Страница:
Над другим способом распространения тепловой энергии – излучением – мы часто даже не задумываемся, хотя с ним встречаемся каждый день. Этим способом Солнце передает свою тепловую энергию поверхности Земли, от которой впоследствии нагревается воздух. В данном случае речь идет о передаче тепла электромагнитным излучением определенной длины волны.
Энергия электромагнитного излучения трансформируется в тепло после попадания излучения на поверхность предметов, которые данную энергию поглощают. Здесь действительна физическая симметрия между излучением и поглощением энергии черного тела. Если мы нагреваем тело, оно начинает излучать электромагнитные волны (энергию) в окружающее пространство. Если данная энергия поглощается другим телом, это приводит к нагреванию этого тела, что и используется при лучистом отоплении. В этом случае лучистые отопительные устройства, которые размещают на определенной высоте над полом, излучают электромагнитные волны, которые с очень незначительными потерями проходят через воздух, поглощаются полом, вследствие чего повышается температура пола и предметов, на которые попадает излучение. Согретый таким образом пол нагревает воздух.
Влияние лучистого отопления на человека можно сравнить с прогулкой в солнечный весенний день. Температура воздуха еще не достаточно высокая, однако солнечные лучи уже согревают землю, и человек ощущает их как приятное тепло.
Упомянутое выше равенство между температурами воздуха и предметов в обоих случаях действительно только в домах с качественной теплоизоляцией.
Приведенные свойства можно отобразить следующим образом:
1. Передача тепла конвекцией: tv > tр.
2. Передача тепла: конвекционное тело – согревание воздуха – согревание человека.
3. Передача тепла излучением: tv < tр.
4. Излучающее устройство: согревание предметов и человека – согревание воздуха.
Для того чтобы сравнить эффективность конвекционного и лучистого отопления в типичном промышленном помещении, попробуем проанализировать требования к состоянию теплового комфорта человека и энергетические параметры обеих систем отопления.
Тепловой комфорт
Оценка потребления энергии
Классификация отопительных систем
Конвекция
Лучистая отопительная система
Электромагнитное излучение
Газовые инфракрасные излучатели
Светлые газовые излучатели
Область использования светлых излучателей
Энергия электромагнитного излучения трансформируется в тепло после попадания излучения на поверхность предметов, которые данную энергию поглощают. Здесь действительна физическая симметрия между излучением и поглощением энергии черного тела. Если мы нагреваем тело, оно начинает излучать электромагнитные волны (энергию) в окружающее пространство. Если данная энергия поглощается другим телом, это приводит к нагреванию этого тела, что и используется при лучистом отоплении. В этом случае лучистые отопительные устройства, которые размещают на определенной высоте над полом, излучают электромагнитные волны, которые с очень незначительными потерями проходят через воздух, поглощаются полом, вследствие чего повышается температура пола и предметов, на которые попадает излучение. Согретый таким образом пол нагревает воздух.
Влияние лучистого отопления на человека можно сравнить с прогулкой в солнечный весенний день. Температура воздуха еще не достаточно высокая, однако солнечные лучи уже согревают землю, и человек ощущает их как приятное тепло.
Упомянутое выше равенство между температурами воздуха и предметов в обоих случаях действительно только в домах с качественной теплоизоляцией.
Приведенные свойства можно отобразить следующим образом:
1. Передача тепла конвекцией: tv > tр.
2. Передача тепла: конвекционное тело – согревание воздуха – согревание человека.
3. Передача тепла излучением: tv < tр.
4. Излучающее устройство: согревание предметов и человека – согревание воздуха.
Для того чтобы сравнить эффективность конвекционного и лучистого отопления в типичном промышленном помещении, попробуем проанализировать требования к состоянию теплового комфорта человека и энергетические параметры обеих систем отопления.
Тепловой комфорт
Тепловой комфорт можно определить как приятные ощущения человека в отапливаемом пространстве. На тепловые ощущения человека и его комфорт влияют несколько факторов, из которых самими важными являются:
– температура воздуха tv (°С);
– температура плоскостей, ограничивающих интерьер, – tu (°С);
– скорость перемещения воздуха в помещении – w (ms-1);
– тепловое сопротивление одежды – Rc (m2.K.W-1);
– уровень активности человека – Q (W);
– относительная влажность среды – ф (%).
Температура воздуха в помещении обычно относится к первичным критериям оценки теплового состояния отапливаемого помещения. Этот критерий вместе со скоростью перемещения воздуха определяет конвекционную передачу теплового потока от человека к окружающему пространству.
В обычных отапливаемых домах при температуре 18–20° С допускается движение воздуха не более 0,1 м/с. Идеальное отопление должно было бы обеспечить такое вертикальное распределение воздуха в помещении, при котором температура на уровне высоты головы человека (приблизительно 1,7 м над полом) была бы примерно на 2° С ниже, чем на уровне 10 см над полом.
Значительное влияние на тепловой комфорт человека имеет температура ограничивающих плоскостей помещения, которая должна быть такой, чтобы разница температур стен и пола и температуры воздуха составляла не более 7° С, если человек отдыхает, и не более 10° С, если он работает.
Среднее арифметическое эффективной температуры стен и температуры воздуха в интерьере (ti) можно определить как внутреннюю температуру в помещении. Эта температура измеряется сферическим термометром в центре помещения на высоте 1 м от пола, что соответствует центру тяжести стоящего человека. Значение измерения обычно является нормативным значением для проектирования технологии отопления в помещении.
