Страница:
Из нашей переписки я узнал, что Джеймс не получил классического математического образования. (И слава Богу! Может, именно поэтому он с такой готовностью стал рассуждать о духовных аспектах всех этих выкладок?) Сам себя он называет математиком-любителем. Для читателя я хотел бы заметить, что это позволяет ему стать в один ряд с такими любителями, как Франсуа Виет (отец криптологии и изобретатель запятой в десятичных дробях), Джон Неппер (изобретатель логарифмов), Айзек Азимов, Евклид, Архимед и Аполлоний… вот как! Чем он зарабатывает себе на жизнь? Он художник, специализирующийся на иллю-страциях, в частности архитектурных. Именно архитектура и объясняет его любовь к геометрии.
Мне сразу стало ясно, что я имею дело с первоклассным математиком и человеком, находящимся в духовном поиске. Его поиск — не такой, как у многих последователей движения Нью Эйдж, но это опреде-ленно духовный и метафизический процесс (во всяком случае, мне так представляется). Джеймс задейству-ет свой интеллект и развитые логические способности на поприще очень точных наук (математики и гео-метрии), чтобы понять духовные истины жизни, и за это я его очень уважаю. Какая потрясающая задача!
Уотт характеризует себя как человека, доверяющего только фактам. Он намного лучше разбирается в математике и логике, чем в теме ченнелинга. Для него какой-либо предмет исследований является либо «истинным», либо «ложным», либо «неопределенным». Я думаю, именно поэтому он мне так понравился — такая логика мне близка. После ченнелинга Крайона в Седоне, посвященного математике и науке, запись которого вы только что прочли, я связался с Джеймсом и рассказал ему о том, что Крайон говорил по пово-ду системы счисления, принятой в нашей математике, и предложил ему написать, что он сочтет нужным, в опровержение этого… или в подтверждение. Меня также заинтриговали выводы Джеймса относительно нашей математики — и духовные следствия из них.
Не сговариваясь, мы сразу же отказались в нашей переписке от попыток убедить друг друга в истин-ности какой-либо доктрины, и это вызвало в нас обоих чувство уважения друг к другу за то, что мы в дей-ствительности искали РЕШЕНИЙ! Итак, я имею честь представить вам работу мистера Уотта — математика, который отреагировал на работу Крайона. Мы работали вместе несколько месяцев, и за это время Джеймс все больше и больше убеждался в том, что Крайон действительно существует, — на основании математиче-ских намеков, которые давал Крайон! (Не пропустите комментарий Крайона о работе Джеймса и письмо Джеймса, адресованное мне, помещенные на стр. 118 и 119 этой книги.)
Я уже предупреждал вас, что в этой книге вы встретите некоторые математические выкладки, и вот время для этого наступило. Даже тем, кто совершенно далек от математики, я предлагаю просмотреть ма-териал Джеймса, опуская, если вы хотите, формулы. Возможно, вы видите пред собой (даже если не пони-маете, о чем идет речь) нечто такое, что в будущем будет иметь огромное значение для официальной науки. А если так, то вы поймете, почему я вообще встретил Джеймса и почему поместил его работу в эту книгу.
Те из вас, кому интересно мнение мистера Уотта по поводу числа 9944, могут также заглянуть в При-ложение (стр. 117), где он вкратце приводит свои соображения по этому вопросу и некоторые дополни-тельные интересные комментарии.
Но настоящее удовольствие я получил после того, как Джеймс окончил свою статью. В самый по-следний момент перед тем, как книгу уже нужно было отправлять в типографию, ему показалось, что он нашел одно из самых убедительных доказательств двенадцатиричной системы, и все это на базе простых чисел (смотри абзац, обведенный рамкой на стр. 114). Мы с Джеймсом благодарны Крайону за все эти «подсказки».
Ли Кэрролл
Математика
Мне сразу стало ясно, что я имею дело с первоклассным математиком и человеком, находящимся в духовном поиске. Его поиск — не такой, как у многих последователей движения Нью Эйдж, но это опреде-ленно духовный и метафизический процесс (во всяком случае, мне так представляется). Джеймс задейству-ет свой интеллект и развитые логические способности на поприще очень точных наук (математики и гео-метрии), чтобы понять духовные истины жизни, и за это я его очень уважаю. Какая потрясающая задача!
Уотт характеризует себя как человека, доверяющего только фактам. Он намного лучше разбирается в математике и логике, чем в теме ченнелинга. Для него какой-либо предмет исследований является либо «истинным», либо «ложным», либо «неопределенным». Я думаю, именно поэтому он мне так понравился — такая логика мне близка. После ченнелинга Крайона в Седоне, посвященного математике и науке, запись которого вы только что прочли, я связался с Джеймсом и рассказал ему о том, что Крайон говорил по пово-ду системы счисления, принятой в нашей математике, и предложил ему написать, что он сочтет нужным, в опровержение этого… или в подтверждение. Меня также заинтриговали выводы Джеймса относительно нашей математики — и духовные следствия из них.
Не сговариваясь, мы сразу же отказались в нашей переписке от попыток убедить друг друга в истин-ности какой-либо доктрины, и это вызвало в нас обоих чувство уважения друг к другу за то, что мы в дей-ствительности искали РЕШЕНИЙ! Итак, я имею честь представить вам работу мистера Уотта — математика, который отреагировал на работу Крайона. Мы работали вместе несколько месяцев, и за это время Джеймс все больше и больше убеждался в том, что Крайон действительно существует, — на основании математиче-ских намеков, которые давал Крайон! (Не пропустите комментарий Крайона о работе Джеймса и письмо Джеймса, адресованное мне, помещенные на стр. 118 и 119 этой книги.)
Я уже предупреждал вас, что в этой книге вы встретите некоторые математические выкладки, и вот время для этого наступило. Даже тем, кто совершенно далек от математики, я предлагаю просмотреть ма-териал Джеймса, опуская, если вы хотите, формулы. Возможно, вы видите пред собой (даже если не пони-маете, о чем идет речь) нечто такое, что в будущем будет иметь огромное значение для официальной науки. А если так, то вы поймете, почему я вообще встретил Джеймса и почему поместил его работу в эту книгу.
