В 1869 году "Грейт Истерн" проложил третий трансатлантический кабель протяжённостью в 5500 километров, между Францией и США. В 1870 году он успешно завершил прокладку прямой телеграфной линии, соединившей Англию с Индией. Трудно переоценить значение этой линии. Раньше телеграммы, посланные в Индию, приходили туда через неделю, передаваемые по наземным линиям телеграфистами разных национальностей, и порой так искажались, что их просто невозможно было понять. С прокладкой этой линии языковые и политические проблемы отпали, а на передачу телеграммы и получение ответа требовалось не более нескольких минут.
   Годом позже, в 1871-м, Англия через Сингапур соединилась с Австралией. В 1874 году проложили первый кабель из Европы в Бразилию, идущий через острова Maдейру и Сент-Винсент (из группы Малых Антильских островов в Карибском море). Пять трансатлантических кабелей проложил "Грейт Истерн" на своём веку.
   Соединить же телеграфным кабелем берега Тихого океана удалось лишь в двадцатом столетии (в декабре 1902 г. между Канадой и Австралией.).
 
 
    Прокладка индо-европейского телеграфа в 1870 году.
    Доставка берегового конца кабеля на побережье Персидского залива
   Однако нет ничего более скучного, чем описание работы, которая проходит без всяких приключений. А приключения, видимо, закончились 27 июля 1866 года, в тот день, когда кабельная флотилия с победой вошла в бухту Хартс-Контент. Люди на горьком опыте научились без особых происшествий прокладывать подводные телеграфные линии; достаточно сказать, что к 1900 году таких линий только в Северной Атлантике насчитывалось не менее пятнадцати  [33].
   Характерное свойство подводных телеграфных линий - их долговечность. Если конструкция хороша, кабель, как правило, длительное время работает без ремонта и замены отдельных его участков. Например, кабели 1865-1866 гг. прослужили без ремонта пять лет, а ряд секций кабеля 1873 года (Ирландия - Ньюфаундленд) - около девяноста лет. Но долговечность подводного телеграфного кабеля, почти беспрецедентная для технического устройства, является, вместе с тем, и тормозом в развитии телеграфной связи на далёкие расстояния. Стоимость трансокеанского телеграфного кабеля исчисляется миллионами фунтов стерлингов. Теперь представьте себе, что, скажем, через десятилетие после его прокладки какой-либо инженер предложил другую, несколько лучшую конструкцию кабеля. Кому придёт в голову идея заменить такой кабель, если известно, что он обеспечит надёжную связь в течение полустолетия.
   Как мы увидим далее, в области подводной телеграфии за целое столетие осуществлены всего три значительных усовершенствования.
   Во времена ручных аппаратов сообщения приходилось прочитывать и записывать на каждой телеграфной станции с тем, чтобы передавать их дальше по линии. Таких повторений могло быть шесть и более; нетрудно представить себе вероятность ошибок, задержек и т.п. Всё это вызывало крайнюю необходимость в создании устройства, которое могло бы автоматически записывать сигналы, поступающие с одного участка линии, и передавать их дальше без каких-либо искажений. Простое усиление сигналов, даже если бы в 1870-х годах кто-нибудь и знал, как его осуществить, было бы недостаточным, так как при этом усиливались бы и все помехи, сопутствующие сигналу при его прохождении вдоль линии. После двух или трёх этапов такого усиления стало бы невозможно отличить точку от тире. Необходим был специальный прибор, выполняющий функции телеграфиста. Прибор этот должен был определить является ли поступивший сигнал точкой или тире, усилить его, одновременно устранив искажения, и передать дальше по линии. Подобный прибор появился лишь в 1920 году. Его название - регенератор ("преобразователь") - точно характеризует выполняемые им функции.