Если влажность воздуха в помещении варьируется в диапазоне 35–70%, она не влияет на ощущение теплового комфорта человека, так как наличие водяного пара в воздухе также воздействует и на интенсивность испарения влаги с тела человека.
Остальные факторы, влияющие на тепловой комфорт в помещении, можно определить как принадлежащие к более широкому набору микроклиматических условий. К ним относятся:
– частицы пыли в воздухе;
– микроорганизмы или бактерии;
– газы, испарения и запахи разного типа;
– содержание ионов в воздухе.
– температура воздуха tv (°С);
– температура плоскостей, ограничивающих интерьер, – tu (°С);
– скорость перемещения воздуха в помещении – w (ms-1);
– тепловое сопротивление одежды – Rc (m2.K.W-1);
– уровень активности человека – Q (W);
– относительная влажность среды – ф (%).
Температура воздуха в помещении обычно относится к первичным критериям оценки теплового состояния отапливаемого помещения. Этот критерий вместе со скоростью перемещения воздуха определяет конвекционную передачу теплового потока от человека к окружающему пространству.
В обычных отапливаемых домах при температуре 18–20° С допускается движение воздуха не более 0,1 м/с. Идеальное отопление должно было бы обеспечить такое вертикальное распределение воздуха в помещении, при котором температура на уровне высоты головы человека (приблизительно 1,7 м над полом) была бы примерно на 2° С ниже, чем на уровне 10 см над полом.
Значительное влияние на тепловой комфорт человека имеет температура ограничивающих плоскостей помещения, которая должна быть такой, чтобы разница температур стен и пола и температуры воздуха составляла не более 7° С, если человек отдыхает, и не более 10° С, если он работает.
Среднее арифметическое эффективной температуры стен и температуры воздуха в интерьере (ti) можно определить как внутреннюю температуру в помещении. Эта температура измеряется сферическим термометром в центре помещения на высоте 1 м от пола, что соответствует центру тяжести стоящего человека. Значение измерения обычно является нормативным значением для проектирования технологии отопления в помещении.
Если влажность воздуха в помещении варьируется в диапазоне 35–70%, она не влияет на ощущение теплового комфорта человека, так как наличие водяного пара в воздухе также воздействует и на интенсивность испарения влаги с тела человека.
Остальные факторы, влияющие на тепловой комфорт в помещении, можно определить как принадлежащие к более широкому набору микроклиматических условий. К ним относятся:
– частицы пыли в воздухе;
– микроорганизмы или бактерии;
– газы, испарения и запахи разного типа;
– содержание ионов в воздухе.
Оценка потребления энергии
В прошлом оценка потребления энергии на отопление промышленных объектов в соответствующих технических стандартах не устанавливалась и даже не рекомендовалась. Однако предполагается, что в процессе согласования стандартов со стандартами стран ЕС критерии потребления тепла будут нормативно зафиксированы. Потребление энергии для отопления загородного дома оценивают на основе тепловой характеристики объекта qo.
Если действительно соотношение qo < = qo N, объекты удовлетворяют требованиям, в обратном случае они не соответствуют критериям.
Нормативная тепловая характеристика qoN для производственных промышленных объектов определяет объекты:
1) с очень легкой и легкой работой (табл. 4, строка А);
2) со средне тяжелой и тяжелой работой (табл. 4, строка Б).
– тепловых потерь, данных стандартом для температуры воздуха внешней среды;
– характеристик смежных строений объекта.
При отоплении загородного дома учитываются тепловые потери объекта и только потом тепловые потери, связанные с инфильтрацией воздуха.
Тепловая характеристика рассчитывается по формуле:
qo = Qb (V. /\t) – 1 = Qb [V(ti – te)] – 1 (W.m – 3.K – 1),
где qo – тепловая характеристика здания (W.m – 3.K – 1);
Qb – тепловые потери здания (W);
/\t = (ti – te) – разница температур воздуха внутренней и внешней среды (К);
V – смежные помещения (т“”).
Если действительно соотношение qo < = qo N, объекты удовлетворяют требованиям, в обратном случае они не соответствуют критериям.
Нормативная тепловая характеристика qoN для производственных промышленных объектов определяет объекты:
1) с очень легкой и легкой работой (табл. 4, строка А);
2) со средне тяжелой и тяжелой работой (табл. 4, строка Б).
Таблица 4. Тепловая характеристика qoN для производственных промышленных объектов
При расчете потребления тепла и тепловой характеристики зданий исходят из:– тепловых потерь, данных стандартом для температуры воздуха внешней среды;
– характеристик смежных строений объекта.
При отоплении загородного дома учитываются тепловые потери объекта и только потом тепловые потери, связанные с инфильтрацией воздуха.
Тепловая характеристика рассчитывается по формуле:
qo = Qb (V. /\t) – 1 = Qb [V(ti – te)] – 1 (W.m – 3.K – 1),
где qo – тепловая характеристика здания (W.m – 3.K – 1);
Qb – тепловые потери здания (W);
/\t = (ti – te) – разница температур воздуха внутренней и внешней среды (К);
V – смежные помещения (т“”).
Классификация отопительных систем
Отопительная система должна удовлетворять широким комплексным требованиям, которые характеризуются:
– энергетическими требованиями;
– экономической эффективностью;
– экологической обстановкой.
Отопительные системы по источнику тепла разделяются на:
– центральные (котельная на твердом, жидком, газовом топливе);
– децентрализованные (прямообогревающие устройства).
