Страница:
Постоянное участие в коллективных мероприятиях, будь то охота или защита от врагов, требовало от людей установления контакта между собой. Это следовало также и из закона построения развивающихся систем, согласно которому между ячейками любой структуры должна существовать определенного рода взаимосвязь. Со временем она постепенно оформилась и между фщ. единицами в структурах уровня К - людьми: вначале жестами, затем смысловой речью. Так, уже неандертальцы общались между собой жестами и членораздельными звуками. Все это, как известно, явилось зарождением второй сигнальной подсистемы, материальной основой которой служили все те же нейроны коры больших полушарий мозга. Здесь постоянно протекал незримый процесс установления новых межнейронных связей, формирования более сложных аналитико-инициаторных фн. центров, а также записи на ДНК-РНК клеток соответствующих биологических изменений подсистем организма. По мере своего развития II-ая сигнальная подсистема все активней проявляла свою фн. значимость в жизни людей. Теперь уже не вид мамонта, а лишь звуковой символ, обозначающий его, произнесенный одним из членов человеческого стада, стал достаточным раздражителем и приводил соответствующие подсистемы организмов охотников в возбуждение, после чего они устремлялись в направлении предполагаемого местонахождения зверя, то есть предмета раздражения. Зачатки II-ой сигнальной подсистемы существуют и у некоторых других животных, например, собак, кошек и т.д., но проявление ее в этих организмах носит очень ограниченный, примитивный и односторонний характер. Только у человека, с громаднейшим потенциалом его головного мозга, II-ая сигнальная подсистема получила свое дальнейшее фн. развитие, которое нашло отражение в фн. специализации подсистем слуха, речи и все тех же аналитико-инициаторных фн. центров головного мозга.
Одновременно с развитием подсистем организма человека, как фщ. единицы уровня К, продолжали совершенствоваться фн. алгоритмы фн. ячеек гиперструктур, в частности, алгоритмы орудиепроизводства. Так, постепенно человек научился раскалывать камни на пластины и мастерить из них наконечники копий, ножи, скребки, проколки. Каждый новый алгоритм, несмотря на свою относительную простоту, требовал многие сотни лет на свою выработку. Однако в отличие от безусловных рефлексов, то есть алгоритмов фн. ячеек подуровня И, алгоритмы ячеек уровня К не передавались по наследству генетическим путем от поколения к поколению. Биологически передавалась лишь способность к повторению их биозаписи путем установления соответствующих межнейронных связей, формирования фн. центров и функционирования с их помощью. Поэтому индивидуум, умевший делать из камня нож, должен был показать, как это делается, своему соплеменнику или сыну, тот - своему и т.д.
Все это происходило на фоне увеличения объема мозга и дальнейшего усложнения его организации. Опережающим темпом развивались те поля мозга, которые были связаны с осуществлением сенсорной и речедвигательной функций. Следует подчеркнуть, что возникновение и развитие речи оказались возможными лишь на основе сложного изменения анатомии голосового аппарата, увеличения объема гортани, изменения положения корня языка и уменьшения размера челюстей. Иными словами, речь, так же как и орудие трудовой деятельности - рука, сделавшие возможной и неизбежной социализацию первобытного человека, возникли на базе сложнейшего изменения телесной, анатомической организации предков первобытного человека. Продолжавшаяся в этой связи нагрузка на головной мозг привела к тому, что у первых современного типа людей - кроманьонцев, появившихся 30-40 тыс. лет назад, объем мозга достиг небывалой величины (1400--1600 см3), а его структура существенно усложнилась за счет еще большего увеличения числа аналитико-инициаторных фн. центров сигнальных подсистем, связанных с алгоритмированием трудовой деятельности и речи и способностью к абстрактному мышлению. В индивидуальном развитии мозга можно выделить появление гетерохроний, определяющих развитие филогенетически молодых областей за счет относительного уменьшения старых; череп стал приобретать все более человеческую форму. Так постепенно формировался Homo sapiens - "человек разумный".
Кроманьонец не только по физическому облику, форме черепа и чертам лица вплотную приблизился к современному человеку; он демонстрирует уже подлинно человеческий интеллект - способность организовывать коллективные формы труда и жизни, умение строить жилище, изготовлять одежду, пользоваться высокоразвитой речью. Кроманьонец овладел искусством живописи, создал систему ритуалов поведения и зачатки первобытной религии, ему свойственны чувство сострадания к ближнему и забота о нем, то есть то, что мы называем альтруизмом.
Все убыстрявшийся темп эволюционного процесса развития гоминид служит еще одним подтверждением найденной нами ранее зависимости движения Материи в качестве от движения во времени: . На всем пути эволюционного развития гоминидных предков человека и на первых этапах биологического формирования самого человека действовала, все усиливаясь, одна и та же главенствующая закономерность: совершенствование телесной, анатомической организации предъявляло все большие требования к регуляторной деятельности мозга и уже в силу этого ставило его под сильное давление отбора. Вместе с тем, мозг, совершенствуя организацию и функции тела, приобретал все большие возможности для оценки конкретной жизненной ситуации и выработки адекватной ей программы поведения, что делало объектом отбора не только регуляционные, но и экстраполяционные, то есть рассудочные, свойства мозга как программирующего устройства высшей нервной деятельности и зачаточного интеллекта. Таким образом, головной мозг, включавший в себя прежде всего весь совокупный спектр аналитико-инициаторных фн. центров сигнальных подсистем, стал в конце концов органом высшей интеграции физиологической и духовной деятельности человека как фщ. единицы систем уровня К.