   Здесь уместно сказать, что хотя телеграфные компании всё ещё пользуются кодом Морзе, термины "точка" и "тире" теперь стали условными. Эти два основных составляющих код знака уже не различаются между собой по длительности. Они существуют лишь там, где передача идёт при помощи ключа. При автоматической же работе тире ничуть не длиннее точки. Оба сигнала различаются только тем, что точка - это отрицательный импульс тока, а тире - положительный. Так, например, согласно этому коду сигнал "SOS" будет: - - - + + + - - -; или, если эти сигналы передаются на прибор, имеющий в качестве указателя подвижную стрелку или световой луч, то он будет отклоняться от центра соответственно влево, влево, влево, затем вправо, вправо, вправо и снова влево, влево, влево.
   В наши дни сообщения, поступающие в пункт назначения, автоматически записываются на телеграфную ленту в виде слов; телеграфисту остаётся только наклеить её на бланк и передать рассыльному для доставки адресату.
   Одним из наиболее важных достижений первых дней существования подводного телеграфа было обнаружение возможности одновременной посылки по кабелю сигналов в противоположных направлениях, что почти вдвое увеличило пропускную способность цепи. Такая связь называется двусторонней, или дуплексной, она, подобно множеству других открытий в области электросвязи, ещё долгое время казалась чудом. Секрет заключался в том, что приёмное устройство на передающем конце кабеля нечувствительно к посылаемым импульсам и в то же время чутко реагирует на импульсы, которые поступают с противоположного конца кабеля. Так, человек в разговоре обычно не слышит своей речи или, вернее, не слушает её и в то же время слышит речь другого человека, даже если сам при этом говорит.
   Следующее, ещё более значительное техническое достижение заключалось в том, что в одном направлении стали посылать несколько сообщений одновременно. Один кабель начали использовать для передачи сразу восьми телеграмм: четырёх в одну сторону и четырёх в обратную. Быстродействующий переключатель на передающем конце подключал линию поочерёдно к четырём передатчикам; каждый из них занимал линию в течение долей секунды. На противоположном конце приёмные устройства подключались к линии строго в той же последовательности.
   Благодаря этим усовершенствованиям по атлантическому кабелю стало возможным транслировать около 400 слов в минуту - это примерно в 100 раз больше того, что мог дать кабель, проложенный в 1858 году (в те редкие минуты, когда он хорошо работал).
   Скорость передачи сигналов по кабелю быстро убывает по мере увеличения его длины. Поэтому длинные линии целесообразно образовывать из нескольких секций, между которыми следует устанавливать регенеративное трансляционное устройство.
   К несчастью, в средней Атлантике нет ни одного подходящего для этой цели места. Несколько небольших островов в южной Атлантике, в Тихом и Индийском океанах получили мировую известность именно благодаря удачному географическому положению. К числу их относятся, в частности, Кокосовые острова в Индийском океане.
   Между прочим, с этими островами связано одно событие, относящееся к первой мировой войне. 9 ноября 1914 года германский крейсер "Эмден" высадил на Кокосовых островах десант для того, чтобы уничтожить ретрансляционную станцию - узел нескольких кабельных линий, идущих к Южной Африке, Индонезии и Австралии. Десант уничтожил станцию и перерезал кабели, но это была Пиррова победа, так как обслуживающий персонал станции успел сообщить в Австралию о приближении германского крейсера. Прибывший вскоре австралийский крейсер "Сидней" атаковал и утопил германское судно.
 
 
    Серия почтовых марок, посвященная юбилею событий у Кокосовых островов
   Во время второй мировой войны японцы решили повторить эту операцию, но, видимо, памятуя о трагедии "Эмдена", ограничились только обстрелом станции.
   Сами кабельные линии подвергались в годы войны многочисленным диверсиям. В 1939 году Германия имела только две подводные кабельные линии - одну из Эмдена на Азорские острова и другую из Эмдена в Лиссабон. В первые же 24 часа войны оба кабеля были перерезаны.
   Вообще-то подводный кабель перерезать нетрудно, если знать место его прокладки. Достаточно провести несколько тралений в определённом направлении - и кабель будет поднят на поверхность. Конечно, если при этом не придётся отражать атаки судов противника. Чтобы избежать подобных осложнений, диверсионные операции иногда проводятся подводными лодками. В 1945 году британская средняя подводная лодка вывела из строя подводные кабели на линиях Сайгон-Сингапур и Сайгон-Гонконг. Для нанесения противнику максимального урона кабель стремятся разрезать в нескольких местах. В таких случаях место повреждения определить весьма сложно, даже с помощью специальных приборов.