По дистрибьюции тепла отопительные системы делятся на:
– водяные (с горячей, теплой водой, низкотеплотные);
– паровые (среднего и низкого давления).
– тепловоздушные.
По способу передачи тепла отопительные системы бывают:
– конвекционными (отопительные элементы, тепловоздушные, проветривающие и климатизационные устройства);
– лучистыми.
Лучистые системы, в свою очередь, разделяются на следующие группы:
– светлые излучатели;
– темные;
– супертемные (излучатели, излучающие панели).
Выбор отопительной системы в значительной мере зависит от следующих факторов:
– выбор источника тепла и типа топлива;
– способ дистрибьюции тепла;
– характер отапливаемого помещения;
– способ передачи тепла в помещении.
Исходя из вышеприведенных требований, решение по использованию того или иного типа отопительных систем следует принимать, опираясь на потребности пользователя, что гарантирует высокое эксплуатационное качество в отапливаемом помещении.
Из всего сказанного выше можно сделать вывод, что вопреки необходимости решать эти проблемы комплексно доминирующим остается способ передачи тепла от отапливающего элемента или панели в отапливаемое пространство помещения с использованием конвекционной или лучистой системы.
Различный физический принцип передачи тепла и вещества, в случае конвекционного и лучистого отопления, предполагает, что при расчете потребности в тепле для отопления необходимо учитывать все физические законы, которые характеризуют передачу тепла конвекцией и излучением.
– энергетическими требованиями;
– экономической эффективностью;
– экологической обстановкой.
Отопительные системы по источнику тепла разделяются на:
– центральные (котельная на твердом, жидком, газовом топливе);
– децентрализованные (прямообогревающие устройства).
По дистрибьюции тепла отопительные системы делятся на:
– водяные (с горячей, теплой водой, низкотеплотные);
– паровые (среднего и низкого давления).
– тепловоздушные.
По способу передачи тепла отопительные системы бывают:
– конвекционными (отопительные элементы, тепловоздушные, проветривающие и климатизационные устройства);
– лучистыми.
Лучистые системы, в свою очередь, разделяются на следующие группы:
– светлые излучатели;
– темные;
– супертемные (излучатели, излучающие панели).
Выбор отопительной системы в значительной мере зависит от следующих факторов:
– выбор источника тепла и типа топлива;
– способ дистрибьюции тепла;
– характер отапливаемого помещения;
– способ передачи тепла в помещении.
Исходя из вышеприведенных требований, решение по использованию того или иного типа отопительных систем следует принимать, опираясь на потребности пользователя, что гарантирует высокое эксплуатационное качество в отапливаемом помещении.
Из всего сказанного выше можно сделать вывод, что вопреки необходимости решать эти проблемы комплексно доминирующим остается способ передачи тепла от отапливающего элемента или панели в отапливаемое пространство помещения с использованием конвекционной или лучистой системы.
Различный физический принцип передачи тепла и вещества, в случае конвекционного и лучистого отопления, предполагает, что при расчете потребности в тепле для отопления необходимо учитывать все физические законы, которые характеризуют передачу тепла конвекцией и излучением.
Конвекция
При использовании систем конвекционного отопления температура стен (tu) ниже температуры воздуха (tv). tu тем ниже tv, чем хуже теплоизоляционные свойства строительных материалов, использовавшихся при возведении дома, а также, чем ниже внешняя температура (te).
Общие тепловые потери объекта (Qс) равняются сумме тепловых потерь конструкцией (Qp) и тепловых потерь, связанных с вентиляцией (Qv):
Qс = Qp + Qv
Тепловые потери через стены определяются из основной тепловой потери (Qо) суммированием с коэффициентами по следующему соотношению:
QР = Qо.(1 + p1 + р2),
где р1 – коэффициент на компенсацию влияния холодных стен; р2 – коэффициент на ускорение нагрева.
Основная тепловая потеря конструкции объекта (Qo) рассчитывается как сумма тепловых потерь отдельных элементов конструкции:
Qo = E [kj • Sj • (ti – te)],
где kj – коэффициент прохождения тепла строительной конструкцией (W.m – 3.K – 1);
Sj – охлаждающаяся плоскость строительной конструкции (m2).
Тепловая потеря при натуральном проветривании рассчитывается по следующей формуле:
Qv = p. c. V. h – 1. (ti – te) : 3600,
где p – плотность воздуха (кg.m – 3);
c – специфическая тепловая емкость воздуха
(J.kg – 1.K – 1);
V – отапливаемый объем объекта (m3);
h – 1 – обмен воздуха в объекте за 1 час.
В помещениях с высокими потолками необходимо учитывать повышение температуры воздуха с увеличением высоты и расчетной температуры (ti) в зависимости от высоты объекта (h). Таким образом, учитывается температурный градиент:
/\t : /\h = 0.3 K.m – 1
Потребность в тепле для отопления с помощью центральной системы отопления выше на 5–15%, чем потребность в тепле при децентрализованном отоплении. Приведенная процентная разница представляет коррекцию на потери в системе доставки тепла.
Общие тепловые потери объекта (Qс) равняются сумме тепловых потерь конструкцией (Qp) и тепловых потерь, связанных с вентиляцией (Qv):
Qс = Qp + Qv
Тепловые потери через стены определяются из основной тепловой потери (Qо) суммированием с коэффициентами по следующему соотношению:
QР = Qо.(1 + p1 + р2),
где р1 – коэффициент на компенсацию влияния холодных стен; р2 – коэффициент на ускорение нагрева.