Те из вас, кому интересно мнение мистера Уотта по поводу числа 9944, могут также заглянуть в При-ложение (стр. 117), где он вкратце приводит свои соображения по этому вопросу и некоторые дополни-тельные интересные комментарии.
Но настоящее удовольствие я получил после того, как Джеймс окончил свою статью. В самый по-следний момент перед тем, как книгу уже нужно было отправлять в типографию, ему показалось, что он нашел одно из самых убедительных доказательств двенадцатиричной системы, и все это на базе простых чисел (смотри абзац, обведенный рамкой на стр. 114). Мы с Джеймсом благодарны Крайону за все эти «подсказки».
Ли Кэрролл
Математика
Джеймс Д. Уотт, 1995 г.
Я начал свои исследования в области фундаментальной математики более двух лет назад. Толчком к этому послужили вопросы, поднятые современной физической моделью возникновения Вселенной, извест-ной под названием теории «Большого Взрыва». На ранней стадии исследования стало очевидно, что требо-ваниям математического описания этого события соответствует нелинейный подход, в то время как основ-ные операционные предпосылки математики с древнейших времен до наших дней выражаются в терминах прямых линий.
Если обратиться к основополагающим элементам и методам математики, то можно увидеть, что для выражения математических концепций существует всего лишь два пути: при помощи аппарата математики прямых линий и математики кривых, или линейно-угловой математики, которую отвергают.
Двадцать шесть столетий традиции и исследования и эксплуатации математики прямых линий запе-чатлели ее в умах математически мыслящих людей как некий свод священных предписаний, который сле-дует всеми силами защищать от посягательств. Это важное утверждение, поскольку оно ставит под сомне-ние объективность, на которую претендуют математики. Можно наглядно продемонстрировать, что совре-менная математика основывается на предписаниях, и поэтому следует поставить под серьезное сомнение правомерность ее отказа от «абсолютных величин» и увлечения «самодостаточными логическими система-ми».
Вместо математики, которую можно в общем определить как «изучение и описание универсальных истинных вероятностей», мы сегодня имеем нагромождение византийских зданий, построенных на палубе корабля, с которого снят руль. Тот факт, что математика является поприщем самых совершенных и бле-стящих логических умов, которые когда-либо порождало человечество, наводит особенно глубокий ужас на тех, кто хотел бы покритиковать современное положение дел.
Логика — это основной инструмент математика. И прекрасный инструмент. Логика утверждает, что нечто может быть «истинным, ложным или неопределенным». Для того чтобы прийти к этому определе-нию, она сводит любую задачу к базовым элементам. Тот факт, что логика является столь неотъемлемой частью математики, притупляет внимание многих, порождая иллюзию того, что «все хорошо».
О чем забывают (или просто приуменьшают значимость этого), — это о том, что в любых математиче-ских выкладках есть слабое звено. Это утверждения a priori (самоочевидные предположения), на которых строятся дальнейшие логические заключения. Каждый серьезный математик знает о старом примере, ил-люстрирующем «проблему соизмеримости». Он заключается в том, что при рассмотрении двух произволь-ных отрезков прямой можно найти третий, длина которого будет равняться отношению первых двух, вы-раженному в целых единицах. Эта истина казалось несложной до тех пор, пока ее не подвергли анализу с точки зрения логики, что, в свою очередь, привело к открытию иррациональных чисел (чисел, которые нельзя выразить в виде конечных дробей). Это открытие чуть ли не развалило, и уж точно остановило рост греческой «науки о числах» (арифметики).
Греки утверждали, что арифметика является «матерью всей остальной математики». И именно нечи-словая геометрия опровергла представление о том, что Вселенную можно описать при помощи одних лишь целых чисел. Этот урок древних также не был понят в полной мере (виду смягчающих для древних обстоя-тельств), и современная математика не приняла его во внимание. К нечисловой геометрии в математиче-ских кругах в общем сегодня относятся чуть ли не с пренебрежением. Их представители, подобно Декарту (отцу современной науки), произвольным образом приняли постулат о том, что всю логику можно выра-зить при помощи средств алгебраической теории и теории чисел. Далее, опять-таки подобно Декарту, они приняли и возвели в ранг святыни постулат о том, что все формы можно описать при помощи прямого угла и нескольких других формул прямолинейной геометрии (т.е. теоремы Пифагора). Говоря короче, изучение феноменов Вселенной они проводят исключительно при помощи аппарата математики прямых линий.
И этому есть причина. Она заключается в простом арифметическом утверждении N + 1 (где N — лю-бое число), выражающем основополагающее предположение арифметики, которое звучит так: «К любому числу можно прибавить единицу». Если вы начнете с 1, прибавите еще 1, и так далее до бесконечности, что вы получите? Вы получите арифметическую прямую 1 + 1 + 1 + 1… а также соответствие между нечисло-вой геометрией прямолинейной структуры формы и линейным увеличением в теории чисел. Отсюда выте-кают все остальные математические дисциплины. Следует отдавать себе отчет в том, что, какие бы экзоти-ческие случаи ни возникали для описания перед современной математикой, они все же, по своей сути, яв-ляются арифметическими, геометрическими или представляют собой комбинацию того и другого. Из этого исключений нет.