   В прошлом, когда техника ещё не достигла современного уровня, обнаружить место повреждения подводного кабеля было чрезвычайно трудно. Ремонтное судно с этой целью вслепую проводило траление на больших площадях. Современными приборами место повреждения обнаруживается без труда. Даже в случае, если из кабельной линии в целях её повреждения изъята целая секция, приборы точно укажут длину секции.
   С другой стороны, казалось бы, нет смысла повреждать подводные кабели противника, а гораздо полезнее перехватывать посылаемые по ним сообщения. Однако на практике это оказывается не таким простым делом. Если и удастся перехватить сигналы, или, точнее, электрические импульсы, которые составляют передачу, их будет трудно расшифровать, так как только на конечных пунктах они соответствуют передаваемым сигналам. Как бы то ни было, современные кабельные линии не имеют специальной защиты от подслушивания. Да в ней и нет необходимости, хотя все секретные сообщения, особенно во время войны, передаются именно по подводным кабелям. Видимо, и через сотню лет подводный кабель останется самым надёжным курьером, служащим человечеству.

XIII. ПУСТЫНИ ГЛУБИН

   До появления подводного телеграфа об океанских глубинах почти ничего не было известно. Тем, кто пытался представить себе подводный мир, он казался полным тайн, населённым ужасными чудовищами, с дном, усеянным обломками кораблей и сокровищами, затонувшими в результате кораблекрушений. Морские глубины были так же далеки и недосягаемы для человечества, как и обратная сторона Луны.
   Картина изменилась, как только люди попытались проложить первые кабели в открытом море. Стало жизненно необходимым собрать сведения об этом невидимом мире, который занимает территорию более двух третей земного шара.
   Надо было узнать глубину под килем судов-кабелеукладчиков, а также характер грунта, который нередко находился на таком же расстоянии от киля, как самые высокие облака от поверхности земли. Капитаны судов должны были иметь уверенность, что кабель не повиснет, зацепившись за подводные скалы; важно было также знать, нет ли в грунте каких-либо включений, которые могут оказать влияние на нормальную работу кабеля, и можно ли будет в случае необходимости поднять его.
   К моменту, когда лейтенант Мори начал собирать материал для своей "Физической географии моря", в центральной части Атлантики было сделано только 180 замеров глубины, не считая тех, которые проводились вблизи континентов. Это объясняется отчасти тем, что в проведении замеров раньше никто не был особенно заинтересован, а отчасти тем, что спуск и подъём линя с тяжёлым грузом на конце при глубинах в несколько километров для того времени были делом трудоёмким и продолжительным. Замер глубин стал практически осуществимым только тогда, когда линь начали опускать на дно с помощью паровой лебёдки; это уже не первый случай, когда изобретение несложного механического устройства оказывает важную услугу науке.
   С 1854 года замеры глубин проводятся во всех океанах мира; в дальнейшем метод совершенствуется; пробы морского дна берут с помощью остроумно сделанных захватов и черпаков. Эти технические приспособления в настоящее время превратились в совершенные машины, которые позволяют брать образцы грунта высотой до пятнадцати метров, рисующие геологическую картину морского дна на протяжении миллионов лет.
 
 
    "Челленджер"
 
 
    и схема его плаваний в 1872-1875 гг.
   Изобретение новых приспособлений для изучения дна океанов, быстрое развитие глубоководных кабельных линий, появление в биологической науке учения Дарвина о происхождении видов - всё это вместе взятое стимулировало организацию первой крупной океанографической экспедиции - классического рейса судна "Челленджер". В период 1872-1875 годов 2306-тонный корвет с двигателем в 400 лошадиных сил обошёл все моря и океаны. Экспедиция внесла большой вклад в науку. Результаты исследований были сведены в пятьдесят массивных томов, которые и до наших дней остались наиболее полным источником информации о морских глубинах .