Основная тепловая потеря конструкции объекта (Qo) рассчитывается как сумма тепловых потерь отдельных элементов конструкции:
Qo = E [kj • Sj • (ti – te)],
где kj – коэффициент прохождения тепла строительной конструкцией (W.m – 3.K – 1);
Sj – охлаждающаяся плоскость строительной конструкции (m2).
Тепловая потеря при натуральном проветривании рассчитывается по следующей формуле:
Qv = p. c. V. h – 1. (ti – te) : 3600,
где p – плотность воздуха (кg.m – 3);
c – специфическая тепловая емкость воздуха
(J.kg – 1.K – 1);
V – отапливаемый объем объекта (m3);
h – 1 – обмен воздуха в объекте за 1 час.
В помещениях с высокими потолками необходимо учитывать повышение температуры воздуха с увеличением высоты и расчетной температуры (ti) в зависимости от высоты объекта (h). Таким образом, учитывается температурный градиент:
/\t : /\h = 0.3 K.m – 1
Потребность в тепле для отопления с помощью центральной системы отопления выше на 5–15%, чем потребность в тепле при децентрализованном отоплении. Приведенная процентная разница представляет коррекцию на потери в системе доставки тепла.
Лучистая отопительная система
При лучистом отоплении температура воздуха (tv) ниже температуры окружающих плоскостей (tu). При этом tv тем ниже tu, чем хуже теплоизоляционные свойства строительных конструкций и чем ниже внешняя температура (te).
В данном случае действительно обратное неравенство, чем при конвекционном отоплении.
Расчет потребности в тепле для определения тепловой мощности излучателей производится из системы трех линейных уравнений теплового равновесия помещения. При учитывании только одной охлаждающейся плоскости – пола общая плотность лучистого потока), излучаемая излучателями и попадающая на охлаждаемую плоскость пола, устанавливается отношением:
Qс = (1 – e). Фс. Ys • Qp : Sс (W.m – 2).
Неизвестные величины – общая плотность лучистого потока – qс (W.m – 2), средняя температура воздуха внутри помещения – tv (° С) и температура облучаемой горизонтальной проекции площади – tс (° С). Они рассчитываются из трех уравнений теплового равновесия отапливаемого пространства с учетом человека, находящегося в нем, следующим образом:
1. Уравнения теплового баланса облучаемой горизонтальной площади (Sс):
qc = qsc + qkc + qec (W m – 2)
qc = asc (tс – tt) + akc •(tc – tV) + /\с. (tc – tec) (W.m – 2), где
ts – поверхностная температура плоскости Sс;
tt – средняя поверхностная температура стен;
tv – средняя температура воздуха в интерьере;
tec – температура почвы под полом помещения (при отсутствии подвальных помещений);
Sc – охлаждаемая площадь пола.
2. Уравнение теплового баланса внутреннего воздуха:
p.c. (V : Sc)•(tv – te) = akc • (tc – tv) (W.m – 2).
3. Уравнение теплового комфорта для человека при использовании излучателей:
tv + 0,5. tc + 0,5. tt + qr : 5,25 = 2.tg (°С),
где tg – результирующая температура ощущения.
Для этого уравнения еще необходимо определить интенсивность облучения человеческого тела (qг), исходя из отношения:
qr = qc • (Ф : Фc)
Из данной системы уравнений будут определены неизвестные величины: tс, tу и общая плотность потока излучения (qс).
Из уже известной плотности потока излучения (qс) рассчитывается общая тепловая мощность излучателей:
QP = qc • Sc • (1 – e) – 1 • Фc – 1 • ns – 1,
где e – относительная поглощаемость слоем воздуха;
a – коэффициент прохождения тепла (SРТ);
asc – коэффициент прохождения тепла излучением с поверхности пола;
akc – коэффициент прохождения тепла на поверхности охлаждаемой плоскости конвекцией;
Фc – пропорция облучения горизонтальной проекции плоскости Sc-излучателями;
Фr – пропорция облучения человеческого тела;
ns – лучевая эффективность излучателя (данные изготовителя).
В данном случае действительно обратное неравенство, чем при конвекционном отоплении.
Расчет потребности в тепле для определения тепловой мощности излучателей производится из системы трех линейных уравнений теплового равновесия помещения. При учитывании только одной охлаждающейся плоскости – пола общая плотность лучистого потока), излучаемая излучателями и попадающая на охлаждаемую плоскость пола, устанавливается отношением:
Qс = (1 – e). Фс. Ys • Qp : Sс (W.m – 2).
Неизвестные величины – общая плотность лучистого потока – qс (W.m – 2), средняя температура воздуха внутри помещения – tv (° С) и температура облучаемой горизонтальной проекции площади – tс (° С). Они рассчитываются из трех уравнений теплового равновесия отапливаемого пространства с учетом человека, находящегося в нем, следующим образом:
1. Уравнения теплового баланса облучаемой горизонтальной площади (Sс):
qc = qsc + qkc + qec (W m – 2)
qc = asc (tс – tt) + akc •(tc – tV) + /\с. (tc – tec) (W.m – 2), где
ts – поверхностная температура плоскости Sс;
tt – средняя поверхностная температура стен;
tv – средняя температура воздуха в интерьере;
tec – температура почвы под полом помещения (при отсутствии подвальных помещений);
Sc – охлаждаемая площадь пола.
2. Уравнение теплового баланса внутреннего воздуха:
p.c. (V : Sc)•(tv – te) = akc • (tc – tv) (W.m – 2).