Наряду с указанными процессами продолжалось развитие и гиперсистемных образований уровня К. Оно происходило путем фн. дифференциации и создания ячеек, отличающихся новыми фн. алгоритмами, с одновременной их интеграцией. Так возникло рыболовство, скотоводство, земледелие. Появились первые ремесла: производство орудий и инструментов, утвари, пошив одежды. Вследствие этого усилилась фн. специализация фщ. единиц - людей. Так, одни все более совершенствовали фн. алгоритмы рыболовства, другие - алгоритмы по уходу за домашними животными, третьи - способности охотника, четвертые все быстрее и в больших количествах мастерили орудия труда и предметы быта, пятые показывали больше умения в обработке земли и выращивании растений. Уже 7-13 тыс. лет назад людям были известны каменный топор, мотыга, лук, серп, первый ткацкий станок. Около 6 тыс. лет назад люди научились плавить медь и стали изготавливать орудия из металла. Появились плуг, медный топор, медный серп и т.д.
Ввиду того, что биологически все люди были равны, то есть гомологичны и имели одинаково устроенные подсистемы своих организмов, они могли выполнить почти что любой из алгоритмов перечисленных выше фн. ячеек. Разница была лишь в том, что разные фщ. единицы - люди могли выполнять одни и те же фн. алгоритмы по разному: одни - быстрее и более точно, другие - менее эффективно. Это было вполне естественно в силу того, что у людей, постоянно занимавшихся, например, земледелием, происходило постепенное генетическое закрепление способности к выполнению соответствующих фн. алгоритмов. Пользуясь ими, они лучше других знали где, как и когда обрабатывать землю, что и когда высаживать в нее, как ухаживать за растениями и когда их убирать. Люди, занимавшиеся изготовлением орудий, знали лучше, как обрабатывать камень, кость, дерево или металл, чтобы придать им необходимую для выполнения той или иной функции форму, и т.д. Указанные навыки функционирования передавались по наследству от поколения к поколению, все больше закрепляя посредством генетического кодирования способность фщ. единиц к выполнению определенного ряда специфических фн. алгоритмов. По мере совершенствования человеческого организма поведение людей становилось все более лабильно и тренируемо, так что под влиянием условий воспитания и социального окружения навыки функционирования стали достигать все более разного уровня развития и эта разница в свою очередь закреплялась генетическим путем. Таким образом было положено начало появлению генетической функциональной неоднородности людей, то есть разновеликой наследственной способности выполнять те или иные фн. алгоритмы, отражавшей прежде всего неодинаковую физиологическую предрасположенность той или иной индивидуальной структуры головного мозга к формированию тех или иных аналитико-инициаторных фн. центров сигнальных подсистем.
Первобытные общины. Одновременно с эволюционным развитием фщ. единиц и появлением новых фн. ячеек происходила дальнейшая структурная интеграция гиперорганизмов 1-го типа путем совершенствования внутрисистемных связей между их фн. ячейками. Первой известной такой структурой после первобытного стада следует считать родовую общину. Она не отличалась большой сложностью. Все ее ячейки были примерно равнозначны, располагались примерно на одном фн. уровне и имели различия лишь в наборе фн. алгоритмов. Однако, со временем среди них постепенно все более выделялись фн. ячейки старейшин, которые, как правило, занимали наиболее опытные и достаточно влиятельные члены общины, способные тем или иным образом внушить к себе уважение других. Их опыт представлял собой наибольший запас фн. алгоритмов, зафиксированных в их головном мозге. Все это способствовало перемещению фн. ячеек старейшин вверх по вертикали структурной организации гиперорганизмов, ставя оставшиеся в нижнем слое фн. ячейки членов общины в организационное подчинение. (Ранее, как мы помним, фн. ячейку вожака в стаде занимал самый физически сильный его член, а не самый мудрый и умный, как теперь. В этом и заключается главнейшая разница между гиперорганизмами животных и людей.) Фн. ячейки старейшин стали сосредоточивать первые алгоритмы организации и управления, то есть функции, касающиеся деятельности гиперорганизма как такового.
Несколько родов, живших в одной местности, составляли племя. Все племя говорило на одном языке, имело общие обычаи и общий фонд фн. алгоритмов. Во главе племени стоял совет старейшин, являвшийся первым в истории зачаточным органом коллективного руководства: он распределял между родами места для охоты, выпаса скота и земледелия, разбирал споры между родичами. По мере роста числа племен между ними все чаще стали возникать территориальные войны, в результате которых появились новые структурные формирования: фн. ячейки воинов и их предводителей. Постепенно родовую общину стала сменять соседская община, дав новый толчок в увеличении генофонда ее членов. Раздражителями членов общины для выполнения алгоритмов тех или иных ячеек служили, с одной стороны, инстинкт самосохранения и прочие собственные ассоциации, основанные на I-ой сигнальной подсистеме внутренней самоинформации организма: голод, холод, жажда и т.п. С другой стороны, все большую роль начали играть внешние раздражители: указания старейшин, старших, других членов общины и т.п., побуждавшие людей к выполнению в определенной очередности необходимого перечня алгоритмов. При этом внутренний механизм действия каждой фщ. единицы был уже довольно сложным и составлял приблизительно следующую цепочку чередования быстросменяющихся событий: раздражение анализ ассоциация возбуждение или торможение той или иной ткани организма, приводящее к пространственному перемещению некоторого его органа согласно требуемому алгоритму. Все это должным образом координировалось в пространстве-времени.
