Страница:
Вследствие чрезвычайно тонкой специфичности ферментных белков, каждый из них, обладая строго индивидуальными фн. свойствами, может попасть только в строго определенные фн. ячейки и, в силу этого, способен образовывать фн. комплексы только с определенными фщ. единицами предыдущих подуровней, а также катализировать лишь определенные индивидуальные реакции. Поэтому в осуществлении того или иного жизненного процесса, а тем более всего обмена веществ в целом, участвуют тысячи индивидуальных белков - ферментов, при этом каждый из них способен специфически катализировать лишь отдельную реакцию, и только в совокупности, в определенном сочетании своего действия они создают тот закономерный порядок явлений, который лежит в основе процесса обмена веществ. Итак, обмен веществ, происходящий постоянно в системах любого жизненного организма, это сложнейший клубок химических превращений обмена, где регламентируемые данной совокупностью алгоритмов сплетаются в едино действующий механизм тысячи индивидуальных реакций, суть каждой из которых сводится к перемещению той или иной фщ. единицы из одной фн. ячейки структуры системы в другую, при этом моменты перемещения фщ. единиц по ячейкам строго согласованы по всей системе, чередуются в строго определенном порядке и в каждом перемещении участвуют строго означенные фщ. единицы и фн. ячейки. Вместе с тем, большую роль для течения каждой реакции обмена веществ играет внесистемная и околоподсистемная среда или, иными словами, системное окружение единицами предыдущих подуровней Материи. Так, всякое повышение или понижение температуры, всякое изменение кислотной среды, окислительного потенциала или осмотического давления смещает соотношение между скоростями отдельных ферментативных реакций, происходящих в системе данного живого организма, а, следовательно, изменяет их взаимосвязь во времени, что, в свою очередь, находит отражение в изменении периодов функционирования тех или иных фщ. единиц. Таким образом, системная организация живого вещества неразрывно связана с околосистемной организацией среды и составляет с ней единое целое. Кроме того, очень большое влияние на порядок и направление лежащих в основе обмена ферментативных реакций имеет и пространственная организация фн. ячеек в структуре живого вещества. Итак, многие десятки и сотни тысяч химических реакций, непрерывно протекающих в каждом живом организме, не только строго согласованы между собой во времени бесчисленное число раз отработанными алгоритмами, не только сочетаются в едином порядке всей структурной организацией его системы и окружающей его околосистемной среды, но и сам весь этот порядок направлен на поддержание в течение определенного периода времени гиперфункциональных свойств всей данной системы в целом, как фщ. единицы более высокого уровня. Вновь приобретенные при этом фн. свойства белковых веществ могут стать ясными лишь при изучении особенностей их функционирования в организме в качестве фщ. единиц систем более высокого организационного уровня Материи.
В связи с тем, что с момента вступления качественных форм Материи в так называемую "живую" стадию Развития характер организации систем усложнился, помимо организующих начал, характерных для систем предыдущих подуровней, как то:
1) наличие строго регламентированного количества фн. ячеек, объединенных в единую структуру связей,
2) заполняющих их и соответствующих им фщ. единиц,
3) совокупности алгоритмов построения, функционирования и распада,
4) энергообеспечения процесса функционирования системы
для организационного уровня З потребовались дополнительные системообразующие факторы. Ввиду большей усложненности его фн. систем происходило увеличение их кажущейся автономности, которая фактически представляет собой лишь больший разрыв в уровнях организации самой системы и околосистемной среды и которая дала повод обозначать их некоторые свойства с приложением полуслова "само": самообновление, саморегулирование, самоэнергообеспечение и чуть ли ни самоуничтожение. Основами этой автономности явилось начало развития соответствующих подсистем в общей структуре организма, отвечающих за обеспечение той или иной специфической функции. Происходившее в силу дальнейшей дифференциации функций все большее расслоение систем на подсистемы еще более усложнило структуру систем и потребовало более четкой взаимокоординации ее интегрированных составных частей. Поэтому совокупность алгоритмов каждой системы постепенно увеличивалась в количественном выражении, еще более улучшался ее качественный состав.
Всем известно, что такое алгоритм. Это строго регламентированный во времени и в пространстве порядок последовательного перемещения фщ. единиц из одной фн. ячейки структуры данного уровня в другую. Этот порядок обязателен для систем любого организационного уровня, предопределен для каждой их фщ. единицы. Все вокруг нас подчинено тем или иным алгоритмам. Их великое множество - от самых простых до невероятно сложных. Среди простых бытовых алгоритмов мы можем назвать алгоритмы приготовления пищи (например, заварки чая, выпечки пирогов и т. п.), изготовления стола или скамейки, выращивания картофеля и т. д. Среди суперсложных можно назвать, например, алгоритм изготовления авианосца. Поэтому в обычной поварской книге перечислены алгоритмы приготовления пищи, в нотах - алгоритмы воспроизведения музыкальных произведений, а в технологических картах построения жилого дома или автомобиля, прокладки дороги - алгоритмы их построения. Все указанные нами алгоритмы были выработаны в течение практической деятельности человеком. Однако, кто же занимался составлением алгоритмов для построения фн. систем доорганической и органической организации Материи? Ведь уже алгоритмы построения атома водорода или молекулы аминокислоты являются довольно непростыми. Конечно, их никто не изобретал. Они вырабатывались сами, повинуясь железной необходимости, вытекающей из действия законов Развития Материи, и в первую очередь, ее движения по категории качества ().