3. Уравнение теплового комфорта для человека при использовании излучателей:
tv + 0,5. tc + 0,5. tt + qr : 5,25 = 2.tg (°С),
где tg – результирующая температура ощущения.
Для этого уравнения еще необходимо определить интенсивность облучения человеческого тела (qг), исходя из отношения:
qr = qc • (Ф : Фc)
Из данной системы уравнений будут определены неизвестные величины: tс, tу и общая плотность потока излучения (qс).
Из уже известной плотности потока излучения (qс) рассчитывается общая тепловая мощность излучателей:
QP = qc • Sc • (1 – e) – 1 • Фc – 1 • ns – 1,
где e – относительная поглощаемость слоем воздуха;
a – коэффициент прохождения тепла (SРТ);
asc – коэффициент прохождения тепла излучением с поверхности пола;
akc – коэффициент прохождения тепла на поверхности охлаждаемой плоскости конвекцией;
Фc – пропорция облучения горизонтальной проекции плоскости Sc-излучателями;
Фr – пропорция облучения человеческого тела;
ns – лучевая эффективность излучателя (данные изготовителя).
Электромагнитное излучение
Излучение – это передача электромагнитной энергии в виде поперечных волн. Источником энергии являются возбужденные частицы, появляющиеся при возвращении возбужденной частицы на основной энергетический уровень. Данное возвращение сопровождается эмиссией фотонов излучения.
Процесс перехода на уровни может отличаться, и его проявления могут быть различными. Если процесс перехода инициируется столкновениями молекул, которые характеризуют температуру тела, то излучение обозначается как тепловое. Излучение в таком случае может иметь как корпускулярный, так и волновой характер. Квантовые корпускулярные свойства характерны для кратковолнового излучения, а волновые – для длинноволновых излучений. Электромагнитные излучения различных видов похожи друг на друга, но отличаются длиной волны и действием.
Тепловое излучение определяется как та часть спектра, которая характеризируется волновой длиной от 10–7 м до 10–4 м. В этой области находится и диапазон света с длиной волны 3,9.10–7 до 7,8.10–7 м. Большинство твердых и жидких веществ излучает на всех длинах волн от 0 и до бесконечности и имеет полный спектр излучения. Твердые вещества имеют непрерывный спектр излучения. Излучение зависит от вида вещества, из которого состоит тело, его температуры и поверхности.
Излучение тел с растущей температурой резко возрастает, при этом изменяется и спектр излучаемых волн. Вместе с ростом плотности потока излучения максимум спектральной плотности передвигается в область более коротких волн (приводимая зависимость известна как закон Вена). Таким образом повышается величина излучаемой энергии при коротких волнах. По этой причине при высоких температурах излучение доминирует над конвекцией и проводимостью.
При низких температурах наблюдается обратное явление. В самом излучении участвуют только тончайшие слои на поверхности тела. Тепло, распространяемое излучением, в отличие от тепла, распространяемого конвекцией и кондукцией, по своим параметрам и тепловому действию приближается к свойствам природного солнечного излучения.
Солнечные лучи, попадающие на поверхность Земли, имеют спектральный диапазон от 260.10–9 до 3000.10–9 м. Это значит, что спектр содержит видимое ультрафиолетовое и невидимое инфракрасное излучение. Излучение инфракрасных излучателей может находиться как в видимой (светлые инфракрасные излучатели), так и в невидимой (инфракрасной) части спектра (темные и супертемные излучатели).
Таким образом, становится ясно, что различный физический принцип передачи тепла требует различных способов расчета и проектирования отопительной системы. Так же и воздействие отопительной системы на тепловой комфорт человека будет отличаться от энергетических требований.
Сравним температурные условия, образованные центральной паро– и тепловоздушной отопительными системами и лучистой системой отопления (рис. 19).
Рис. 19. Пример температурных условий в помещении при использовании различных систем отопления: а – при лучистом отоплении; б – при конвективном отоплении
При конвективном отоплении тепловая энергия поступает в помещение с помощью конвективных устройств и тепловоздушных обменников. Источником тепла является энергия пара, поставляемая с помощью трубопроводов от центрального источника – котельной.
В этом случае тепловой комфорт обеспечивается обогретым воздухом, поступающим от обменников и конвективных устройств: дело в том, что первичной теплоносительной средой является горячий пар. Следовательно, согретый таким образом воздух бывает достаточно теплым. Однако чем теплее воздух, тем он легче и быстрее перемещается вверх. Это приводит к тому, что объем помещения согревается воздухом сверху вниз, причем под крышей температура наиболее высока. К тому же крыша с различными технологическими отверстиями и форточками считается помещением с плохими теплоизоляционными свойствами.
Распределение температур при лучистом и тепловоздушном отоплении в зависимости от высоты представлены на рис. 20.
Рис. 20. Распределение температур: а – при лучистом отоплении; б – при тепловоздушном отоплении
Вторым отрицательным результатом бывает так называемый каминный эффект, который увеличивает обмен воздуха в помещении. Мощность центрального отопления должна покрывать тепловые потери всей цепочки производства, дистрибьюции и обмена тепла (рис. 21).
Рис. 21. Производство и обмен тепла
Если потребление газа для производства тепловой энергии в котлах – 100%, потери в самом источнике тепла составляют 15% в виде воды и 20% в виде пара от всего количества энергии.