   Главным результатом экспедиции "Челленджера" явилась революция в представлении о жизни в океанских глубинах. Воображение обывателя могло населять морские пучины различными чудищами, но учёные в начале девятнадцатого столетия считали, что никакое живое существо не может обитать в вечной темноте, при температуре немногим выше 0°С и, больше того, под давлением в несколько сот килограммов на квадратный сантиметр.
   Экспедиция "Челленджера" доказала, что учёные ошибались. На больших глубинах, до которых никогда не опускалась рыбацкая сеть, обитали живые существа. Существа эти плотоядные, так как в глубинах, куда не проникают лучи солнца, растительность отсутствует и единственным источником питания является непрерывный дождь биологических частиц, падающих с верхних слоев океана на его дно и образующих наносные породы. Подводные глубины населяют легионы кошмарных существ - рыбы, заглатывающие жертву больше собственных размеров, фосфоресцирующие животные, прожорливые чудища с длинными щупальцами, которыми они опираются о морское дно.
   Таковы живые существа, плавающие и пожирающие друг друга рядом с тонким кабелем, несущим человеческие мысль и слово от материка к материку. И ещё одно можно сказать совершенно определённо: даже теперь мы имеем самое приблизительное представление о подводном мире. Примерно такое же представление было бы у наблюдающего жизнь земли с вертолёта, поднявшегося выше облаков.
   Дно океана покрыто слоем плотного ила; будучи поднят на поверхность, этот ил засыхает, превращаясь в твёрдые куски, похожие на глину. Он достаточно плотен, чтобы удерживать на себе тяжёлый подводный кабель, но, если последний погрузится в ил слишком глубоко, поднять кабель бывает порой невозможно.
   Отложения в виде ила состоят главным образом из мириадов скелетов мельчайших существ, известных под общим названием "планктон". Планктон играет в океане ту же роль, какую растения играют на земле, т.е. он стоит в начале, если можно так выразиться, "пищевой цепи", в конце которой находятся высокоорганизованные рыбы и даже человек.
   Скелеты мельчайших существ, содержащие известь и кремний, медленно погружаются на дно, образуя слой колоссальной толщины. В бассейне Атлантического океана этот слой достигает почти четырёх тысяч метров. Такие отложения могли образоваться не за миллионы, а за много десятков миллионов лет. Это открытие, сделанное, кстати, сравнительно недавно, положило конец легенде о затерянной стране Атлантиде, отличавшейся, по преданию, развитой цивилизацией. Оно показало, что ни один континент не мог затонуть в Атлантике позже, чем примерно 150 миллионов лет назад. Этот период характеризуется развитием на земле крупных пресмыкающихся, что, как известно, происходило задолго до появления человека.
   Бесконечное количество крошечных скелетов планктона, к которым следует добавить всё то, что крупные реки несут в океан, давным-давно покрыло поверхность дна однородным слоем. Но дно океана нельзя представлять как некую безликую и однообразную равнину; она пересечена подводными горами, покрыта трещинами и ущельями. На ней возвышаются причудливые скалы. В средней Атлантике находится крупнейшая на земле подводная горная гряда длиной около шестнадцати тысяч километров и шириной восемьсот километров. Северное подножье этого сред неатлантического горного района, открытое в 1850 году, было названо лейтенантом Мори Телеграфным плато. Примечательно то, что на плато совершенно не оказалось трещин, которые могли бы помешать прокладке кабеля.
   Большие глубины не являются помехой для прокладки кабеля, но неровности дна представляют серьёзную опасность, так как кабель, повиснув над подводным каньоном, может порваться под действием силы тяжести. Кроме того, в районах, где морское дно образует неожиданные впадины, вполне возможны землетрясения.
   Такое событие вызвало большую тревогу в Австралии в 1888 году, когда три кабеля, идущие к континенту, оборвались одновременно, и страна потеряла связь с остальным миром. Было объявлено, что кабель порван противником, и военно-морской флот срочно провёл мобилизацию, чтобы достойно встретить предполагаемого врага.