Отсутствие возможности генетической записи гиперсистемных фн. алгоритмов, а также необходимость дальнейшего совершенствования внутрисистемных связей между фн. ячейками гиперорганизмов привело 5 тыс. лет назад к появлению письменности, которая стала помогать использовать в еще больших масштабах преимущества II-ой сигнальной подсистемы. Теперь уже человеку, находившемуся в фн. ячейке возбудителя, необязательно было отдавать словесный сигнал человеку в фн. ячейке возбуждаемого. Достаточно было зафиксировать и передать его символическое изображение.
Разбросанные по различным ареалам племена имели свои индивидуальные пути развития, которые отличались друг от друга, в результате чего неодинаково складывался генофонд и алгоритмофонд каждого из них. Известно, что каждое новое качество Материи помимо развития во времени тяготеет также и к развитию в пространстве. В силу этого племена с более богатым генофондом и/или алгоритмофондом объединялись (путем подчинения их себе) с племенами, имевшими более скудный гено- и/или алгоритмофонд, при этом происходило взаимное смешение фондов, что отвечало требованиям фн. развития Материи в пространстве-времени. Итогом указанного процесса, как и процесса развития гиперорганизмов 1-го типа, явилась интеграция фн. ячеек уровня К в сложнейшее системное образование, каковым следует считать государство. Первыми известными государствами были государства Древнего Египта, возникшие более 5 тыс. лет назад.
Рабовладельческие государства. Развитие первых государств происходило прежде всего путем территориального расширения с одновременным увеличением фщ. материала присоединяемых соседних поселений. В итоге это привело к созданию динамически устойчивых гиперорганизмов 1-го типа - рабовладельческих государств Египта, Индии, Китая, Греции и Рима, структурная организация которых отвечала требованиям Развития Материи того времени. Вместе с тем, в результате действия в гиперсистемах общих для всех развивающихся систем центров с энергетическим и энтропийным факторами, с течением времени наблюдалось все большее иерархическое организационное расслоение гиперорганизмов по структурной вертикали, приведшее к появлению так называемых фн. пирамид. Наиболее сформировавшейся в структурном отношении в рабовладельческих государствах была фн. пирамида государственного управления (первый элемент еще неосознанной потребности самоорганизации), включавшая управленческие, репрессивные и вспомогательные подсистемы. Она также охватывала рабовладельческие хозяйства, внося определенную упорядоченность в связях по вертикали между фн. ячейками рабов, надсмотрщиков, управляющих и рабовладельцев, путем их соответствующего соподчинения. Фн. ячейки крестьян, ремесленников и некоторых других слоев населения были еще слабо ассоциированы.
Благодаря совершенствованию орудий производства и технологических алгоритмов, индивидуальный труд земледельцев и скотоводов той эпохи стал намного производительней труда их первобытнообщинных предшественников. Поэтому они могли затрачивать уже меньше труда и времени на удовлетворение потребностей собственных организмов. Но поскольку движение Материи в качестве ведет к постоянной дифференциации функций, это соответствующим образом отражается на системной организации гиперорганизмов. Следствием этого процесса и явилось появление рабовладельческих хозяйств, структурная композиция которых позволяла принуждать основную массу фщ. единиц заниматься ординарным трудом в течение большего времени, чем это требовалось для удовлетворения их личных потребностей. В результате же прибавочного труда ими создавался продукт, который мог использоваться для поддержания в фщ. состоянии нескольких свободных от ординарного труда фщ. единиц - людей, давая им возможность употреблять освободившееся время своего производительного функционирования для выполнения алгоритмов в других, вновь организующихся по мере движения Материи в качестве, фн. ячейках. Вполне естественно, что большая часть указанного фщ. материала - рабы - занимала самый нижний ряд фн. пирамиды и находилась в наиболее подчиненном положении после рабочего скота. Лишь постоянная угроза побоев со стороны надсмотрщиков была основным раздражителем их нервной системы, побуждая выполнять на пределе физических возможностей организма те или иные монотонные производственные алгоритмы.
Рассмотрим, для чего же развивающейся Материи на данном этапе ее Развития потребовалась столь негуманная системная реорганизация. Для этого достаточно вспомнить, что наряду со структурной интеграцией внутригосударственных подсистем гиперорганизмов продолжались и морфогенетические корреляции в высшей нервной деятельности человеческого организма. Известно, что многие свойства нервной системы и психики человека, определяющие тип его высшей нервной деятельности, черты и свойства индивидуального поведения, специфические личные интересы и склонности, так же как нормы и формы индивидуальной реакции на всевозможные внешние стимулы и раздражители, включая и определяемые социальным окружением, в той или иной мере наследственно детерминированы. Следовательно, уже при рождении люди по своим потенциальным фн. свойствам и возможностям, иными словами, по природным способностям - разнообразны, не равны. В силу этого ансамблевая организация нейронных структур ЦНП, все более кооперативная деятельность громадного количества анализаторов и инициаторов все более совершенных фн. центров полушарий головного мозга положили начало появлению и развитию у отдельных индивидуумов третьей сигнальной подсистемы организма человека, раздражителем ассоциативных элементов которой стала "проблема", вызываемая обычно отсутствием возможности выполнения каких-либо фн. алгоритмов, чаще в силу их незнания.