Лучистая отопительная система состоит из тепловых устройств – излучателей, которые помещаются над отопливаемой площадью. После включения и согрева на номинальную температуру излучатели начинают излучать электромагнитные волны, которые с небольшими потерями проходят через воздух, попадают на пол и преобразуются в тепло. Это значит, что воздух обогревается вторично, но уже от пола, который таким образом становится самым теплым местом в объекте. Излучатели с выгодой можно размещать только над местом, где находятся люди, чтобы обеспечивать им необходимые температурные условия, то есть образовывать температурные зоны без отделения их перегородками. Образование необходимых температурных режимов в этих зонах способствует снижению потребления газа от 70 до 30%.
Температурный градиент в зависимости от высоты при лучистом отоплении приближается к требованиям идеального отопления. В этом случае температура воздуха на уровне головы человека ниже, чем при тепловоздушном отоплении. Данная температура воздуха определяет преимущество использования лучистого отопления, так как для обогрева пространства требуется более низкая мощность; это видно из следующего уравнения тепловых потерь объекта:
Qo = E [kj . Sj . (ti – te)]
При тепловоздушном отоплении значительная площадь конструкции помещения противостоит температурной разнице внутренней и внешней температур:
/\t = (ti – te),
где /\t = 30° С – (–20° С) = 50° С.
При лучистом отоплении разница температур составляет:
/\t = 17° C – (–20° C) = 37° C.
Так как площадь конструкции и коэффициент прохождения тепла для обоих случаев одинаковы, соотношение тепловой мощности будет равняться соотношению /\t. В процентном отношении тепловая мощность лучистого отопления для покрытия тепловых потерь конструкции будет составлять только 74% от значения для тепловоздушной системы. Таким образом, комплексное сравнение гораздо сложнее, но оно соответствует среднему отношению тепловых мощностей, которые на практике составляют 80%.
Более низкая температура воздуха позволяет передавать биологическое тепло, которое образуется во время работы, и тем самым предотвращает перегрев организма.
Этот феномен лучистого отопления наступает в результате физической передачи тепла, где лучи-стый поток образует добавку тепла к температуре воздуха, ощущаемого человеком. Очень упрощенно это можно описать следующим уравнением:
tp = tv + ts (° С),
где tp – температура, ощущаемая человеком;
tv – температура воздуха;
ts = Is.0,072;
Is – интенсивность лучистого потока, а число 0,072 – эмперически полученная константа. Согласно этому равенству лучистый поток с интенсивностью 100 Wm-2 дополнительно повышает температуру на 7,2° С. Таким образом, для того чтобы получить температуру 18° С при лучистом потоке 100 Wm-2, после ввода значений в уравнение получается:
tp = tv + Is.0,072;
18оC = tv + 100 Wm – 2.0,072;
tv = 18°C–.7,2°C.
Данный расчет в таком виде является только показательным и предназначен для понимания физиче-ского принципа. Рассчитать с его помощью тепловую мощность невозможно, так как он не учитывает остальных условий, которые для этого расчета необходимы.
При отоплении излучателями в качестве прямо-обогревающих устройств не учитываются потери, связанные с дистрибьюцией тепла. Таким образом, использование газа представляется более целесообразным.
Общая энергетическая экономия топлива при лучи-стом отоплении может достигать 70% относительно сравнительной паро– и тепловоздушной отопительных систем.
Использование лучистых отопительных систем как прогрессивных и эффективных систем отопления предоставляет определенные выгоды с точки зрения образования рабочей среды.
1. Централизованное использование природного газа обеспечивает легкость его применения и более удобное регулирование температур в помещении.
2. Температура воздуха на уровне пола на 2–3° С выше, чем на высоте 1,5 м над полом.
3. Более равномерным способом распределяется температура по всей высоте отапливаемого объекта между газовым излучателем и полом.
4. При использовании лучистого отопления нет движения пыли.
5. Лучистое отопление является экологически без-опасным.
6. Не требует применения воды.
7. Лучистая система, по сравнению с тепловоздушной, работает практически бесшумно.
8. Лучистая отопительная система не может замерзнуть.
9. Обогрев помещения достигается за 10–25 минут.
10. Легкий монтаж и ремонт.
Недостаток лучистого отопления: лучистую отопительную систему нельзя использовать в помещениях, где существует опасность возникновения пожара.
Процесс перехода на уровни может отличаться, и его проявления могут быть различными. Если процесс перехода инициируется столкновениями молекул, которые характеризуют температуру тела, то излучение обозначается как тепловое. Излучение в таком случае может иметь как корпускулярный, так и волновой характер. Квантовые корпускулярные свойства характерны для кратковолнового излучения, а волновые – для длинноволновых излучений. Электромагнитные излучения различных видов похожи друг на друга, но отличаются длиной волны и действием.
Тепловое излучение определяется как та часть спектра, которая характеризируется волновой длиной от 10–7 м до 10–4 м. В этой области находится и диапазон света с длиной волны 3,9.10–7 до 7,8.10–7 м. Большинство твердых и жидких веществ излучает на всех длинах волн от 0 и до бесконечности и имеет полный спектр излучения. Твердые вещества имеют непрерывный спектр излучения. Излучение зависит от вида вещества, из которого состоит тело, его температуры и поверхности.
Излучение тел с растущей температурой резко возрастает, при этом изменяется и спектр излучаемых волн. Вместе с ростом плотности потока излучения максимум спектральной плотности передвигается в область более коротких волн (приводимая зависимость известна как закон Вена). Таким образом повышается величина излучаемой энергии при коротких волнах. По этой причине при высоких температурах излучение доминирует над конвекцией и проводимостью.