По мере усложнения системных структур уже в начальный период организации живых форм Материи, продолжительность функционирования которых основана, как известно, на принципе постоянной замены в них блоков фщ. единиц, в некоторый момент организационного развития потребовался механизм, обеспечивающий создание таких блоков в сравнительно короткое время с тем, чтобы заменять ими отфункционировавшие в фн. ячейках блоки без нарушения фн. свойств всей данной системы в целом. С этой целью в системах стала все более выделяться подсистема, записывающая алгоритмы построения того или иного блока, их пространственного расположения в общей структуре и временной последовательности перехода фщ. единиц данного уровня из одних фн. ячеек в другие. Как известно, в доорганических системах их структуры имели долговременный характер, при этом эти суммативные системные образования составлялись из фщ. единиц нижних подуровней в соответствии с их, главным образом, физическими свойствами при одновременном аккумулировании большого количества энергии. Распад таких систем происходил через большой отрезок времени, имел разовый нерегулярный характер и служил лишь целям общего перестроения макросистемы в целом. Позднее, на молекулярном организационном уровне порядок составления системных образований помимо физических стал регулироваться также и химическими свойствами входящих в них фщ. единиц, при этом с повышением системной организации происходило все меньшее аккумулирование суммарной энергии (хотя из расчета на одну фщ. единицу каждого последующего уровня аккумулирование энергии значительно возрастало), а сами соединения носили все более кратковременный характер. В надмолекулярных системах, обладавших все большим количеством органических свойств, запись информации об алгоритмах построения и функционирования стали принимать на себя фн. подсистемы, условно названные впоследствии нуклеотидами.
Итак, в процессе Развития Материи по организационному уровню З на отдельных участках поверхности планеты Земля с определенного момента времени стали появляться высокомолекулярные материальные образования, способные нести различную функциональную нагрузку нового спектра. Они включали в структуры своих подсистем следующие органические химические соединения: белки, жиры, углеводы, нуклеиновые кислоты и другие низкомолекулярные органические вещества. Кроме того, в них входили и неорганические вещества, главным из которых была вода. По мере продвижения актуальной точки Развития Материи по ординате времени, число новых системных образований сбалансированно увеличивалось, совершенствовалась их системная структура. Системы уровня З не были организационно оторваны от предыдущих уровней, а органически включали их системные образования в качестве фщ. единиц в свои фн. ячейки. Ввиду того, что пространственное развитие систем оргуровня З было ограничено не только площадью Земной поверхности, но также и другими факторами физического и химического характера (такими, как уровень получаемой лучистой энергии Солнца, различный на разных участках Земной поверхности; наличие в данном месте необходимого спектра системных образований предыдущих уровней и т.д.), постоянно существовало положение, при котором . Вследствие этого Развитие Материи вынуждено было осуществляться практически только за счет движения по координате качества (), в результате чего совершенствование систем оргуровня З продолжало носить относительно ускоренный характер. Результатом этого процесса явилось появление большого числа разнообразных по форме и по функциональному значению, но однотипных по системному строению образований, которые в современном представлении мы объединяем в едином понятии - органическая клетка.
Как известно, у разных клеток обнаруживается сходство не только в строении, но и в химическом составе, что указывает на то, что их происхождение было подчинено единым законам Развития Материи. Среднее содержание химических элементов в клетках таково (в %):
кислород65 - 75
углерод15 - 18
водород8 - 10
азот1,5 - 3,0
фосфор0,2 - 1,0
калий0,15 - 0,4
сера0,15 - 0,2
хлор0,05 - 0,1
кальций0,04 - 2,0
магний0,02 - 0,03
натрий0,02 - 0,03
железо0,01 - 0,015
цинк0,0003
медь0,0002
йод0,0001
фтор0,0001
Из 104 элементов периодической системы Менделеева в клетках обнаружено более 60. Атомы кислорода, углерода, водорода и азота заполняют 98% фн. ячеек клеточных подсистем. 1,9% предоставлены атомам калия, серы, фосфора, хлора, магния, натрия, кальция и железа. Менее 0,1% фн. ячеек занято прочими веществами (микроэлементами). Различные сочетания указанных элементов дают несколько типов внутриклеточных подсистемных образований, которые каждая клетка включает в свои фн. ячейки в качестве фщ. единиц в следующих пропорциях (в %):
Неорганические
вода 70 - 80
неорганические
вещества1,0 - 1,5
Органические
белки10 - 20
жиры1,0 - 5,0
углеводы0,2 - 2,0
нуклеиновые кислоты1,0 - 2,0
АТФ и др. низкомолеку
лярные органические
вещества0,1 - 0,5
Все указанные вещества, сами сложные в структурном отношении, не нагромождены в клетке вместе в хаотическом беспорядке, а в качестве фщ. единиц заполняют расположенные в строго определенном порядке предназначенные для каждого из них фн. ячейки ее единой структуры. Функционируя, они проделывают свои четко определенные микродвижения внутри микрообъема пространства клетки, регулируемые соответствующими внутриклеточными алгоритмами, при этом существует безусловная связь этих движений в пространстве как с абсолютным, так и с относительным течением времени. Каждое из веществ клетки в качестве фщ. единицы несет строго определенную функцональную нагрузку и имеет свои, регламентируемые соответствующими алгоритмами, периоды функционирования. Все их разнообразное сочетание представляет собой единый тонко отрегулированный клеточный механизм.
К наиболее простым структурным внутриклеточным образованиям относятся углеводы, жиры, липоиды. Фн. ячейки их структур заполняют, в основном, атомы углерода, водорода и кислорода. Функция углеводов наиболее проста. Распадаясь на CO2 и воду с выделением из 1 грамма 4,2 ккал энергии, они обеспечивают основной массой этих фщ. единиц соответствующие фн. ячейки структуры клеток.