Наша современная математика, при помощи которой мы отправили человека на Луну, по своей сути не изменилась с тех дней, когда люди сражались друг с другом на колесницах медным оружием! Прочную и окостеневшую традицию нашей математики энергично защищают от попыток поставить под сомнение правомерность повсеместного употребления прямолинейного подхода, и это вопреки отсутствию каких бы то ни было свидетельств того, что миром природных форм правят линейные закономерности. Например, что касается утверждения «свет естественным образом распространяется по прямой», то мы просто пред-полагаем это, пренебрегая тем, что естественной траекторией его движения может быть дуга, которую мы на данном этапе пока не можем обнаружить. Почему свет должен отличаться от всего остального в приро-де? Математические круги отстаивают традиционные взгляды и предписания, которые превратились в не-что вроде культа усопших, почитаемых выше основополагающих принципов объективности и единства. Они думают, что поскольку единство невозможно обнаружить исходя из принципов линейности, то, следо-вательно, его не существует. Они скорее скажут, что единства и истины в абсолютных терминах не сущест-вует, чем допустят, что их математика может ошибаться. Этим в логике они закладывают фундамент, о ко-торый разбиваются все другие устремления человека. Это поразительный случай коллективной спеси.
Какое значение имеет выбор типа линий (прямая или дуга)? В настоящее время математика допуска-ет легкое равенство и отрицает иерархичность. Это равенство позволяет описывать криволинейные формы в терминах прямых (число? — классический пример этому). Там, где греки надеялись, что это равенство истинно, современная математика решает заставить Вселенную пойти на уступки эгоистическому жела-нию вбить круглый кол в квадратное отверстие, да еще чтобы при этом не было никакие зазоров. В сущно-сти, в этом и состоит основная задача математического счисления.
Что же определяет, в абсолютном смысле, свойства прямых и кривых линий? Прямая линия — это «ряд одинаковых точек, которые никак не связаны с точками, находящимися вне этого ряда». Кривая линия — это «ряд точек, связанных с точкой (точками), находящейся (находящимися) вне этого ряда». Это очевидно. Нарисуйте кривую линию, и вы увидите, что значит «внешнее» и «внутреннее». Далее, если сде-лать сечение пополам двух любых сегментов этой кривой прямыми линиями, то эти секущие пересекутся в центре (центрах) этой линии. Таким образом, для прямой линии необходимо по крайней мере две точки, а в кривой, по сути, присутствуют три. Третья точка (т.е. центр) не всегда присутствует явно, но ее легко найти. Это похоже на секрет, который кривая желает сохранить.
Дальнейшие логические заключения неизбежно показывают, что прямые линии всегда и бесспорно являются линиями низшего порядка по отношению к кругу (статическая геометрия). Это то, чего так упорно старался не допустить Евклид в свою геометрию (которой мы, конечно же, пользуемся и по сей день, за исключением случаев, когда она выражается при помощи арифметики [аналитическая геометрия]). Я нашел, по крайней мере, 15 явных ошибок в евклидовой геометрии, которые в настоящее время либо за-малчиваются для широкого читателя по соображениям цензуры, либо вообще «неизвестны». Они постоян-но указывают на то, что Евклид разработал лишь последовательность предписаний. Евклидова геометрия была попыткой спасти арифметику греков, но если он и заслуживает похвалы за свои старания спасти нау-ку о числах, то математиков наших дней следует призвать к ответу за принадлежность к культу почитания человеческой математики, которая навязывается в качестве «объективной».
Опять-таки, какое значение имеет тип линий? Поскольку с легкостью можно показать, что все пря-молинейные структуры будут только фигурами низшего порядка по отношению к некой константе круга, двухточечный элемент нашего рассмотрения никогда и никоим волшебным образом не превратится в трехточечный. Это означает, что, какое бы количество сторон ни было у «правильного многоугольника, вписанного в окружность» (это просто фигура, составленная из одинаковых треугольников, где центр ок-ружности является вершинной точкой равнобедренных треугольников, образованных этим центром, и точ-ками касания сторон многоугольника с окружностью), никакая из его сторон никогда не пересечет окруж-ность больше чем в двух точках, а следовательно, его периметр никогда нельзя будет считать дугой, длина которой будет точно равна длине окружности; а следовательно, в лучшем случае, он будет лишь прибли-жением к истинной длине окружности (2?R).
Другой способ получить величину? — вычислить ее при помощи теории чисел («матери» всей мате-матики). Применяя последовательный ряд вычислений, мы аппроксимировали величину? с невероятным количеством знаков после десятичной запятой. При помощи теории чисел мы провозгласили доказанным, что? «является иррациональным и трансцендентным числом», т.е. что оно «представляет собой бесконеч-ный ряд неповторяющихся чисел». Но мы уверены, что с точки зрения этой логики априорные допущения фундаментальной теории чисел истинны. По сути дела, мы говорим, что? «иррационально и трансцен-дентно», потому что «к любому числу всегда можно прибавить единицу».
Это дает вам небольшое введение в положение дел в современной математике. Но даже за самыми непостижимыми заявлениями, которые раздаются с высот математического Олимпа, лежат некоторые очень простые принципы, которые до сих пор так и остаются неразрешенными и исчезновения которых желали бы многие. Таким образом, современные математики стоят перед выбором: сказать, что «абсолют-ной истины не существует», или утверждать, что «для того, чтобы математика была жизнеспособной, необ-ходимо лишь, чтобы она была логически самодостаточной», или, когда не проходит и это, — заявить, что «математика — как шахматы: правила менять нельзя». Это их священные мантры, которые они самозабвен-но твердят всякий раз, когда сталкиваются с противоречиями. Является ли наша математика ошибочной по своему существу? Полагаю, что да. Многие математики втайне считают, что она ошибочна. Многие при-писывают некую «неизвестную ошибку» тому или иному разделу устоявшейся теории. Намного меньше высказывающих мнение о том, что ошибку можно найти в пренебрежении рыцарей картезианского ордена к предостережению Евклида, высказанному им с самого начала по поводу изучения абсолютных величин (книги 6?13). Думаю, я одинок в своем утверждении, что ошибка еще в древнейшие времена вкралась в ма-тематические концепции пифагорейцев, которые (хотя это и отрицают) в ходу и по сей день: в частности, в предположении «к любому числу всегда можно прибавить единицу».