   Опасность землетрясения является единственной, которую можно предвидеть заранее. Ещё при прокладке первых кабелей делались попытки выбрать места, в которых не наблюдается вулканической деятельности. Но до недавних пор правильно определить такие места было довольно трудно, да и сейчас ещё далеко не всё ясно в этом вопросе.
   18 ноября 1929 года большое подводное землетрясение в Северной Атлантике повредило большинство кабелей между Европой и Америкой. Но они выходили из строя не одновременно, а один за другим и, казалось, что волна землетрясения прошла по всему морскому дну. Теперь полагают, что причиной повреждения кабелей был так называемый "мутный поток" - лавина перемешанной с илом морской воды, которая под действием землетрясения перемещалась со скоростью около 90 километров в час. Как бы то ни было, на ремонт кабельных линий ушло полгода, а потери компаний составили более миллиона фунтов стерлингов.
   Необычный случай, связанный с подводным кабелем, произошёл около Бальбоа в Панамском заливе в апреле 1932 года. Ремонтное судно "Олл Америка" отправилось на исправление кабеля, проложенного на глубине около 1000 метров. Причина повреждения была установлена, когда с большими трудностямя кабель подняли на поверхность. Четырнадцатиметровый спермацетовый кит запутался в кольцах кабеля, которые обвились вокруг его нижней челюсти и плавников, и был поднят вместе с ним на поверхность.
   Это весьма досадное для компании (не говоря уже о несчастном ките) происшествие в то же время позволило судить о некоторых привычках этих гигантских животных. Известно, что спермацетовые киты питаются спрутами, за которыми они охотятся в темноте, у морского дна. Но многие натуралисты слабо верили, что дышащие воздухом животные могут в поисках пищи опускаться на глубину в несколько сот метров. Может быть, этот кит установил рекорд погружения на глубину 1000 метров, а затем встретил врага, которого не смог победить, и в последующей борьбе был пленён им. Может быть, покрытый стальной бронёй кабель был принят китом за щупальцы гигантского спрута? Такая версия представляется вероятной, хотя мы никогда не сможем её уточнить. Так же, как мы всё ещё не установили, до какой глубины эти животные могут погружаться вообще и как на таких глубинах им удаётся избежать "кессонной болезни", наступление которой мешает человеку погрузиться глубже, чем на несколько десятков метров.
   Для устранения повреждений подводного кабеля существует специальный флот ремонтных судов, находящихся в состоянии готовности во всех океанах мира. Эти небольшие суда водоизмещением около 2000 тонн не предназначаются для перевозки больших грузов, в отличие от своих старших братьев - судов-кабелеукладчиков. Работа ремонтных судов весьма сложна, однообразна и подчас малоприятна, так как им нередко приходится действовать в тяжёлых штормовых условиях.
   В наши дни обнаружение места повреждения кабеля - не такое сложное дело, каким оно было во времена героической эпопеи "Грейт Истерна". Береговые станции обнаруживают нарушение связи по кабелю; место повреждения С предельной точностью определяется электрическими приборами, ремонтное судно следует к этому месту и отмечает его буями. Поднятие кабеля производится с помощью специальных захватов - грапнелей, которые подбираются в зависимости от характера морского дна. Если дно песчаное, применяются жёсткие грапнели с зубцами, свободно в него входящими; гибкая грапнель с несколькими захватами, расположенными по её длине, используется в тех случаях, когда кабель лежит на скальном грунте. На больших глубинах почти невозможно поднять кабель на поверхность целиком, так как он разрывается под тяжестью собственного веса. При такой вероятности используются так называемые "секущие и держащие" грапнели; они разрезают кабель и концы его поднимают на поверхность поочерёдно.
 
 
 
 
    Различные типы грапнелей.
    Вверху справа- приспособление для для разрезания кабеля,
    лежащего на дне океана, и подъёма его по частям.