Роль жировых соединений более сложна. Они придают клеткам гидрофобные (водоотталкивающие) свойства, являются теплоизоляторами. В случае необходимости, они, как и углеводы, являются источником аккумулированной энергии, расщепляясь до CO2 и H2O. Расщепление 1 грамма жира дает 9,3 ккал.
Еще более сложными структурными образованиями являются белки. Помимо углерода, водорода и кислорода в фн. ячейках их структур имеются также атомы азота, серы и других веществ. Белки являются макромолекулами, объединяющими десятки, сотни тысяч атомов. (Так, если молекулярная масса бензола равна 78, то белка яйца - 36.000, белка мышц - 1.500.000 и т.д.).
Системная организация белков имеет свои особенности. Входящие в них атомы заполняют предназначенные для них фн. ячейки не по одному, а целыми аминокислотными блоками, имеющими устойчивый характер внутрисистемной связи. Всего таких фщ. единиц - блоков 20. Все они имеют различную системную структуру и выполняют различные функции. Поэтому образование белков носит поэтапный характер. Вначале образуются аминокислоты, которые посредством пептидных связей соединяются в белковые цепи с выделением воды. В среднем каждая белковая цепь содержит до 200 - 300 аминокислотных блоков в различных сочетаниях. Достаточно в цепи заменить один тип аминокислоты на другой, как вся структура данного белка, а с ней и его функциональные свойства, меняются. Структура белковой цепи аминокислотных блоков имеет форму глобул, что придает длинным цепям белка компактный вид и мобильность при пространственном перемещении. В укладке полипептидной цепи нет ничего случайного или хаотичного, каждому белку присущ определенный, всегда постоянный характер укладки. Иными словами, структура каждого белка имеет строго определенное пространственное расположение ее фн. ячеек, которые заполняются строго соответствующими им фщ. единицами - аминокислотными блоками. При этом каждая структура белка, будучи фщ. единицей в системе более высокого порядка и занимая в ней соответствующую ей фн. ячейку, выполняет там свою, присущую только ей, функцию. Как правило, белковые структуры являются активнейшими реагентами химических реакций, постоянно протекающих внутри клетки, и поэтому наиболее велика их роль в качестве катализаторов этих реакций. Почти каждая химическая реакция в клетке катализируется своим особым белком - ферментом, каталитическая активность которого определяется небольшим участком - его активным центром (сочетанием аминокислотных радикалов). Структура активного центра фермента и структура субстрата точно соответствуют один другому. Они подходят друг к другу как ключ к замку. Благодаря наличию структурного соответствия между активным центром фермента и субстратом они могут тесно сблизиться между собой, что и обеспечивает возможность реакции между ними.
К другим важным внутриклеточным образованиям следует отнести нуклеиновые кислоты: дезоксирибонуклеиновую - ДНК и рибонуклеиновую - РНК. Их основная функция состоит в обеспечении процесса синтеза белков клетки. Длина молекулы ДНК в сотни и тысячи раз больше самой крупной белковой молекулы и может достигать нескольких десятков и сотен микрометров, в то время как длина самой крупной белковой молекулы не превышает 0,1 мкм. Ширина двойной спирали ДНК всего 20 . Молекулярная масса составляет десятки и даже сотни миллионов. Каждая цепь ДНК - полимер, мономерами которого являются молекулы четырех типов нуклеотидов. Иными словами, ДНК - это полинуклеотид, в цепи которого в строго определенном и для каждой ДНК всегда постоянном порядке следуют нуклеотиды, являющиеся таким образом фщ. единицами в структуре фн. ячеек ДНК. Поэтому, если хотя бы в одной из фн. ячеек будет помещена иная фщ. единица - нуклеотид, фн. свойства всей структуры изменятся. В каждой цепи ДНК (средний мол. вес 10 млн.) содержится до 30 тыс. нуклеотидов (мол. вес 345), вследствие чего количество изомеров (при 4 типах нуклеотидов) очень велико.
Благодаря принципу комплементарности, лежащему в основе построения двойной спирали ДНК, молекула ДНК способна к удвоению. Во время этого процесса две цепи разъединяются, образуя при этом две двойные цепи фн. ячеек, у которых лишь один ряд заполнен фщ. единицами, а другой становится свободным. На следующем этапе неассоциированные нуклеотиды из околосистемной среды заполняют соответствующие им свободные фн. ячейки в обеих спиралях. В результате редупликации вместо одной молекулы ДНК возникает две такого же точно нуклеотидного состава, как и первоначальная. Одна цепь в каждой вновь образовавшейся молекуле ДНК остается от первоначальной молекулы, другая синтезируется вновь. Таким путем вместе со структурой происходит передача фн. свойств ДНК от материнской клетки к дочерней.
Графически это выглядит следующим образом:
Молекулы РНК также являются полимерами, как и ДНК, но в отличие от них имеют одну спираль фн. ячеек, а не две. РНК выполняет в клетке ряд функций, в том числе
1) транспортную (транспортируют аминокислотные блоки к месту синтеза белков);
2) информационную (переносят информацию о структуре белка);
3) рибосомную.
Еще одним очень важным нуклеотидом в структуре живой клетки является аденозинтрифосфорная кислота - АТФ, содержание которой в клетках колеблется от 0,04 до 0,2 - 0,5%. Его особенность состоит в том, что при отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту) с выделением 40 кдж энергии с 1 гр-молекулы.