К любому числу всегда можно прибавить единицу
Пифагорейцы были группой последователей учителя по имени Пифагор. Они были первыми, кто ис-кал «научно обоснованную теорию чисел». Этим они хотели изгнать все человеческие предрассудки из теории чисел и измерить глубины Вселенной в терминах самой Вселенной. Это им также почти удалось. Если бы у них было представление о нуле и они умели бы складывать числа в столбик (это присутствует в западной математике только последние 600 лет), то смогли бы вывести теорию чисел, в которой числа в действительности отражали бы то, что существует во Вселенной.
Они решили, что числа являются относительными приращениями измерения и что это применимо ко Вселенной. Поскольку Вселенная является «суммой всего познаваемого», она была принята за «великое Одно», или «Единство». Видимую множественность проявлений природы (и то, что как вы, так и я суще-ствуем независимо друг от друга) они назвали «способностью единства порождать многообразие» — Диа-дой. Две эти концепции бытуют у нас и сегодня. Их «диадическое действие» — это наше «возведение в квадрат» (теперь вы знаете, откуда происходит возведение в квадрат). О вышеперечисленном записи древ-них говорят очень ясно. Однако потом начинается неясность. Пифагорейцы делают резкий переход к логи-ке и добавляют предположение: «к любому числу всегда можно прибавить единицу». Почему? Потому что они не смогли запустить свой генератор Единства/Диады. Они «перескочили» к самоочевидности того, что 1 + 1 = 2, 2 + 1 = 3, и т.д., основываясь на общих наблюдениях. И это, в свою очередь, является единст-венным подтверждением существования бесконечности.
Поскольку единство является суммой своих частей, то наш измерительный инструмент (числа) дол-жен, в своих наименьших частях, быть откалиброван по целому. Не важно, на скольких именно единицах мы остановимся, важно, чтобы они были «откалиброваны по единству». Именно здесь и возникает идея об основании системы счисления. Она в высшей степени произвольна. Поскольку мы пытаемся измерить нечто, то удобно сделать эти единицы «единообразными». К чему без надобности усложнять положение вещей? Наши пальцы — вот «счетчик, который всегда под рукой»; почему бы не использовать их?
Важно заметить: тот факт, что наша система счисления является произвольной, указывает на то, что и изучение абсолютных величин является наукой произвольной. Со стороны пифагорейцев было ошибкой (которая присутствует и до сих пор) утверждать, что числа — это «мать всей математики». Каким образом может нечто произвольное (арифметика) быть «матерью» геометрии, если геометрия — это универсальная константа (круг остается кругом независимо от того, какие числа используются для того, чтобы его опи-сать)? Поэтому разве не парадоксально, что современные математики относятся к нечисловой геометрии чуть ли не с пренебрежением?
В таком случае, «наука о числах» должна выводиться из геометрических констант, а не наоборот, как у нас. Это и было главным в искусстве Евклида. Он сделал так, что создавалась видимость того, что между дугой и прямой линией существует равнозначность. Он замалчивал жизненно важную информацию о ду-гах, членил геометрически единые феномены (т.е. во всех треугольниках делил пополам стороны и углы), добавлял ложные выводы к постулатам, общим понятиям и определениям и не доводил до логического за-вершения свои теоремы — и я могу доказать, что все это действительно так. Он делал это последовательно и преднамеренно, чтобы «спасти греческую математику». Он прилагал удивительные усилия, и современные математические круги до сих пор еще не до конца их поняли, поскольку они заблудились в дебрях схола-стического истолкования его трудов.
Но вернемся к числам. Эти «единицы» (пальцы) являются «наименьшими неразложимыми отраже-ниями единства». То есть каждая единица являет собой целое, обладая всеми качествами изначальной це-лостности единства. Поскольку эти единицы являются «отражениями единства», то можно сказать: «Хоро-шо, значит, сами эти единицы можно при помощи той же операции разложить на более простые единицы… И где же здесь „неразложимость“? Если продолжить деление единиц, получается „универсальная линей-ка“. Если у меня есть линейка, положим, длиной в ярд, то в этом ярде у меня будет 36 дюймов. Если я захо-чу, то, руководствуясь той же логикой, я могу эти дюймы делить и дальше, на более мелкие части. Вот по-чему единицы являются отражением единства».
То, что у нас в действительности имеется сейчас, — это великое «единое» (единство) и меньшее «единое» (единица). Каким же образом их откалибровать, чтобы они согласовывались в рамках самой сис-темы? Этот вопрос и загнал в тупик пифагорейцев, остается он неразрешенным и сегодня. Мы не смогли откалибровать единицу по единству (поэтому пренебрегли им). И именно здесь в игру вступает «диадиче-ское действие» (возведение в квадрат).
Если бы я решил воспользоваться количеством своих пальцев в качестве основания для системы счисления (десятичной системы), каждый палец я обозначил бы черточкой, вот так:
Применяя к этому «диадическое действие» (возведение в квадрат), я получаю следующее:
Заметьте, в возрастающей последовательности чисел отсутствует 8. Как такое может быть? Это что, чистая случайность? Сколько ни производи вычислений, эта выпавшая в восходящей последовательности восьмерка так и не появится в качестве члена ряда! Далее видим поразительный пример законченной сим-метрии, подтверждающий то, что это именно «то, чего хочет Вселенная». Число, обратно пропорциональ-ное 8, — это 125 (целые числа, обозначающие единство, диаду и среднее целочисленное от основания деся-тичного счисления).
Навскидку можно привести следующие примеры, вытекающие из этой симметрии:
123456790? 8 = 98765432;
1 / 0,1111111111 = 9;
1 / 0,11111111112 = 92 = 81;
/ 2,2222222222 =;
1 / 0,987654321 = 1,0125;
Опять-таки, нигде в интегральной математике (которой даже мы не можем избежать) вы не найдете пропавшей восьмерки в восходящей последовательности. Она просто не появляется! Если вы выставите эту цифру, то навяжете «неестественные» для этого ряда условия и сразу же получите асимметричность, как например:
= 11111,11106!