В период своего зарождения III-я сигнальная подсистема, имеющая также название "стереотип динамический", функционировала в так называемом индуктивном режиме, при котором ее деятельность носила случайностный характер. Так, например, заметив, что медь, попав в первобытный костер, расплавляется и после затвердевания приобретает новую форму, человек вывел алгоритмы выплавки изделий из металла. Вследствие этого схема индуктивного режима выглядит так: проблема фн. алгоритм. С развитием III-й сигнальной подсистемы режим ее функционирования стал носить более дедуктивный оттенок, то есть иметь более целенаправленный характер. Поэтому схема дедуктивного режима выглядит следующим образом: проблема фн. алгоритм. В результате в алгоритмических наборах отдельных фн. ячеек все чаще стали появляться сегменты функционирования с использованием III-ей сигнальной подсистемы в дедуктивном режиме. Соответствующие им периоды мы назовем функционированием II-го порядка, занимавшим иногда все время активного функционирования отдельных фщ. единиц. Этот вид функционирования следует отличать от функционирования I-го порядка, которое было присуще подавляющему большинству фн. ячеек ординарного труда, заключающегося в регулярном повторении уже известных фн. алгоритмов, найденных ранее с помощью III-ей сигнальной подсистемы.
Постепенная кортикализация (привязка к определенным участкам мозга) появления, а затем и нахождения новых фн. алгоритмов еще более повысила значение головного мозга в системной эволюции и структурной организации гиперорганизмов I-го типа. Однако, в ту далекую эпоху зачатки III-ей сигнальной подсистемы появлялись лишь у незначительного числа существовавших людей, в то время как у основной их массы главной доминантой оставались раздражители II-ой сигнальной подсистемы. Но даже начальный период развития III-ей сигнальной подсистемы привел к бурному расцвету античной науки и искусства, разработке новых технологических процессов и организационных форм. Воспринимающие рецепторы III-ей сигнальной подсистемы лежат в недрах многоконтурных нейронных ансамблей, организованных в многочисленные гетерофункциональные анализаторы, в которых протекают сложные биохимические процессы. Инициируемые "проблемой"-раздражителем очаги возбуждения доминируют в соответствующих областях структуры головного мозга до тех пор, пока в них не сассоциируется "решение", приводящее к ответой реакции подсистем организма и сопровождающееся появлением (выполнением) ряда новых фн. алгоритмов. Однако, проблема-раздражитель может быть воспринята и вызвать возбуждение, а также стать инициатором ассоциации решения не в каждом головном мозге, а лишь в том из них, который имеет тонко скомпонованную структурную цепь соответствующим образом настроенных рецепторов, анализаторов, ассоциаторов и трансляторов, формирующих четко выделяющийся фн. центр. Все прочие варианты формирования фн. центров головного мозга, а также аналогичные описанному выше, но в которых нечетко функционирует даже хотя бы одно из звеньев в указанной цепи, не говоря уже об отсутствии того или иного из них, не позволяет людям воспринимать или анализировать те или иные проблемы, либо выдавать переведенные на язык фн. алгоритмов соответствующие решения. Вот почему ученые и писатели, композиторы и художники, но прежде всего организаторы и изобретатели - это люди, у которых фн. центры III-ей сигнальной подсистемы ЦНП доминируют над фн. центрами II-ой.
Вместе с тем, для того, чтобы нормально функционировать, индивидуум с феногенотипом организатора должен попасть в фн. ячейку, ответственную за структурную организацию той или иной части системы гиперорганизма. Так же как и изобретатель, даже занимая соответствующую фн. ячейку, должен иметь условия и достаточный психологический потенциал: потребности минус возможности проблема, чтобы реализовать свой потенциал. Но не всегда в структуре гиперорганизмов случается так, что человек с определенными фн. способностями попадает в соответствующую его феногенотипу фн. ячейку. Следствием этого всегда является снижение в той или иной степени эффективности функционирования всей системы в целом. Если такое реже встречалось в первобытном стаде, где вожак (позднее старейшина) отбирался естественным отбором изо всей массы сородичей, то это участилось в рабовладельческих государствах, хотя на первой стадии развития их структура отвечала требованиям законов движения Материи в качестве-времени, поскольку довольно легко впитывала вновь появлявшиеся фн. ячейки и не препятствовала их дальнейшей дифференциации с обособлением ячеек II-го порядка.