Все указанные выше органические вещества являются сложными по своей структуре и системной организации образованиями, но и они, в свою очередь, входят в качестве фщ. единиц в фн. подсистемы интегрированной системы клетки. К числу основных подсистем клетки отосятся следующие:
Наружная мембрана клетки. Регулирует поступление ионов и молекул в структуру клетки и выход их из нее в околосистемную среду. Такой обмен молекулами и ионами, то есть различными фщ. единицами, между системой клетки и внешней средой происходит постоянно. Различают фагоцитоз - поглощение мембраной крупных частичек вещества и пиноцитоз - поглощение воды и водного раствора. Через наружную мембрану из клетки выводятся продукты ее жизнедеятельности, то есть отфункционировавшие в подсистемах клетки фщ. единицы.
Цитоплазма. Внутренняя полужидкая среда клетки, в системном объеме которой развернута внутренняя структура клетки, то есть ее ядро, все органоиды (или органеллы), включения и вакуоли. Цитоплазма состоит из воды с растворенными солями и разнообразными органическими веществами, среди которых преобладают белки. Структура цитоплазмы состоит из фн. ячеек, не связанных жестко и свободно перемещающихся во всем ее объеме. Заполняющие их фщ. единицы, когда это необходимо, переходят из них в фн. ячейки органоидов. Поэтому основными функциями цитоплазмы являются аккумулятивная и транспортная.
Эндоплазматическая сеть. Органоид клетки, представляющий собой сложную систему каналов и полостей, пронизывающих всю цитоплазму клетки. На мембранах гладкой эндоплазматической сети происходит синтез жиров и углеводов, которые накапливаются в аккумулятивных фн. ячейках ее каналов и полостей, а затем транспортируются к различным органоидам клетки, где они в качестве фщ. единиц занимают соответствующие фн. ячейки их структур. На мембранах каналов и полостей располагается также множество мелких округлых телец-рибосом.
Каждая рибосома состоит из двух мелких частиц, в состав которых входят белки и РНК. В каждой клетке содержится по нескольку тысяч рибосом. На рибосомах синтезируются все белки, входящие в состав данной клетки, путем сборки белковых молекул из аминокислот, имеющихся в цитоплазме. Синтез белков - это сложный процесс заполнения аминокислотными блоками соответствующих фн. ячеек их структур, который осуществляется одновременно группой из нескольких десятков рибосом, или полирибосомой. Синтезированные белки сначала накапливаются в каналах и полостях гранулярной эндоплазматической сети, а затем транспортируются к тем подсистемам клетки, где расположены предназначенные для них фн. ячейки. Эндоплазматическая сеть и полирибосомы представляют собой единый механизм биосинтеза, аккумулирования и транспортировки белков.
Митохондрии. Органоид, основная функция которого состоит в синтезе АТФ, представляющей универсальный источник энергии, необходимой для осуществления постянно протекающих внутри клетки химических процессов. Количество митохондрий в клетке колеблется от нескольких до сотен тысяч. Внутри митохондрий находятся рибосомы и нуклеиновые кислоты, а также большое количество разнообразных ферментов. Синтезированная АТФ заполняет транспортные фн. ячейки цитоплазмы и направляется к ядру и органоидам клетки.
Пластиды. Органоиды растительных клеток. Бывают различных типов. С помощью одного из них - хлоропластов, благодаря входящему в их состав пигменту (хролофиллу), клетки растений способны, используя световую энергию Солнца, синтезировать из неорганических веществ органические (углеводы). Этот процесс, как известно, носит название фотосинтеза.
Комплекс Гольджи. Органоид всех растительных и животных клеток, в котором происходит накопление белков, жиров и углеводов с последующей их транспортировкой в соответствующие фн. ячейки как внутри клетки, так и вне ее.
Лизосомы. Органоид, имеющийся во всех клетках и состоящий из комплекса ферментов, способных расщеплять белки, жиры и углеводы. В этом заключается основная функция лизосом. В каждой клетке сосредоточены десятки лизосом, участвующих в расщеплении уже отфункционировавших или аккумулятивных системных образований, а также тех, которые попадают в клетку извне путем фагоцитоза и пиноцитоза. В результате расщепления фщ. единицы покидают фн. ячейки расщепляемых структур, собираются в фн. ячейках аккумулятивных систем данной клетки, а затем транспортируются в фн. ячейки ее новых системных образований. Расщепленные с помощью лизосом отфункционировавшие структуры клетки удаляются за ее пределы. Образование новых лизосом происходит в клетке постоянно. Ферменты, функционирующие в лизосомах, как и всякие другие белки, синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к комплексу Гольджи, в полостях и трубочках которого формируются фн. ячейки структур лизосом. Сформировавшись, лизосомы отделяются от концов трубочек и поступают в цитоплазму.
Клеточный центр. Органоид, расположенный в одном из участков уплотненной цитоплазмы. В него входят две центриоли, играющие важную роль при делении клетки.
Структура клеток содержит и другие органоиды: жгутики, реснички и т.п., а также клеточные включения (углеводы, жиры, белки).
Вместе с тем, клетки, будучи сами по себе очень сложными системными образованиями, в свою очередь являются фщ. единицами, заполняющими фн. ячейки гиперсистем последующих уровней организации Материи. Вследствие этого в системной организации клеток предусмотрен механизм, позволяющий за сравнительно короткий период времени создавать аналогичные им системные формирования. В результате клеточный цикл включает два периода:
1) Деление (митоз), в процессе которого образуются две дочерние клетки;
2) Период между двумя делениями - интерфаза - собственно время функционирования клетки.
