между отражательной способностью поверхности и температурой. Как, вероятно, знает читатель, белый снег наиболее эффективно отражает солнечную радиацию, достигшую земной поверхности. При снижении температуры усиливаются как выпадение снега, так и образование ледяного покрова, и отражательная способность поверхности возрастает. Далее ослабляется поглощение ею солнечной энергии, а следовательно, ее температура падает еще больше, что благоприятствует появлению все новых масс снега и льда. Но, как было сказано выше, площадь ледника может заметно возрастать лишь в Северном полушарии, поэтому именно здесь взаимосвязь отражательной способности поверхности и температуры действует наиболее продуктивно.
А различие между Западным и Восточным полушариями? Здесь опять «виноваты» размеры площади суши, а также ее сезонный нагрев летом и охлаждение зимой. В климатологии хорошо известен так называемый континентальный эффект сезонного хода температуры и осадков. В середине материка, вдали от морских берегов, зима холоднее, лето теплее, осадков (дождя, снега) выпадает меньше, чем в прибрежных зонах или на островах в океане. В Сибири и вообще в Северной Азии лето, хотя и короткое, но обычно сухое и жаркое. Ледники в большой Евразии тают быстрее, чем в меньшей по площади Северной Америке, а прирастают медленнее из-за меньшего количества осадков, которых в Восточной Сибири выпадает немного. Таким образом, в Восточном полушарии – в Азии – затруднено образование ледниковых щитов и «облегчено» их относительно быстрое таяние по сравнению с Северной Америкой и Гренландией.
Ледниковые периоды стали возникать в четвертичный период истории Земли, около двух миллионов лет назад. За это время масштабное оледенение наступало, по крайней мере, четырежды, а последний ледниковый период случился около 18 тыс. лет назад. На рис. 6 цв. вклейки показаны зоны обледенения поверхности Земли в течение последнего ледникового периода. Обращает на себя внимание тот факт, что в Северном полушарии область, покрытая льдом, много больше своего южного антипода. Различно и распределение льдов в Западном и Восточном полушариях: главный ледниковый щит Западного полушария – Лаврентийский – охватывал пространство Аляски, Канады и Гренландии, а в Восточном подо льдом оказывались Скандинавия, Таймыр, небольшие площади севера европейской России. В то же время Северная Азия и Чукотский «хвост» были почти безледными с замерзшей почвой – той, что сегодня именуется вечной мерзлотой. В Северном полушарии медленное наступление ледников каждый раз начиналось на суше с севера на юг, с вершин гор к их подножиям, также с севера на юг смещались морские границы льда. В Антарктиде первый ледниковый щит появился примерно 20 миллионов лет назад. Тогда же между Антарктидой и Южной Америкой образовался пролив, много позже названный именем Дрейка, и круговое течение, блокировавшее приток теплых вод из тропиков к самому южному континенту.
Чем объясняется такая неравномерность ледяного покрова? Недавние исследования с применением климатических моделей помогли установить две основные причины. Первая – лед может расширять свои «владения» только на суше. В море от «языка» ледника откалываются айсберги, которые дрейфуют в более теплые воды (больше некуда!), где и прекращают свое существование, и, как следствие, общая площадь морского льда почти не увеличивается. Таким образом, в богатом морями Южном полушарии (площадь суши – 49 млн км2) рост материкового льда ограничивается Антарктидой, и его площадь не увеличивается при понижении температуры. В Северном полушарии (площадь суши – 100 млн км2) таких сдерживающих факторов нет, и материковый лед может беспрепятственно распространяться на юг.
Вторая причина обусловлена обратной связью между отражательной способностью поверхности и температурой. Как, вероятно, знает читатель, белый снег наиболее эффективно отражает солнечную радиацию, достигшую земной поверхности. При снижении температуры усиливаются как выпадение снега, так и образование ледяного покрова, и отражательная способность поверхности возрастает. Далее ослабляется поглощение ею солнечной энергии, а следовательно, ее температура падает еще больше, что благоприятствует появлению все новых масс снега и льда. Но, как было сказано выше, площадь ледника может заметно возрастать лишь в Северном полушарии, поэтому именно здесь взаимосвязь отражательной способности поверхности и температуры действует наиболее продуктивно.
А различие между Западным и Восточным полушариями? Здесь опять «виноваты» размеры площади суши, а также ее сезонный нагрев летом и охлаждение зимой. В климатологии хорошо известен так называемый континентальный эффект сезонного хода температуры и осадков. В середине материка, вдали от морских берегов, зима холоднее, лето теплее, осадков (дождя, снега) выпадает меньше, чем в прибрежных зонах или на островах в океане. В Сибири и вообще в Северной Азии лето, хотя и короткое, но обычно сухое и жаркое. Ледники в большой Евразии тают быстрее, чем в меньшей по площади Северной Америке, а прирастают медленнее из-за меньшего количества осадков, которых в Восточной Сибири выпадает немного. Таким образом, в Восточном полушарии – в Азии – затруднено образование ледниковых щитов и «облегчено» их относительно быстрое таяние по сравнению с Северной Америкой и Гренландией.
Конец бесплатного ознакомительного фрагмента