Математика единства «авторитетно» заявляет, что ничто не восходит, за исключением того, что сна-чала низошло. Это иерархия чисел, которая нисходит из этого единства. Последовательности нельзя рас-сматривать так, как если бы между ними не было никакой разницы. Этот феномен подтверждается в гео-метрии, равно как и в свойствах треугольников, что является, и я могу доказать это на примерах, фунда-ментальным условием математики (у Евклида это одно из самых искусно затемненных мест в случаях с описанными и вписанными в окружность треугольниками).
Это и приводит нас к логическому переходу пифагорейцев: «к любому числу можно прибавить еди-ницу». Нет, нельзя — и по двум причинам. Первая состоит в том, что, если вы только не продемонстрирова-ли калибровку единиц, в ущерб логике вы говорите, в случае N = 1, что 1 это единство, а N + 1 на самом деле является единство + 1. Этим вы только что зачеркнули свое условие единства!
Вторая причина состоит в том, что поскольку (а не если) 8 всегда отсутствует в возрастающей по-следовательности, то каждый раз, когда вы будете делать некие «вычисления с универсальными числами», например с?, вы получите «непредвиденное препятствие» на восьмой операции и получите ошибку! Если вы предположите, что N + 1 является универсальным понятием, то все ваши вычисления для универсаль-ных явлений ошибочны. N + 1 — это локальное и неоткалиброванное выражение, которое не применимо для универсальных вычислений. То, что у нас есть, благодаря повсеместному применению N + 1, — это некото-рые очень хорошие аппроксимации. Эти аппроксимации внушили нам мысль о том, что математические методы верны, а асимметрия является феноменом, присущим Вселенной, а не нашей ошибочной математи-ке. Но если вы полагаете, что с такой математикой вы откроете «теорию всего», то вы себя обманываете.
Формат статьи не позволяет мне привести более подробные доказательства и продемонстрировать правоту моих слов. Существуют последовательные, обширные доказательства, сделанные как на поприще геометрии, так и в теории чисел, части которых уже независимо подтверждены.
Эта статья включена в Третью Книгу Писаний Крайона по причине довольно удивительного ряда со-бытий. Я не очень-то интересуюсь такими вещами, как нумерология и ченнелинг, скорее совсем не интере-суюсь. Моя мать дала мне почитать Первую Книгу, чтобы узнать, какого я мнения о том, что там написано. Я сосредоточился на разделе, в котором говорилось о числе 666, и применил к нему теорию чисел. Понача-лу я был настроен очень скептически, но чем больше я на него смотрел, тем больше различал, что в ком-ментарии сквозит нечто очень необычное, незаметное с первого взгляда.
«Взломать код» 666 было достаточно легко. Я уже вполне освоился с тем, что математика единства отвечает на загадки с применением обычной математики. Должен сказать, с другой стороны, что я не вы-числил для упомянутого числа 9944 какой-либо симметрии, но думаю, что симметрия есть, и она является математической?.
Поскольку я не нумеролог, то, когда я расшифровал этот код, мне показалось, что это было слишком легко и на самом деле я ничего не добился. В конце концов, ученые вот уже 20 веков бьются над его рас-шифровкой. В городской библиотеке я просмотрел пару книг по нумерологии, чтобы узнать, что же в них говорится по этому поводу. Кроме «мы не знаем», там не было практически ничего.
Введение
Я начал свои исследования в области фундаментальной математики более двух лет назад. Толчком к этому послужили вопросы, поднятые современной физической моделью возникновения Вселенной, извест-ной под названием теории «Большого Взрыва». На ранней стадии исследования стало очевидно, что требо-ваниям математического описания этого события соответствует нелинейный подход, в то время как основ-ные операционные предпосылки математики с древнейших времен до наших дней выражаются в терминах прямых линий.
Если обратиться к основополагающим элементам и методам математики, то можно увидеть, что для выражения математических концепций существует всего лишь два пути: при помощи аппарата математики прямых линий и математики кривых, или линейно-угловой математики, которую отвергают.
Двадцать шесть столетий традиции и исследования и эксплуатации математики прямых линий запе-чатлели ее в умах математически мыслящих людей как некий свод священных предписаний, который сле-дует всеми силами защищать от посягательств. Это важное утверждение, поскольку оно ставит под сомне-ние объективность, на которую претендуют математики. Можно наглядно продемонстрировать, что совре-менная математика основывается на предписаниях, и поэтому следует поставить под серьезное сомнение правомерность ее отказа от «абсолютных величин» и увлечения «самодостаточными логическими система-ми».
Вместо математики, которую можно в общем определить как «изучение и описание универсальных истинных вероятностей», мы сегодня имеем нагромождение византийских зданий, построенных на палубе корабля, с которого снят руль. Тот факт, что математика является поприщем самых совершенных и бле-стящих логических умов, которые когда-либо порождало человечество, наводит особенно глубокий ужас на тех, кто хотел бы покритиковать современное положение дел.
Логика — это основной инструмент математика. И прекрасный инструмент. Логика утверждает, что нечто может быть «истинным, ложным или неопределенным». Для того чтобы прийти к этому определе-нию, она сводит любую задачу к базовым элементам. Тот факт, что логика является столь неотъемлемой частью математики, притупляет внимание многих, порождая иллюзию того, что «все хорошо».
О чем забывают (или просто приуменьшают значимость этого), — это о том, что в любых математиче-ских выкладках есть слабое звено. Это утверждения a priori (самоочевидные предположения), на которых строятся дальнейшие логические заключения. Каждый серьезный математик знает о старом примере, ил-люстрирующем «проблему соизмеримости». Он заключается в том, что при рассмотрении двух произволь-ных отрезков прямой можно найти третий, длина которого будет равняться отношению первых двух, вы-раженному в целых единицах. Эта истина казалось несложной до тех пор, пока ее не подвергли анализу с точки зрения логики, что, в свою очередь, привело к открытию иррациональных чисел (чисел, которые нельзя выразить в виде конечных дробей). Это открытие чуть ли не развалило, и уж точно остановило рост греческой «науки о числах» (арифметики).