Большую роль в делении клетки играет ее ядро, имеющееся в каждой клетке и представляющее собой сложную фн. подсистему. Ядро имеет ядерную оболочку, через которую в него и из него поступают белки, углеводы, жиры, нуклеиновые кислоты, вода и разнообразные ионы. Попав внутрь ядра, они заполяют фн. ячейки ядерного сока, а также ядрышек и хроматина. В ядрышках происходит синтез РНК, сами же они формируются только в интерфазе. Хроматин представляет собой однородное вещество, служащее аккумулятивной подсистемой, с помощью которой осуществляется формирование хромосом при делении ядер.
Хромосомы являются основным механизмом клетки, где собирается, хранится и выдается так называемая наследственная информация, включающая в себя химическую запись последовательности фн. ячеек в структурах белков данной клетки. Указанная информация хранится в находящихся в хромосомах молекулах ДНК. Таким образом, молекулы ДНК представляют собой химическую запись структур всего разнообразия белков. На длинной нити молекулы ДНК одна за другой следует запись информации о последовательности фн. ячеек структур разных белков. Отрезок ДНК, содержащий информацию о структуре одного белка, принято называть геном. Молекула ДНК представляет собой собрание нескольких сот или тысяч генов. Диаметр хромосом невелик и составляет в среднем 140 , длина же их, повторяя длину молекул ДНК, может быть свыше 1 мм. В середине периода интерфазы происходит синтез ДНК, в результате которого хромосома удваивается.
В связи с тем, что с момента вступления качественных форм Материи в так называемую "живую" стадию Развития характер организации систем усложнился, помимо организующих начал, характерных для систем предыдущих подуровней, как то:
1) наличие строго регламентированного количества фн. ячеек, объединенных в единую структуру связей,
2) заполняющих их и соответствующих им фщ. единиц,
3) совокупности алгоритмов построения, функционирования и распада,
4) энергообеспечения процесса функционирования системы
для организационного уровня З потребовались дополнительные системообразующие факторы. Ввиду большей усложненности его фн. систем происходило увеличение их кажущейся автономности, которая фактически представляет собой лишь больший разрыв в уровнях организации самой системы и околосистемной среды и которая дала повод обозначать их некоторые свойства с приложением полуслова "само": самообновление, саморегулирование, самоэнергообеспечение и чуть ли ни самоуничтожение. Основами этой автономности явилось начало развития соответствующих подсистем в общей структуре организма, отвечающих за обеспечение той или иной специфической функции. Происходившее в силу дальнейшей дифференциации функций все большее расслоение систем на подсистемы еще более усложнило структуру систем и потребовало более четкой взаимокоординации ее интегрированных составных частей. Поэтому совокупность алгоритмов каждой системы постепенно увеличивалась в количественном выражении, еще более улучшался ее качественный состав.
Всем известно, что такое алгоритм. Это строго регламентированный во времени и в пространстве порядок последовательного перемещения фщ. единиц из одной фн. ячейки структуры данного уровня в другую. Этот порядок обязателен для систем любого организационного уровня, предопределен для каждой их фщ. единицы. Все вокруг нас подчинено тем или иным алгоритмам. Их великое множество - от самых простых до невероятно сложных. Среди простых бытовых алгоритмов мы можем назвать алгоритмы приготовления пищи (например, заварки чая, выпечки пирогов и т. п.), изготовления стола или скамейки, выращивания картофеля и т. д. Среди суперсложных можно назвать, например, алгоритм изготовления авианосца. Поэтому в обычной поварской книге перечислены алгоритмы приготовления пищи, в нотах - алгоритмы воспроизведения музыкальных произведений, а в технологических картах построения жилого дома или автомобиля, прокладки дороги - алгоритмы их построения. Все указанные нами алгоритмы были выработаны в течение практической деятельности человеком. Однако, кто же занимался составлением алгоритмов для построения фн. систем доорганической и органической организации Материи? Ведь уже алгоритмы построения атома водорода или молекулы аминокислоты являются довольно непростыми. Конечно, их никто не изобретал. Они вырабатывались сами, повинуясь железной необходимости, вытекающей из действия законов Развития Материи, и в первую очередь, ее движения по категории качества ().
По мере усложнения системных структур уже в начальный период организации живых форм Материи, продолжительность функционирования которых основана, как известно, на принципе постоянной замены в них блоков фщ. единиц, в некоторый момент организационного развития потребовался механизм, обеспечивающий создание таких блоков в сравнительно короткое время с тем, чтобы заменять ими отфункционировавшие в фн. ячейках блоки без нарушения фн. свойств всей данной системы в целом. С этой целью в системах стала все более выделяться подсистема, записывающая алгоритмы построения того или иного блока, их пространственного расположения в общей структуре и временной последовательности перехода фщ. единиц данного уровня из одних фн. ячеек в другие. Как известно, в доорганических системах их структуры имели долговременный характер, при этом эти суммативные системные образования составлялись из фщ. единиц нижних подуровней в соответствии с их, главным образом, физическими свойствами при одновременном аккумулировании большого количества энергии. Распад таких систем происходил через большой отрезок времени, имел разовый нерегулярный характер и служил лишь целям общего перестроения макросистемы в целом. Позднее, на молекулярном организационном уровне порядок составления системных образований помимо физических стал регулироваться также и химическими свойствами входящих в них фщ. единиц, при этом с повышением системной организации происходило все меньшее аккумулирование суммарной энергии (хотя из расчета на одну фщ. единицу каждого последующего уровня аккумулирование энергии значительно возрастало), а сами соединения носили все более кратковременный характер. В надмолекулярных системах, обладавших все большим количеством органических свойств, запись информации об алгоритмах построения и функционирования стали принимать на себя фн. подсистемы, условно названные впоследствии нуклеотидами.