   Специальные приборы, регистрирующие натяжение грапнельного троса, указывают, захвачен кабель грапнелями или нет. Однако вахтенный офицер нередко пользуется более примитивным методом: он садится на трос и по вибрации определяет степень его натяжения, доверяя этому способу больше, чем самым совершенным приборам. На заре авиации были лётчики, которые по вибрации кресла судили о поведении самолёта в воздухе; оказывается, экипажи кабельных судов использовали этот принцип ещё сто лет назад.
   После того как концы повреждённого участка кабеля обнаружены, дальнейший ремонт, если не мешает погода, осуществляется в установленном порядке: концы кабеля поднимают на поверхность, вставляют новую секцию и кабель снова опускают на дно. Вследствие частых ремонтов на некоторых старых кабельных линиях от первоначально проложенного кабеля осталось собственно только его направление.
   Борьба с коррозией, корабельными якорями, тралами, морскими червями и даже некоторыми острозубыми рыбами никогда не прекращается. Улучшенные кабельные материалы, о которых будет сказано в следующей главе, уменьшили опасность повреждения кабеля. Но тот, кто имеет дело с водным пространством, должен быть готов к любым неожиданностям. В море бывают случаи, которые подчас даже невозможно объяснить. Так, при прокладке кабеля через Красное море телеграфная станция на берегу приняла однажды такое сообщение: "В 8 часов 5 минут утра кабель внезапно исчез, и больше мы его не видели".Что случилось? Прокладка только началась, и кабельное судно находилось на расстоянии не более двух километров от берега, когда вытравливающий механизм вдруг заело. Судно продолжало держаться на курсе, и, несмотря на натяжение, кабель не порвало. А потом он начал разматываться и разматывался до тех пор, пока вся его длина не исчезла за кормой судна. Инженерам ничего не оставалось, как возвратиться к берегу и начать прокладку вновь, одновременно заказав недостающую длину кабеля и поздравив поставщиков кабеля с отличным качеством их продукции.

XIV. СЕРДЦЕВИНА КАБЕЛЯ

   Существует два основных материала, без которых развитие подводных кабелей было бы невозможно. Это медь, известная человечеству с начала цивилизации, и гуттаперча, впервые появившаяся в Европе за 10 лет до прокладки первой кабельной линии через Па-де-Кале. Медь в чистом виде или в виде её сплава - бронзы - была первым металлом, который человек научился обрабатывать. В течение тысячелетий высоко ценились механические качества меди, и только в наши дни получили всеобщее признание электрические свойства этого металла. Лишь серебро является лучшим, чем медь, проводником электричества (примерно на 10%), но использовать серебро в качестве проводника, разумеется, неэкономично.
   Однако по крайней мере один раз этим обстоятельством пренебрегли. Во время изготовления атомной бомбы в США возникла необходимость, для разделения изотопов урана, сконструировать крупнейший электромагнит, имеющий более тридцати метров в поперечнике. Если бы сделать обмотку электромагнита из меди, запасы этого жизненно необходимого дефицитного металла в стране заметно бы сократились. Тогда и был предложен оригинальный выход: воспользоваться для этой цели государственными запасами серебра, тем более, что его сохранность в случае применения для магнита обеспечивалась столь же надёжно, как и в подвалах государственного банка. Итак, казначейство Соединённых Штатов выделило более 15 тысяч тонн серебра для изготовления обмотки электромагнита; 99,9% этого количества вернулось обратно в подвалы банков, когда разделитель изотопов был демонтирован  [34].
   К счастью для электротехники и связи, медь дешевле серебра. И всё-таки телеграфным компаниям вот уже более ста лет постоянно приходится бороться с ворами, которые расхищают провода и кабель. Ещё в 1823 году Фрэнсис Рональдс, чей примитивный телеграф уже упоминался нами, предвидел возможность хищения и перепродажи кабеля, а потому уже тогда давал советы, как поступать с лицами, которые будут замечены в этих злодеяниях: "Помещайте кабель в глубоких траншеях, чтобы его было труднее обнаружить; в случае же умышленного повреждения кабеля, вешайте нарушителей, если вам удастся поймать их; проклинайте, в случае, если они ускользнут от вас, и в обоих случаях немедленно ремонтируйте кабель".