Греки утверждали, что арифметика является «матерью всей остальной математики». И именно нечи-словая геометрия опровергла представление о том, что Вселенную можно описать при помощи одних лишь целых чисел. Этот урок древних также не был понят в полной мере (виду смягчающих для древних обстоя-тельств), и современная математика не приняла его во внимание. К нечисловой геометрии в математиче-ских кругах в общем сегодня относятся чуть ли не с пренебрежением. Их представители, подобно Декарту (отцу современной науки), произвольным образом приняли постулат о том, что всю логику можно выра-зить при помощи средств алгебраической теории и теории чисел. Далее, опять-таки подобно Декарту, они приняли и возвели в ранг святыни постулат о том, что все формы можно описать при помощи прямого угла и нескольких других формул прямолинейной геометрии (т.е. теоремы Пифагора). Говоря короче, изучение феноменов Вселенной они проводят исключительно при помощи аппарата математики прямых линий.
И этому есть причина. Она заключается в простом арифметическом утверждении N + 1 (где N — лю-бое число), выражающем основополагающее предположение арифметики, которое звучит так: «К любому числу можно прибавить единицу». Если вы начнете с 1, прибавите еще 1, и так далее до бесконечности, что вы получите? Вы получите арифметическую прямую 1 + 1 + 1 + 1… а также соответствие между нечисло-вой геометрией прямолинейной структуры формы и линейным увеличением в теории чисел. Отсюда выте-кают все остальные математические дисциплины. Следует отдавать себе отчет в том, что, какие бы экзоти-ческие случаи ни возникали для описания перед современной математикой, они все же, по своей сути, яв-ляются арифметическими, геометрическими или представляют собой комбинацию того и другого. Из этого исключений нет.
Наша современная математика, при помощи которой мы отправили человека на Луну, по своей сути не изменилась с тех дней, когда люди сражались друг с другом на колесницах медным оружием! Прочную и окостеневшую традицию нашей математики энергично защищают от попыток поставить под сомнение правомерность повсеместного употребления прямолинейного подхода, и это вопреки отсутствию каких бы то ни было свидетельств того, что миром природных форм правят линейные закономерности. Например, что касается утверждения «свет естественным образом распространяется по прямой», то мы просто пред-полагаем это, пренебрегая тем, что естественной траекторией его движения может быть дуга, которую мы на данном этапе пока не можем обнаружить. Почему свет должен отличаться от всего остального в приро-де? Математические круги отстаивают традиционные взгляды и предписания, которые превратились в не-что вроде культа усопших, почитаемых выше основополагающих принципов объективности и единства. Они думают, что поскольку единство невозможно обнаружить исходя из принципов линейности, то, следо-вательно, его не существует. Они скорее скажут, что единства и истины в абсолютных терминах не сущест-вует, чем допустят, что их математика может ошибаться. Этим в логике они закладывают фундамент, о ко-торый разбиваются все другие устремления человека. Это поразительный случай коллективной спеси.
Какое значение имеет выбор типа линий (прямая или дуга)? В настоящее время математика допуска-ет легкое равенство и отрицает иерархичность. Это равенство позволяет описывать криволинейные формы в терминах прямых (число? — классический пример этому). Там, где греки надеялись, что это равенство истинно, современная математика решает заставить Вселенную пойти на уступки эгоистическому жела-нию вбить круглый кол в квадратное отверстие, да еще чтобы при этом не было никакие зазоров. В сущно-сти, в этом и состоит основная задача математического счисления.
Что же определяет, в абсолютном смысле, свойства прямых и кривых линий? Прямая линия — это «ряд одинаковых точек, которые никак не связаны с точками, находящимися вне этого ряда». Кривая линия — это «ряд точек, связанных с точкой (точками), находящейся (находящимися) вне этого ряда». Это очевидно. Нарисуйте кривую линию, и вы увидите, что значит «внешнее» и «внутреннее». Далее, если сде-лать сечение пополам двух любых сегментов этой кривой прямыми линиями, то эти секущие пересекутся в центре (центрах) этой линии. Таким образом, для прямой линии необходимо по крайней мере две точки, а в кривой, по сути, присутствуют три. Третья точка (т.е. центр) не всегда присутствует явно, но ее легко найти. Это похоже на секрет, который кривая желает сохранить.
Дальнейшие логические заключения неизбежно показывают, что прямые линии всегда и бесспорно являются линиями низшего порядка по отношению к кругу (статическая геометрия). Это то, чего так упорно старался не допустить Евклид в свою геометрию (которой мы, конечно же, пользуемся и по сей день, за исключением случаев, когда она выражается при помощи арифметики [аналитическая геометрия]). Я нашел, по крайней мере, 15 явных ошибок в евклидовой геометрии, которые в настоящее время либо за-малчиваются для широкого читателя по соображениям цензуры, либо вообще «неизвестны». Они постоян-но указывают на то, что Евклид разработал лишь последовательность предписаний. Евклидова геометрия была попыткой спасти арифметику греков, но если он и заслуживает похвалы за свои старания спасти нау-ку о числах, то математиков наших дней следует призвать к ответу за принадлежность к культу почитания человеческой математики, которая навязывается в качестве «объективной».
Опять-таки, какое значение имеет тип линий? Поскольку с легкостью можно показать, что все пря-молинейные структуры будут только фигурами низшего порядка по отношению к некой константе круга, двухточечный элемент нашего рассмотрения никогда и никоим волшебным образом не превратится в трехточечный. Это означает, что, какое бы количество сторон ни было у «правильного многоугольника, вписанного в окружность» (это просто фигура, составленная из одинаковых треугольников, где центр ок-ружности является вершинной точкой равнобедренных треугольников, образованных этим центром, и точ-ками касания сторон многоугольника с окружностью), никакая из его сторон никогда не пересечет окруж-ность больше чем в двух точках, а следовательно, его периметр никогда нельзя будет считать дугой, длина которой будет точно равна длине окружности; а следовательно, в лучшем случае, он будет лишь прибли-жением к истинной длине окружности (2?R).