Итак, в процессе Развития Материи по организационному уровню З на отдельных участках поверхности планеты Земля с определенного момента времени стали появляться высокомолекулярные материальные образования, способные нести различную функциональную нагрузку нового спектра. Они включали в структуры своих подсистем следующие органические химические соединения: белки, жиры, углеводы, нуклеиновые кислоты и другие низкомолекулярные органические вещества. Кроме того, в них входили и неорганические вещества, главным из которых была вода. По мере продвижения актуальной точки Развития Материи по ординате времени, число новых системных образований сбалансированно увеличивалось, совершенствовалась их системная структура. Системы уровня З не были организационно оторваны от предыдущих уровней, а органически включали их системные образования в качестве фщ. единиц в свои фн. ячейки. Ввиду того, что пространственное развитие систем оргуровня З было ограничено не только площадью Земной поверхности, но также и другими факторами физического и химического характера (такими, как уровень получаемой лучистой энергии Солнца, различный на разных участках Земной поверхности; наличие в данном месте необходимого спектра системных образований предыдущих уровней и т.д.), постоянно существовало положение, при котором . Вследствие этого Развитие Материи вынуждено было осуществляться практически только за счет движения по координате качества (), в результате чего совершенствование систем оргуровня З продолжало носить относительно ускоренный характер. Результатом этого процесса явилось появление большого числа разнообразных по форме и по функциональному значению, но однотипных по системному строению образований, которые в современном представлении мы объединяем в едином понятии - органическая клетка.
Как известно, у разных клеток обнаруживается сходство не только в строении, но и в химическом составе, что указывает на то, что их происхождение было подчинено единым законам Развития Материи. Среднее содержание химических элементов в клетках таково (в %):
кислород65 - 75
углерод15 - 18
водород8 - 10
азот1,5 - 3,0
фосфор0,2 - 1,0
калий0,15 - 0,4
сера0,15 - 0,2
хлор0,05 - 0,1
кальций0,04 - 2,0
магний0,02 - 0,03
натрий0,02 - 0,03
железо0,01 - 0,015
цинк0,0003
медь0,0002
йод0,0001
фтор0,0001
Из 104 элементов периодической системы Менделеева в клетках обнаружено более 60. Атомы кислорода, углерода, водорода и азота заполняют 98% фн. ячеек клеточных подсистем. 1,9% предоставлены атомам калия, серы, фосфора, хлора, магния, натрия, кальция и железа. Менее 0,1% фн. ячеек занято прочими веществами (микроэлементами). Различные сочетания указанных элементов дают несколько типов внутриклеточных подсистемных образований, которые каждая клетка включает в свои фн. ячейки в качестве фщ. единиц в следующих пропорциях (в %):
Неорганические
вода 70 - 80
неорганические
вещества1,0 - 1,5
Органические
белки10 - 20
жиры1,0 - 5,0
углеводы0,2 - 2,0
нуклеиновые кислоты1,0 - 2,0
АТФ и др. низкомолеку
лярные органические
вещества0,1 - 0,5
Все указанные вещества, сами сложные в структурном отношении, не нагромождены в клетке вместе в хаотическом беспорядке, а в качестве фщ. единиц заполняют расположенные в строго определенном порядке предназначенные для каждого из них фн. ячейки ее единой структуры. Функционируя, они проделывают свои четко определенные микродвижения внутри микрообъема пространства клетки, регулируемые соответствующими внутриклеточными алгоритмами, при этом существует безусловная связь этих движений в пространстве как с абсолютным, так и с относительным течением времени. Каждое из веществ клетки в качестве фщ. единицы несет строго определенную функцональную нагрузку и имеет свои, регламентируемые соответствующими алгоритмами, периоды функционирования. Все их разнообразное сочетание представляет собой единый тонко отрегулированный клеточный механизм.
К наиболее простым структурным внутриклеточным образованиям относятся углеводы, жиры, липоиды. Фн. ячейки их структур заполняют, в основном, атомы углерода, водорода и кислорода. Функция углеводов наиболее проста. Распадаясь на CO2 и воду с выделением из 1 грамма 4,2 ккал энергии, они обеспечивают основной массой этих фщ. единиц соответствующие фн. ячейки структуры клеток.
Роль жировых соединений более сложна. Они придают клеткам гидрофобные (водоотталкивающие) свойства, являются теплоизоляторами. В случае необходимости, они, как и углеводы, являются источником аккумулированной энергии, расщепляясь до CO2 и H2O. Расщепление 1 грамма жира дает 9,3 ккал.
Еще более сложными структурными образованиями являются белки. Помимо углерода, водорода и кислорода в фн. ячейках их структур имеются также атомы азота, серы и других веществ. Белки являются макромолекулами, объединяющими десятки, сотни тысяч атомов. (Так, если молекулярная масса бензола равна 78, то белка яйца - 36.000, белка мышц - 1.500.000 и т.д.).