Иерархическое возвышение фн. ячеек рабовладельцев над фн. ячейками рабов и других фщ. единиц гиперорганизмов давало им возможность с помощью фн. центров собственной III-ей сигнальной подсистемы (если она у них при этом была) или фн. центров III-ей сигнальной подсистемы своего способного управляющего отыскивать новые организационные формы в пределах своих владений. Излишки же продуктов, полученных за счет дополнительной эксплуатации труда рабов, отчасти перепадали также и на содержание других людей - фщ. единиц в фн. ячейках II-го порядка, поскольку, помимо прочих особенностей, отличительной чертой фн. ячеек II-го порядка является то, что занимающие их фщ. единицы, функционируя в одном из режимов III-ей сигнальной подсистемы, вынуждены тратить на это практически все время своего активного функционирования с минимальным иногда результатом. Времени на функционирование I-го порядка, то есть непосредственное производство продуктов питания, у них практически не остается, что вынуждает гиперсистемы всегда иметь такую структурную организацию, когда фщ. единицы фн. ячеек II-го порядка содержатся как бы за счет результатов функционирования фщ. единиц в фн. ячейках I-го порядка. И действительно, античные скульпторы, художники и ювелиры, философы и поэты, сенаторы и военоначальники, но прежде всего организаторы, изобретатели и управляющие не могли бы эффективно функционировать в своих фн. ячейках, если бы вместо этого они были вынуждены ежедневно с утра до вечера обрабатывать землю или ухаживать за скотом. Вместе с тем, земледельцы и скотоводы также не имели достаточно свободного времени активного функционирования, чтобы значительно расширить его сегменты на фн. алгоритмы II-го порядка.
Одновременно с развитием подсистем организма человека, как фщ. единицы уровня К, продолжали совершенствоваться фн. алгоритмы фн. ячеек гиперструктур, в частности, алгоритмы орудиепроизводства. Так, постепенно человек научился раскалывать камни на пластины и мастерить из них наконечники копий, ножи, скребки, проколки. Каждый новый алгоритм, несмотря на свою относительную простоту, требовал многие сотни лет на свою выработку. Однако в отличие от безусловных рефлексов, то есть алгоритмов фн. ячеек подуровня И, алгоритмы ячеек уровня К не передавались по наследству генетическим путем от поколения к поколению. Биологически передавалась лишь способность к повторению их биозаписи путем установления соответствующих межнейронных связей, формирования фн. центров и функционирования с их помощью. Поэтому индивидуум, умевший делать из камня нож, должен был показать, как это делается, своему соплеменнику или сыну, тот - своему и т.д.
Все это происходило на фоне увеличения объема мозга и дальнейшего усложнения его организации. Опережающим темпом развивались те поля мозга, которые были связаны с осуществлением сенсорной и речедвигательной функций. Следует подчеркнуть, что возникновение и развитие речи оказались возможными лишь на основе сложного изменения анатомии голосового аппарата, увеличения объема гортани, изменения положения корня языка и уменьшения размера челюстей. Иными словами, речь, так же как и орудие трудовой деятельности - рука, сделавшие возможной и неизбежной социализацию первобытного человека, возникли на базе сложнейшего изменения телесной, анатомической организации предков первобытного человека. Продолжавшаяся в этой связи нагрузка на головной мозг привела к тому, что у первых современного типа людей - кроманьонцев, появившихся 30-40 тыс. лет назад, объем мозга достиг небывалой величины (1400--1600 см3), а его структура существенно усложнилась за счет еще большего увеличения числа аналитико-инициаторных фн. центров сигнальных подсистем, связанных с алгоритмированием трудовой деятельности и речи и способностью к абстрактному мышлению. В индивидуальном развитии мозга можно выделить появление гетерохроний, определяющих развитие филогенетически молодых областей за счет относительного уменьшения старых; череп стал приобретать все более человеческую форму. Так постепенно формировался Homo sapiens - "человек разумный".
Кроманьонец не только по физическому облику, форме черепа и чертам лица вплотную приблизился к современному человеку; он демонстрирует уже подлинно человеческий интеллект - способность организовывать коллективные формы труда и жизни, умение строить жилище, изготовлять одежду, пользоваться высокоразвитой речью. Кроманьонец овладел искусством живописи, создал систему ритуалов поведения и зачатки первобытной религии, ему свойственны чувство сострадания к ближнему и забота о нем, то есть то, что мы называем альтруизмом.
Все убыстрявшийся темп эволюционного процесса развития гоминид служит еще одним подтверждением найденной нами ранее зависимости движения Материи в качестве от движения во времени: . На всем пути эволюционного развития гоминидных предков человека и на первых этапах биологического формирования самого человека действовала, все усиливаясь, одна и та же главенствующая закономерность: совершенствование телесной, анатомической организации предъявляло все большие требования к регуляторной деятельности мозга и уже в силу этого ставило его под сильное давление отбора. Вместе с тем, мозг, совершенствуя организацию и функции тела, приобретал все большие возможности для оценки конкретной жизненной ситуации и выработки адекватной ей программы поведения, что делало объектом отбора не только регуляционные, но и экстраполяционные, то есть рассудочные, свойства мозга как программирующего устройства высшей нервной деятельности и зачаточного интеллекта. Таким образом, головной мозг, включавший в себя прежде всего весь совокупный спектр аналитико-инициаторных фн. центров сигнальных подсистем, стал в конце концов органом высшей интеграции физиологической и духовной деятельности человека как фщ. единицы систем уровня К.
Наряду с указанными процессами продолжалось развитие и гиперсистемных образований уровня К. Оно происходило путем фн. дифференциации и создания ячеек, отличающихся новыми фн. алгоритмами, с одновременной их интеграцией. Так возникло рыболовство, скотоводство, земледелие. Появились первые ремесла: производство орудий и инструментов, утвари, пошив одежды. Вследствие этого усилилась фн. специализация фщ. единиц - людей. Так, одни все более совершенствовали фн. алгоритмы рыболовства, другие - алгоритмы по уходу за домашними животными, третьи - способности охотника, четвертые все быстрее и в больших количествах мастерили орудия труда и предметы быта, пятые показывали больше умения в обработке земли и выращивании растений. Уже 7-13 тыс. лет назад людям были известны каменный топор, мотыга, лук, серп, первый ткацкий станок. Около 6 тыс. лет назад люди научились плавить медь и стали изготавливать орудия из металла. Появились плуг, медный топор, медный серп и т.д.