Другой способ получить величину? — вычислить ее при помощи теории чисел («матери» всей мате-матики). Применяя последовательный ряд вычислений, мы аппроксимировали величину? с невероятным количеством знаков после десятичной запятой. При помощи теории чисел мы провозгласили доказанным, что? «является иррациональным и трансцендентным числом», т.е. что оно «представляет собой бесконеч-ный ряд неповторяющихся чисел». Но мы уверены, что с точки зрения этой логики априорные допущения фундаментальной теории чисел истинны. По сути дела, мы говорим, что? «иррационально и трансцен-дентно», потому что «к любому числу всегда можно прибавить единицу».
Это дает вам небольшое введение в положение дел в современной математике. Но даже за самыми непостижимыми заявлениями, которые раздаются с высот математического Олимпа, лежат некоторые очень простые принципы, которые до сих пор так и остаются неразрешенными и исчезновения которых желали бы многие. Таким образом, современные математики стоят перед выбором: сказать, что «абсолют-ной истины не существует», или утверждать, что «для того, чтобы математика была жизнеспособной, необ-ходимо лишь, чтобы она была логически самодостаточной», или, когда не проходит и это, — заявить, что «математика — как шахматы: правила менять нельзя». Это их священные мантры, которые они самозабвен-но твердят всякий раз, когда сталкиваются с противоречиями. Является ли наша математика ошибочной по своему существу? Полагаю, что да. Многие математики втайне считают, что она ошибочна. Многие при-писывают некую «неизвестную ошибку» тому или иному разделу устоявшейся теории. Намного меньше высказывающих мнение о том, что ошибку можно найти в пренебрежении рыцарей картезианского ордена к предостережению Евклида, высказанному им с самого начала по поводу изучения абсолютных величин (книги 6?13). Думаю, я одинок в своем утверждении, что ошибка еще в древнейшие времена вкралась в ма-тематические концепции пифагорейцев, которые (хотя это и отрицают) в ходу и по сей день: в частности, в предположении «к любому числу всегда можно прибавить единицу».
К любому числу всегда можно прибавить единицу
Пифагорейцы были группой последователей учителя по имени Пифагор. Они были первыми, кто ис-кал «научно обоснованную теорию чисел». Этим они хотели изгнать все человеческие предрассудки из теории чисел и измерить глубины Вселенной в терминах самой Вселенной. Это им также почти удалось. Если бы у них было представление о нуле и они умели бы складывать числа в столбик (это присутствует в западной математике только последние 600 лет), то смогли бы вывести теорию чисел, в которой числа в действительности отражали бы то, что существует во Вселенной.
Они решили, что числа являются относительными приращениями измерения и что это применимо ко Вселенной. Поскольку Вселенная является «суммой всего познаваемого», она была принята за «великое Одно», или «Единство». Видимую множественность проявлений природы (и то, что как вы, так и я суще-ствуем независимо друг от друга) они назвали «способностью единства порождать многообразие» — Диа-дой. Две эти концепции бытуют у нас и сегодня. Их «диадическое действие» — это наше «возведение в квадрат» (теперь вы знаете, откуда происходит возведение в квадрат). О вышеперечисленном записи древ-них говорят очень ясно. Однако потом начинается неясность. Пифагорейцы делают резкий переход к логи-ке и добавляют предположение: «к любому числу всегда можно прибавить единицу». Почему? Потому что они не смогли запустить свой генератор Единства/Диады. Они «перескочили» к самоочевидности того, что 1 + 1 = 2, 2 + 1 = 3, и т.д., основываясь на общих наблюдениях. И это, в свою очередь, является единст-венным подтверждением существования бесконечности.
Поскольку единство является суммой своих частей, то наш измерительный инструмент (числа) дол-жен, в своих наименьших частях, быть откалиброван по целому. Не важно, на скольких именно единицах мы остановимся, важно, чтобы они были «откалиброваны по единству». Именно здесь и возникает идея об основании системы счисления. Она в высшей степени произвольна. Поскольку мы пытаемся измерить нечто, то удобно сделать эти единицы «единообразными». К чему без надобности усложнять положение вещей? Наши пальцы — вот «счетчик, который всегда под рукой»; почему бы не использовать их?
Важно заметить: тот факт, что наша система счисления является произвольной, указывает на то, что и изучение абсолютных величин является наукой произвольной. Со стороны пифагорейцев было ошибкой (которая присутствует и до сих пор) утверждать, что числа — это «мать всей математики». Каким образом может нечто произвольное (арифметика) быть «матерью» геометрии, если геометрия — это универсальная константа (круг остается кругом независимо от того, какие числа используются для того, чтобы его опи-сать)? Поэтому разве не парадоксально, что современные математики относятся к нечисловой геометрии чуть ли не с пренебрежением?
В таком случае, «наука о числах» должна выводиться из геометрических констант, а не наоборот, как у нас. Это и было главным в искусстве Евклида. Он сделал так, что создавалась видимость того, что между дугой и прямой линией существует равнозначность. Он замалчивал жизненно важную информацию о ду-гах, членил геометрически единые феномены (т.е. во всех треугольниках делил пополам стороны и углы), добавлял ложные выводы к постулатам, общим понятиям и определениям и не доводил до логического за-вершения свои теоремы — и я могу доказать, что все это действительно так. Он делал это последовательно и преднамеренно, чтобы «спасти греческую математику». Он прилагал удивительные усилия, и современные математические круги до сих пор еще не до конца их поняли, поскольку они заблудились в дебрях схола-стического истолкования его трудов.