Системная организация белков имеет свои особенности. Входящие в них атомы заполняют предназначенные для них фн. ячейки не по одному, а целыми аминокислотными блоками, имеющими устойчивый характер внутрисистемной связи. Всего таких фщ. единиц - блоков 20. Все они имеют различную системную структуру и выполняют различные функции. Поэтому образование белков носит поэтапный характер. Вначале образуются аминокислоты, которые посредством пептидных связей соединяются в белковые цепи с выделением воды. В среднем каждая белковая цепь содержит до 200 - 300 аминокислотных блоков в различных сочетаниях. Достаточно в цепи заменить один тип аминокислоты на другой, как вся структура данного белка, а с ней и его функциональные свойства, меняются. Структура белковой цепи аминокислотных блоков имеет форму глобул, что придает длинным цепям белка компактный вид и мобильность при пространственном перемещении. В укладке полипептидной цепи нет ничего случайного или хаотичного, каждому белку присущ определенный, всегда постоянный характер укладки. Иными словами, структура каждого белка имеет строго определенное пространственное расположение ее фн. ячеек, которые заполняются строго соответствующими им фщ. единицами - аминокислотными блоками. При этом каждая структура белка, будучи фщ. единицей в системе более высокого порядка и занимая в ней соответствующую ей фн. ячейку, выполняет там свою, присущую только ей, функцию. Как правило, белковые структуры являются активнейшими реагентами химических реакций, постоянно протекающих внутри клетки, и поэтому наиболее велика их роль в качестве катализаторов этих реакций. Почти каждая химическая реакция в клетке катализируется своим особым белком - ферментом, каталитическая активность которого определяется небольшим участком - его активным центром (сочетанием аминокислотных радикалов). Структура активного центра фермента и структура субстрата точно соответствуют один другому. Они подходят друг к другу как ключ к замку. Благодаря наличию структурного соответствия между активным центром фермента и субстратом они могут тесно сблизиться между собой, что и обеспечивает возможность реакции между ними.
К другим важным внутриклеточным образованиям следует отнести нуклеиновые кислоты: дезоксирибонуклеиновую - ДНК и рибонуклеиновую - РНК. Их основная функция состоит в обеспечении процесса синтеза белков клетки. Длина молекулы ДНК в сотни и тысячи раз больше самой крупной белковой молекулы и может достигать нескольких десятков и сотен микрометров, в то время как длина самой крупной белковой молекулы не превышает 0,1 мкм. Ширина двойной спирали ДНК всего 20 . Молекулярная масса составляет десятки и даже сотни миллионов. Каждая цепь ДНК - полимер, мономерами которого являются молекулы четырех типов нуклеотидов. Иными словами, ДНК - это полинуклеотид, в цепи которого в строго определенном и для каждой ДНК всегда постоянном порядке следуют нуклеотиды, являющиеся таким образом фщ. единицами в структуре фн. ячеек ДНК. Поэтому, если хотя бы в одной из фн. ячеек будет помещена иная фщ. единица - нуклеотид, фн. свойства всей структуры изменятся. В каждой цепи ДНК (средний мол. вес 10 млн.) содержится до 30 тыс. нуклеотидов (мол. вес 345), вследствие чего количество изомеров (при 4 типах нуклеотидов) очень велико.
Благодаря принципу комплементарности, лежащему в основе построения двойной спирали ДНК, молекула ДНК способна к удвоению. Во время этого процесса две цепи разъединяются, образуя при этом две двойные цепи фн. ячеек, у которых лишь один ряд заполнен фщ. единицами, а другой становится свободным. На следующем этапе неассоциированные нуклеотиды из околосистемной среды заполняют соответствующие им свободные фн. ячейки в обеих спиралях. В результате редупликации вместо одной молекулы ДНК возникает две такого же точно нуклеотидного состава, как и первоначальная. Одна цепь в каждой вновь образовавшейся молекуле ДНК остается от первоначальной молекулы, другая синтезируется вновь. Таким путем вместе со структурой происходит передача фн. свойств ДНК от материнской клетки к дочерней.
Графически это выглядит следующим образом:
Молекулы РНК также являются полимерами, как и ДНК, но в отличие от них имеют одну спираль фн. ячеек, а не две. РНК выполняет в клетке ряд функций, в том числе
1) транспортную (транспортируют аминокислотные блоки к месту синтеза белков);
2) информационную (переносят информацию о структуре белка);
3) рибосомную.
Еще одним очень важным нуклеотидом в структуре живой клетки является аденозинтрифосфорная кислота - АТФ, содержание которой в клетках колеблется от 0,04 до 0,2 - 0,5%. Его особенность состоит в том, что при отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту) с выделением 40 кдж энергии с 1 гр-молекулы.
Все указанные выше органические вещества являются сложными по своей структуре и системной организации образованиями, но и они, в свою очередь, входят в качестве фщ. единиц в фн. подсистемы интегрированной системы клетки. К числу основных подсистем клетки отосятся следующие:
Наружная мембрана клетки. Регулирует поступление ионов и молекул в структуру клетки и выход их из нее в околосистемную среду. Такой обмен молекулами и ионами, то есть различными фщ. единицами, между системой клетки и внешней средой происходит постоянно. Различают фагоцитоз - поглощение мембраной крупных частичек вещества и пиноцитоз - поглощение воды и водного раствора. Через наружную мембрану из клетки выводятся продукты ее жизнедеятельности, то есть отфункционировавшие в подсистемах клетки фщ. единицы.
Цитоплазма. Внутренняя полужидкая среда клетки, в системном объеме которой развернута внутренняя структура клетки, то есть ее ядро, все органоиды (или органеллы), включения и вакуоли. Цитоплазма состоит из воды с растворенными солями и разнообразными органическими веществами, среди которых преобладают белки. Структура цитоплазмы состоит из фн. ячеек, не связанных жестко и свободно перемещающихся во всем ее объеме. Заполняющие их фщ. единицы, когда это необходимо, переходят из них в фн. ячейки органоидов. Поэтому основными функциями цитоплазмы являются аккумулятивная и транспортная.