Ввиду того, что биологически все люди были равны, то есть гомологичны и имели одинаково устроенные подсистемы своих организмов, они могли выполнить почти что любой из алгоритмов перечисленных выше фн. ячеек. Разница была лишь в том, что разные фщ. единицы - люди могли выполнять одни и те же фн. алгоритмы по разному: одни - быстрее и более точно, другие - менее эффективно. Это было вполне естественно в силу того, что у людей, постоянно занимавшихся, например, земледелием, происходило постепенное генетическое закрепление способности к выполнению соответствующих фн. алгоритмов. Пользуясь ими, они лучше других знали где, как и когда обрабатывать землю, что и когда высаживать в нее, как ухаживать за растениями и когда их убирать. Люди, занимавшиеся изготовлением орудий, знали лучше, как обрабатывать камень, кость, дерево или металл, чтобы придать им необходимую для выполнения той или иной функции форму, и т.д. Указанные навыки функционирования передавались по наследству от поколения к поколению, все больше закрепляя посредством генетического кодирования способность фщ. единиц к выполнению определенного ряда специфических фн. алгоритмов. По мере совершенствования человеческого организма поведение людей становилось все более лабильно и тренируемо, так что под влиянием условий воспитания и социального окружения навыки функционирования стали достигать все более разного уровня развития и эта разница в свою очередь закреплялась генетическим путем. Таким образом было положено начало появлению генетической функциональной неоднородности людей, то есть разновеликой наследственной способности выполнять те или иные фн. алгоритмы, отражавшей прежде всего неодинаковую физиологическую предрасположенность той или иной индивидуальной структуры головного мозга к формированию тех или иных аналитико-инициаторных фн. центров сигнальных подсистем.
Первобытные общины. Одновременно с эволюционным развитием фщ. единиц и появлением новых фн. ячеек происходила дальнейшая структурная интеграция гиперорганизмов 1-го типа путем совершенствования внутрисистемных связей между их фн. ячейками. Первой известной такой структурой после первобытного стада следует считать родовую общину. Она не отличалась большой сложностью. Все ее ячейки были примерно равнозначны, располагались примерно на одном фн. уровне и имели различия лишь в наборе фн. алгоритмов. Однако, со временем среди них постепенно все более выделялись фн. ячейки старейшин, которые, как правило, занимали наиболее опытные и достаточно влиятельные члены общины, способные тем или иным образом внушить к себе уважение других. Их опыт представлял собой наибольший запас фн. алгоритмов, зафиксированных в их головном мозге. Все это способствовало перемещению фн. ячеек старейшин вверх по вертикали структурной организации гиперорганизмов, ставя оставшиеся в нижнем слое фн. ячейки членов общины в организационное подчинение. (Ранее, как мы помним, фн. ячейку вожака в стаде занимал самый физически сильный его член, а не самый мудрый и умный, как теперь. В этом и заключается главнейшая разница между гиперорганизмами животных и людей.) Фн. ячейки старейшин стали сосредоточивать первые алгоритмы организации и управления, то есть функции, касающиеся деятельности гиперорганизма как такового.
Несколько родов, живших в одной местности, составляли племя. Все племя говорило на одном языке, имело общие обычаи и общий фонд фн. алгоритмов. Во главе племени стоял совет старейшин, являвшийся первым в истории зачаточным органом коллективного руководства: он распределял между родами места для охоты, выпаса скота и земледелия, разбирал споры между родичами. По мере роста числа племен между ними все чаще стали возникать территориальные войны, в результате которых появились новые структурные формирования: фн. ячейки воинов и их предводителей. Постепенно родовую общину стала сменять соседская община, дав новый толчок в увеличении генофонда ее членов. Раздражителями членов общины для выполнения алгоритмов тех или иных ячеек служили, с одной стороны, инстинкт самосохранения и прочие собственные ассоциации, основанные на I-ой сигнальной подсистеме внутренней самоинформации организма: голод, холод, жажда и т.п. С другой стороны, все большую роль начали играть внешние раздражители: указания старейшин, старших, других членов общины и т.п., побуждавшие людей к выполнению в определенной очередности необходимого перечня алгоритмов. При этом внутренний механизм действия каждой фщ. единицы был уже довольно сложным и составлял приблизительно следующую цепочку чередования быстросменяющихся событий: раздражение анализ ассоциация возбуждение или торможение той или иной ткани организма, приводящее к пространственному перемещению некоторого его органа согласно требуемому алгоритму. Все это должным образом координировалось в пространстве-времени.
Отсутствие возможности генетической записи гиперсистемных фн. алгоритмов, а также необходимость дальнейшего совершенствования внутрисистемных связей между фн. ячейками гиперорганизмов привело 5 тыс. лет назад к появлению письменности, которая стала помогать использовать в еще больших масштабах преимущества II-ой сигнальной подсистемы. Теперь уже человеку, находившемуся в фн. ячейке возбудителя, необязательно было отдавать словесный сигнал человеку в фн. ячейке возбуждаемого. Достаточно было зафиксировать и передать его символическое изображение.