Но вернемся к числам. Эти «единицы» (пальцы) являются «наименьшими неразложимыми отраже-ниями единства». То есть каждая единица являет собой целое, обладая всеми качествами изначальной це-лостности единства. Поскольку эти единицы являются «отражениями единства», то можно сказать: «Хоро-шо, значит, сами эти единицы можно при помощи той же операции разложить на более простые единицы… И где же здесь „неразложимость“? Если продолжить деление единиц, получается „универсальная линей-ка“. Если у меня есть линейка, положим, длиной в ярд, то в этом ярде у меня будет 36 дюймов. Если я захо-чу, то, руководствуясь той же логикой, я могу эти дюймы делить и дальше, на более мелкие части. Вот по-чему единицы являются отражением единства».
То, что у нас в действительности имеется сейчас, — это великое «единое» (единство) и меньшее «единое» (единица). Каким же образом их откалибровать, чтобы они согласовывались в рамках самой сис-темы? Этот вопрос и загнал в тупик пифагорейцев, остается он неразрешенным и сегодня. Мы не смогли откалибровать единицу по единству (поэтому пренебрегли им). И именно здесь в игру вступает «диадиче-ское действие» (возведение в квадрат).
Если бы я решил воспользоваться количеством своих пальцев в качестве основания для системы счисления (десятичной системы), каждый палец я обозначил бы черточкой, вот так:
11111 11111.
Применяя к этому «диадическое действие» (возведение в квадрат), я получаю следующее:
11111111112 = 1234567900987654321.
Заметьте, в возрастающей последовательности чисел отсутствует 8. Как такое может быть? Это что, чистая случайность? Сколько ни производи вычислений, эта выпавшая в восходящей последовательности восьмерка так и не появится в качестве члена ряда! Далее видим поразительный пример законченной сим-метрии, подтверждающий то, что это именно «то, чего хочет Вселенная». Число, обратно пропорциональ-ное 8, — это 125 (целые числа, обозначающие единство, диаду и среднее целочисленное от основания деся-тичного счисления).
Навскидку можно привести следующие примеры, вытекающие из этой симметрии:
123456790? 8 = 98765432;
1 / 0,1111111111 = 9;
1 / 0,11111111112 = 92 = 81;
/ 2,2222222222 =;
1 / 0,987654321 = 1,0125;
0,0987654321 / 8 = 0,01234567901234… = 1 / 92.
Опять-таки, нигде в интегральной математике (которой даже мы не можем избежать) вы не найдете пропавшей восьмерки в восходящей последовательности. Она просто не появляется! Если вы выставите эту цифру, то навяжете «неестественные» для этого ряда условия и сразу же получите асимметричность, как например:
= 11111,11106!
Математика единства «авторитетно» заявляет, что ничто не восходит, за исключением того, что сна-чала низошло. Это иерархия чисел, которая нисходит из этого единства. Последовательности нельзя рас-сматривать так, как если бы между ними не было никакой разницы. Этот феномен подтверждается в гео-метрии, равно как и в свойствах треугольников, что является, и я могу доказать это на примерах, фунда-ментальным условием математики (у Евклида это одно из самых искусно затемненных мест в случаях с описанными и вписанными в окружность треугольниками).
Это и приводит нас к логическому переходу пифагорейцев: «к любому числу можно прибавить еди-ницу». Нет, нельзя — и по двум причинам. Первая состоит в том, что, если вы только не продемонстрирова-ли калибровку единиц, в ущерб логике вы говорите, в случае N = 1, что 1 это единство, а N + 1 на самом деле является единство + 1. Этим вы только что зачеркнули свое условие единства!
Вторая причина состоит в том, что поскольку (а не если) 8 всегда отсутствует в возрастающей по-следовательности, то каждый раз, когда вы будете делать некие «вычисления с универсальными числами», например с?, вы получите «непредвиденное препятствие» на восьмой операции и получите ошибку! Если вы предположите, что N + 1 является универсальным понятием, то все ваши вычисления для универсаль-ных явлений ошибочны. N + 1 — это локальное и неоткалиброванное выражение, которое не применимо для универсальных вычислений. То, что у нас есть, благодаря повсеместному применению N + 1, — это некото-рые очень хорошие аппроксимации. Эти аппроксимации внушили нам мысль о том, что математические методы верны, а асимметрия является феноменом, присущим Вселенной, а не нашей ошибочной математи-ке. Но если вы полагаете, что с такой математикой вы откроете «теорию всего», то вы себя обманываете.
Формат статьи не позволяет мне привести более подробные доказательства и продемонстрировать правоту моих слов. Существуют последовательные, обширные доказательства, сделанные как на поприще геометрии, так и в теории чисел, части которых уже независимо подтверждены.
Эта статья включена в Третью Книгу Писаний Крайона по причине довольно удивительного ряда со-бытий. Я не очень-то интересуюсь такими вещами, как нумерология и ченнелинг, скорее совсем не интере-суюсь. Моя мать дала мне почитать Первую Книгу, чтобы узнать, какого я мнения о том, что там написано. Я сосредоточился на разделе, в котором говорилось о числе 666, и применил к нему теорию чисел. Понача-лу я был настроен очень скептически, но чем больше я на него смотрел, тем больше различал, что в ком-ментарии сквозит нечто очень необычное, незаметное с первого взгляда.
«Взломать код» 666 было достаточно легко. Я уже вполне освоился с тем, что математика единства отвечает на загадки с применением обычной математики. Должен сказать, с другой стороны, что я не вы-числил для упомянутого числа 9944 какой-либо симметрии, но думаю, что симметрия есть, и она является математической?.
Поскольку я не нумеролог, то, когда я расшифровал этот код, мне показалось, что это было слишком легко и на самом деле я ничего не добился. В конце концов, ученые вот уже 20 веков бьются над его рас-шифровкой. В городской библиотеке я просмотрел пару книг по нумерологии, чтобы узнать, что же в них говорится по этому поводу. Кроме «мы не знаем», там не было практически ничего.