Эндоплазматическая сеть. Органоид клетки, представляющий собой сложную систему каналов и полостей, пронизывающих всю цитоплазму клетки. На мембранах гладкой эндоплазматической сети происходит синтез жиров и углеводов, которые накапливаются в аккумулятивных фн. ячейках ее каналов и полостей, а затем транспортируются к различным органоидам клетки, где они в качестве фщ. единиц занимают соответствующие фн. ячейки их структур. На мембранах каналов и полостей располагается также множество мелких округлых телец-рибосом.
Каждая рибосома состоит из двух мелких частиц, в состав которых входят белки и РНК. В каждой клетке содержится по нескольку тысяч рибосом. На рибосомах синтезируются все белки, входящие в состав данной клетки, путем сборки белковых молекул из аминокислот, имеющихся в цитоплазме. Синтез белков - это сложный процесс заполнения аминокислотными блоками соответствующих фн. ячеек их структур, который осуществляется одновременно группой из нескольких десятков рибосом, или полирибосомой. Синтезированные белки сначала накапливаются в каналах и полостях гранулярной эндоплазматической сети, а затем транспортируются к тем подсистемам клетки, где расположены предназначенные для них фн. ячейки. Эндоплазматическая сеть и полирибосомы представляют собой единый механизм биосинтеза, аккумулирования и транспортировки белков.
Митохондрии. Органоид, основная функция которого состоит в синтезе АТФ, представляющей универсальный источник энергии, необходимой для осуществления постянно протекающих внутри клетки химических процессов. Количество митохондрий в клетке колеблется от нескольких до сотен тысяч. Внутри митохондрий находятся рибосомы и нуклеиновые кислоты, а также большое количество разнообразных ферментов. Синтезированная АТФ заполняет транспортные фн. ячейки цитоплазмы и направляется к ядру и органоидам клетки.
Пластиды. Органоиды растительных клеток. Бывают различных типов. С помощью одного из них - хлоропластов, благодаря входящему в их состав пигменту (хролофиллу), клетки растений способны, используя световую энергию Солнца, синтезировать из неорганических веществ органические (углеводы). Этот процесс, как известно, носит название фотосинтеза.
Комплекс Гольджи. Органоид всех растительных и животных клеток, в котором происходит накопление белков, жиров и углеводов с последующей их транспортировкой в соответствующие фн. ячейки как внутри клетки, так и вне ее.
Лизосомы. Органоид, имеющийся во всех клетках и состоящий из комплекса ферментов, способных расщеплять белки, жиры и углеводы. В этом заключается основная функция лизосом. В каждой клетке сосредоточены десятки лизосом, участвующих в расщеплении уже отфункционировавших или аккумулятивных системных образований, а также тех, которые попадают в клетку извне путем фагоцитоза и пиноцитоза. В результате расщепления фщ. единицы покидают фн. ячейки расщепляемых структур, собираются в фн. ячейках аккумулятивных систем данной клетки, а затем транспортируются в фн. ячейки ее новых системных образований. Расщепленные с помощью лизосом отфункционировавшие структуры клетки удаляются за ее пределы. Образование новых лизосом происходит в клетке постоянно. Ферменты, функционирующие в лизосомах, как и всякие другие белки, синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к комплексу Гольджи, в полостях и трубочках которого формируются фн. ячейки структур лизосом. Сформировавшись, лизосомы отделяются от концов трубочек и поступают в цитоплазму.
Клеточный центр. Органоид, расположенный в одном из участков уплотненной цитоплазмы. В него входят две центриоли, играющие важную роль при делении клетки.
Структура клеток содержит и другие органоиды: жгутики, реснички и т.п., а также клеточные включения (углеводы, жиры, белки).
Вместе с тем, клетки, будучи сами по себе очень сложными системными образованиями, в свою очередь являются фщ. единицами, заполняющими фн. ячейки гиперсистем последующих уровней организации Материи. Вследствие этого в системной организации клеток предусмотрен механизм, позволяющий за сравнительно короткий период времени создавать аналогичные им системные формирования. В результате клеточный цикл включает два периода:
1) Деление (митоз), в процессе которого образуются две дочерние клетки;
2) Период между двумя делениями - интерфаза - собственно время функционирования клетки.
Большую роль в делении клетки играет ее ядро, имеющееся в каждой клетке и представляющее собой сложную фн. подсистему. Ядро имеет ядерную оболочку, через которую в него и из него поступают белки, углеводы, жиры, нуклеиновые кислоты, вода и разнообразные ионы. Попав внутрь ядра, они заполяют фн. ячейки ядерного сока, а также ядрышек и хроматина. В ядрышках происходит синтез РНК, сами же они формируются только в интерфазе. Хроматин представляет собой однородное вещество, служащее аккумулятивной подсистемой, с помощью которой осуществляется формирование хромосом при делении ядер.
Хромосомы являются основным механизмом клетки, где собирается, хранится и выдается так называемая наследственная информация, включающая в себя химическую запись последовательности фн. ячеек в структурах белков данной клетки. Указанная информация хранится в находящихся в хромосомах молекулах ДНК. Таким образом, молекулы ДНК представляют собой химическую запись структур всего разнообразия белков. На длинной нити молекулы ДНК одна за другой следует запись информации о последовательности фн. ячеек структур разных белков. Отрезок ДНК, содержащий информацию о структуре одного белка, принято называть геном. Молекула ДНК представляет собой собрание нескольких сот или тысяч генов. Диаметр хромосом невелик и составляет в среднем 140 , длина же их, повторяя длину молекул ДНК, может быть свыше 1 мм. В середине периода интерфазы происходит синтез ДНК, в результате которого хромосома удваивается.