Разбросанные по различным ареалам племена имели свои индивидуальные пути развития, которые отличались друг от друга, в результате чего неодинаково складывался генофонд и алгоритмофонд каждого из них. Известно, что каждое новое качество Материи помимо развития во времени тяготеет также и к развитию в пространстве. В силу этого племена с более богатым генофондом и/или алгоритмофондом объединялись (путем подчинения их себе) с племенами, имевшими более скудный гено- и/или алгоритмофонд, при этом происходило взаимное смешение фондов, что отвечало требованиям фн. развития Материи в пространстве-времени. Итогом указанного процесса, как и процесса развития гиперорганизмов 1-го типа, явилась интеграция фн. ячеек уровня К в сложнейшее системное образование, каковым следует считать государство. Первыми известными государствами были государства Древнего Египта, возникшие более 5 тыс. лет назад.
Рабовладельческие государства. Развитие первых государств происходило прежде всего путем территориального расширения с одновременным увеличением фщ. материала присоединяемых соседних поселений. В итоге это привело к созданию динамически устойчивых гиперорганизмов 1-го типа - рабовладельческих государств Египта, Индии, Китая, Греции и Рима, структурная организация которых отвечала требованиям Развития Материи того времени. Вместе с тем, в результате действия в гиперсистемах общих для всех развивающихся систем центров с энергетическим и энтропийным факторами, с течением времени наблюдалось все большее иерархическое организационное расслоение гиперорганизмов по структурной вертикали, приведшее к появлению так называемых фн. пирамид. Наиболее сформировавшейся в структурном отношении в рабовладельческих государствах была фн. пирамида государственного управления (первый элемент еще неосознанной потребности самоорганизации), включавшая управленческие, репрессивные и вспомогательные подсистемы. Она также охватывала рабовладельческие хозяйства, внося определенную упорядоченность в связях по вертикали между фн. ячейками рабов, надсмотрщиков, управляющих и рабовладельцев, путем их соответствующего соподчинения. Фн. ячейки крестьян, ремесленников и некоторых других слоев населения были еще слабо ассоциированы.
Благодаря совершенствованию орудий производства и технологических алгоритмов, индивидуальный труд земледельцев и скотоводов той эпохи стал намного производительней труда их первобытнообщинных предшественников. Поэтому они могли затрачивать уже меньше труда и времени на удовлетворение потребностей собственных организмов. Но поскольку движение Материи в качестве ведет к постоянной дифференциации функций, это соответствующим образом отражается на системной организации гиперорганизмов. Следствием этого процесса и явилось появление рабовладельческих хозяйств, структурная композиция которых позволяла принуждать основную массу фщ. единиц заниматься ординарным трудом в течение большего времени, чем это требовалось для удовлетворения их личных потребностей. В результате же прибавочного труда ими создавался продукт, который мог использоваться для поддержания в фщ. состоянии нескольких свободных от ординарного труда фщ. единиц - людей, давая им возможность употреблять освободившееся время своего производительного функционирования для выполнения алгоритмов в других, вновь организующихся по мере движения Материи в качестве, фн. ячейках. Вполне естественно, что большая часть указанного фщ. материала - рабы - занимала самый нижний ряд фн. пирамиды и находилась в наиболее подчиненном положении после рабочего скота. Лишь постоянная угроза побоев со стороны надсмотрщиков была основным раздражителем их нервной системы, побуждая выполнять на пределе физических возможностей организма те или иные монотонные производственные алгоритмы.
Рассмотрим, для чего же развивающейся Материи на данном этапе ее Развития потребовалась столь негуманная системная реорганизация. Для этого достаточно вспомнить, что наряду со структурной интеграцией внутригосударственных подсистем гиперорганизмов продолжались и морфогенетические корреляции в высшей нервной деятельности человеческого организма. Известно, что многие свойства нервной системы и психики человека, определяющие тип его высшей нервной деятельности, черты и свойства индивидуального поведения, специфические личные интересы и склонности, так же как нормы и формы индивидуальной реакции на всевозможные внешние стимулы и раздражители, включая и определяемые социальным окружением, в той или иной мере наследственно детерминированы. Следовательно, уже при рождении люди по своим потенциальным фн. свойствам и возможностям, иными словами, по природным способностям - разнообразны, не равны. В силу этого ансамблевая организация нейронных структур ЦНП, все более кооперативная деятельность громадного количества анализаторов и инициаторов все более совершенных фн. центров полушарий головного мозга положили начало появлению и развитию у отдельных индивидуумов третьей сигнальной подсистемы организма человека, раздражителем ассоциативных элементов которой стала "проблема", вызываемая обычно отсутствием возможности выполнения каких-либо фн. алгоритмов, чаще в силу их незнания.
В период своего зарождения III-я сигнальная подсистема, имеющая также название "стереотип динамический", функционировала в так называемом индуктивном режиме, при котором ее деятельность носила случайностный характер. Так, например, заметив, что медь, попав в первобытный костер, расплавляется и после затвердевания приобретает новую форму, человек вывел алгоритмы выплавки изделий из металла. Вследствие этого схема индуктивного режима выглядит так: проблема фн. алгоритм. С развитием III-й сигнальной подсистемы режим ее функционирования стал носить более дедуктивный оттенок, то есть иметь более целенаправленный характер. Поэтому схема дедуктивного режима выглядит следующим образом: проблема фн. алгоритм. В результате в алгоритмических наборах отдельных фн. ячеек все чаще стали появляться сегменты функционирования с использованием III-ей сигнальной подсистемы в дедуктивном режиме. Соответствующие им периоды мы назовем функционированием II-го порядка, занимавшим иногда все время активного функционирования отдельных фщ. единиц. Этот вид функционирования следует отличать от функционирования I-го порядка, которое было присуще подавляющему большинству фн. ячеек ординарного труда, заключающегося в регулярном повторении уже известных фн. алгоритмов, найденных ранее с помощью III-ей сигнальной подсистемы.