При низких температурах наблюдается обратное явление. В самом излучении участвуют только тончайшие слои на поверхности тела. Тепло, распространяемое излучением, в отличие от тепла, распространяемого конвекцией и кондукцией, по своим параметрам и тепловому действию приближается к свойствам природного солнечного излучения.
Солнечные лучи, попадающие на поверхность Земли, имеют спектральный диапазон от 260.10–9 до 3000.10–9 м. Это значит, что спектр содержит видимое ультрафиолетовое и невидимое инфракрасное излучение. Излучение инфракрасных излучателей может находиться как в видимой (светлые инфракрасные излучатели), так и в невидимой (инфракрасной) части спектра (темные и супертемные излучатели).
Таким образом, становится ясно, что различный физический принцип передачи тепла требует различных способов расчета и проектирования отопительной системы. Так же и воздействие отопительной системы на тепловой комфорт человека будет отличаться от энергетических требований.
Сравним температурные условия, образованные центральной паро– и тепловоздушной отопительными системами и лучистой системой отопления (рис. 19).
Рис. 19. Пример температурных условий в помещении при использовании различных систем отопления: а – при лучистом отоплении; б – при конвективном отоплении
При конвективном отоплении тепловая энергия поступает в помещение с помощью конвективных устройств и тепловоздушных обменников. Источником тепла является энергия пара, поставляемая с помощью трубопроводов от центрального источника – котельной.
В этом случае тепловой комфорт обеспечивается обогретым воздухом, поступающим от обменников и конвективных устройств: дело в том, что первичной теплоносительной средой является горячий пар. Следовательно, согретый таким образом воздух бывает достаточно теплым. Однако чем теплее воздух, тем он легче и быстрее перемещается вверх. Это приводит к тому, что объем помещения согревается воздухом сверху вниз, причем под крышей температура наиболее высока. К тому же крыша с различными технологическими отверстиями и форточками считается помещением с плохими теплоизоляционными свойствами.
Распределение температур при лучистом и тепловоздушном отоплении в зависимости от высоты представлены на рис. 20.
Рис. 20. Распределение температур: а – при лучистом отоплении; б – при тепловоздушном отоплении
Вторым отрицательным результатом бывает так называемый каминный эффект, который увеличивает обмен воздуха в помещении. Мощность центрального отопления должна покрывать тепловые потери всей цепочки производства, дистрибьюции и обмена тепла (рис. 21).
Рис. 21. Производство и обмен тепла
Если потребление газа для производства тепловой энергии в котлах – 100%, потери в самом источнике тепла составляют 15% в виде воды и 20% в виде пара от всего количества энергии.
Лучистая отопительная система состоит из тепловых устройств – излучателей, которые помещаются над отопливаемой площадью. После включения и согрева на номинальную температуру излучатели начинают излучать электромагнитные волны, которые с небольшими потерями проходят через воздух, попадают на пол и преобразуются в тепло. Это значит, что воздух обогревается вторично, но уже от пола, который таким образом становится самым теплым местом в объекте. Излучатели с выгодой можно размещать только над местом, где находятся люди, чтобы обеспечивать им необходимые температурные условия, то есть образовывать температурные зоны без отделения их перегородками. Образование необходимых температурных режимов в этих зонах способствует снижению потребления газа от 70 до 30%.
Температурный градиент в зависимости от высоты при лучистом отоплении приближается к требованиям идеального отопления. В этом случае температура воздуха на уровне головы человека ниже, чем при тепловоздушном отоплении. Данная температура воздуха определяет преимущество использования лучистого отопления, так как для обогрева пространства требуется более низкая мощность; это видно из следующего уравнения тепловых потерь объекта:
Qo = E [kj . Sj . (ti – te)]
При тепловоздушном отоплении значительная площадь конструкции помещения противостоит температурной разнице внутренней и внешней температур:
/\t = (ti – te),
где /\t = 30° С – (–20° С) = 50° С.
При лучистом отоплении разница температур составляет:
/\t = 17° C – (–20° C) = 37° C.
Так как площадь конструкции и коэффициент прохождения тепла для обоих случаев одинаковы, соотношение тепловой мощности будет равняться соотношению /\t. В процентном отношении тепловая мощность лучистого отопления для покрытия тепловых потерь конструкции будет составлять только 74% от значения для тепловоздушной системы. Таким образом, комплексное сравнение гораздо сложнее, но оно соответствует среднему отношению тепловых мощностей, которые на практике составляют 80%.
Более низкая температура воздуха позволяет передавать биологическое тепло, которое образуется во время работы, и тем самым предотвращает перегрев организма.
Этот феномен лучистого отопления наступает в результате физической передачи тепла, где лучи-стый поток образует добавку тепла к температуре воздуха, ощущаемого человеком. Очень упрощенно это можно описать следующим уравнением:
tp = tv + ts (° С),
где tp – температура, ощущаемая человеком;
tv – температура воздуха;
ts = Is.0,072;
Is – интенсивность лучистого потока, а число 0,072 – эмперически полученная константа. Согласно этому равенству лучистый поток с интенсивностью 100 Wm-2 дополнительно повышает температуру на 7,2° С. Таким образом, для того чтобы получить температуру 18° С при лучистом потоке 100 Wm-2, после ввода значений в уравнение получается:
tp = tv + Is.0,072;
18оC = tv + 100 Wm – 2.0,072;
tv = 18°C–.7,2°C.