Постепенная кортикализация (привязка к определенным участкам мозга) появления, а затем и нахождения новых фн. алгоритмов еще более повысила значение головного мозга в системной эволюции и структурной организации гиперорганизмов I-го типа. Однако, в ту далекую эпоху зачатки III-ей сигнальной подсистемы появлялись лишь у незначительного числа существовавших людей, в то время как у основной их массы главной доминантой оставались раздражители II-ой сигнальной подсистемы. Но даже начальный период развития III-ей сигнальной подсистемы привел к бурному расцвету античной науки и искусства, разработке новых технологических процессов и организационных форм. Воспринимающие рецепторы III-ей сигнальной подсистемы лежат в недрах многоконтурных нейронных ансамблей, организованных в многочисленные гетерофункциональные анализаторы, в которых протекают сложные биохимические процессы. Инициируемые "проблемой"-раздражителем очаги возбуждения доминируют в соответствующих областях структуры головного мозга до тех пор, пока в них не сассоциируется "решение", приводящее к ответой реакции подсистем организма и сопровождающееся появлением (выполнением) ряда новых фн. алгоритмов. Однако, проблема-раздражитель может быть воспринята и вызвать возбуждение, а также стать инициатором ассоциации решения не в каждом головном мозге, а лишь в том из них, который имеет тонко скомпонованную структурную цепь соответствующим образом настроенных рецепторов, анализаторов, ассоциаторов и трансляторов, формирующих четко выделяющийся фн. центр. Все прочие варианты формирования фн. центров головного мозга, а также аналогичные описанному выше, но в которых нечетко функционирует даже хотя бы одно из звеньев в указанной цепи, не говоря уже об отсутствии того или иного из них, не позволяет людям воспринимать или анализировать те или иные проблемы, либо выдавать переведенные на язык фн. алгоритмов соответствующие решения. Вот почему ученые и писатели, композиторы и художники, но прежде всего организаторы и изобретатели - это люди, у которых фн. центры III-ей сигнальной подсистемы ЦНП доминируют над фн. центрами II-ой.
Вместе с тем, для того, чтобы нормально функционировать, индивидуум с феногенотипом организатора должен попасть в фн. ячейку, ответственную за структурную организацию той или иной части системы гиперорганизма. Так же как и изобретатель, даже занимая соответствующую фн. ячейку, должен иметь условия и достаточный психологический потенциал: потребности минус возможности проблема, чтобы реализовать свой потенциал. Но не всегда в структуре гиперорганизмов случается так, что человек с определенными фн. способностями попадает в соответствующую его феногенотипу фн. ячейку. Следствием этого всегда является снижение в той или иной степени эффективности функционирования всей системы в целом. Если такое реже встречалось в первобытном стаде, где вожак (позднее старейшина) отбирался естественным отбором изо всей массы сородичей, то это участилось в рабовладельческих государствах, хотя на первой стадии развития их структура отвечала требованиям законов движения Материи в качестве-времени, поскольку довольно легко впитывала вновь появлявшиеся фн. ячейки и не препятствовала их дальнейшей дифференциации с обособлением ячеек II-го порядка.
Иерархическое возвышение фн. ячеек рабовладельцев над фн. ячейками рабов и других фщ. единиц гиперорганизмов давало им возможность с помощью фн. центров собственной III-ей сигнальной подсистемы (если она у них при этом была) или фн. центров III-ей сигнальной подсистемы своего способного управляющего отыскивать новые организационные формы в пределах своих владений. Излишки же продуктов, полученных за счет дополнительной эксплуатации труда рабов, отчасти перепадали также и на содержание других людей - фщ. единиц в фн. ячейках II-го порядка, поскольку, помимо прочих особенностей, отличительной чертой фн. ячеек II-го порядка является то, что занимающие их фщ. единицы, функционируя в одном из режимов III-ей сигнальной подсистемы, вынуждены тратить на это практически все время своего активного функционирования с минимальным иногда результатом. Времени на функционирование I-го порядка, то есть непосредственное производство продуктов питания, у них практически не остается, что вынуждает гиперсистемы всегда иметь такую структурную организацию, когда фщ. единицы фн. ячеек II-го порядка содержатся как бы за счет результатов функционирования фщ. единиц в фн. ячейках I-го порядка. И действительно, античные скульпторы, художники и ювелиры, философы и поэты, сенаторы и военоначальники, но прежде всего организаторы, изобретатели и управляющие не могли бы эффективно функционировать в своих фн. ячейках, если бы вместо этого они были вынуждены ежедневно с утра до вечера обрабатывать землю или ухаживать за скотом. Вместе с тем, земледельцы и скотоводы также не имели достаточно свободного времени активного функционирования, чтобы значительно расширить его сегменты на фн. алгоритмы II-го порядка.