Данный расчет в таком виде является только показательным и предназначен для понимания физиче-ского принципа. Рассчитать с его помощью тепловую мощность невозможно, так как он не учитывает остальных условий, которые для этого расчета необходимы.
При отоплении излучателями в качестве прямо-обогревающих устройств не учитываются потери, связанные с дистрибьюцией тепла. Таким образом, использование газа представляется более целесообразным.
Общая энергетическая экономия топлива при лучи-стом отоплении может достигать 70% относительно сравнительной паро– и тепловоздушной отопительных систем.
Использование лучистых отопительных систем как прогрессивных и эффективных систем отопления предоставляет определенные выгоды с точки зрения образования рабочей среды.
1. Централизованное использование природного газа обеспечивает легкость его применения и более удобное регулирование температур в помещении.
2. Температура воздуха на уровне пола на 2–3° С выше, чем на высоте 1,5 м над полом.
3. Более равномерным способом распределяется температура по всей высоте отапливаемого объекта между газовым излучателем и полом.
4. При использовании лучистого отопления нет движения пыли.
5. Лучистое отопление является экологически без-опасным.
6. Не требует применения воды.
7. Лучистая система, по сравнению с тепловоздушной, работает практически бесшумно.
8. Лучистая отопительная система не может замерзнуть.
9. Обогрев помещения достигается за 10–25 минут.
10. Легкий монтаж и ремонт.
Недостаток лучистого отопления: лучистую отопительную систему нельзя использовать в помещениях, где существует опасность возникновения пожара.
Газовые инфракрасные излучатели
В настоящее время для отопления крупных площадей используется три вида газовых излучателей:
1. Светлые газовые излучатели.
2. Темные газовые излучатели.
3. Сверхтемные (компактные) газовые излучатели.
Газовые излучатели сжигают газ для обогрева специальной излучающей поверхности, которая согревается прямым контактом со сжигаемыми газами.
1. Светлые газовые излучатели.
2. Темные газовые излучатели.
3. Сверхтемные (компактные) газовые излучатели.
Газовые излучатели сжигают газ для обогрева специальной излучающей поверхности, которая согревается прямым контактом со сжигаемыми газами.
Светлые газовые излучатели
Источник излучения – пористая керамическая пластина, которая нагревается беспламенным поверхностным сжиганием газа до температуры 800–1000° С. При этой температуре образуется электромагнитное излучение с длиной волны от 2,1.10–6 до 3,0.10–6 м. Волна этой длины распространяется практически прямолинейно и почти без потерь проходит через воздух.
Лучистая эффективность светлых газовых излучателей составляет от 50 до 75%.
Для повышения эффективности излучателей некоторые изготовители размещают перед лучистой керамической поверхностью дефлексную решетку, которая возвращает часть эмитированных энергетических частиц назад на активную поверхность, что приводит к возбуждению частиц атомов и к последующему увеличению эмиссии фотонов излучения.
У светлых излучателей доминирует корпускулярное излучение, которое определяет их свойства. Угол ядра излучения обычно равняется 60°, и область излучения на поверхности относительно четко ограничена (рис. 22). Иногда излучатели этого типа, благодаря этому свойству, обозначаются как «теплометы». Они достигают высокой интенсивности излучения.
Рис. 22. Интенсивность излучения светлых излучателей
Так как корпускулярный характер и высокая интенсивность способствуют проникновению излучения под поверхность предметов, изготовленных из непроводящих материалов, они довольно быстро нагреваются. Это присходит потому, что 1 дм излучающей площади способен передать мощность приблизительно до 1200 Вт.
Сами излучатели имеют небольшие размеры. Горелки обычно работают по принципу атмосферных инжекторных горелок, в которых необходимый для сжигания воздух смешивают с газом с помощью инжекторов. Смешанный с газом воздух поступает через капиллярные отверстия в керамической пластине, зажигается и горит на ее поверхности. Продукты сжигания поступают в помещение.
Раньше эти излучатели использовались в основном для технологического обогрева – сушки бумаги на целлюлозных комбинатах, для размораживания вагонов и т. д. В дальнейшем их стали использовать для обогрева и отопления промышленных объектов.
Лучистая эффективность светлых газовых излучателей составляет от 50 до 75%.
Для повышения эффективности излучателей некоторые изготовители размещают перед лучистой керамической поверхностью дефлексную решетку, которая возвращает часть эмитированных энергетических частиц назад на активную поверхность, что приводит к возбуждению частиц атомов и к последующему увеличению эмиссии фотонов излучения.
У светлых излучателей доминирует корпускулярное излучение, которое определяет их свойства. Угол ядра излучения обычно равняется 60°, и область излучения на поверхности относительно четко ограничена (рис. 22). Иногда излучатели этого типа, благодаря этому свойству, обозначаются как «теплометы». Они достигают высокой интенсивности излучения.
Рис. 22. Интенсивность излучения светлых излучателей
Так как корпускулярный характер и высокая интенсивность способствуют проникновению излучения под поверхность предметов, изготовленных из непроводящих материалов, они довольно быстро нагреваются. Это присходит потому, что 1 дм излучающей площади способен передать мощность приблизительно до 1200 Вт.
Сами излучатели имеют небольшие размеры. Горелки обычно работают по принципу атмосферных инжекторных горелок, в которых необходимый для сжигания воздух смешивают с газом с помощью инжекторов. Смешанный с газом воздух поступает через капиллярные отверстия в керамической пластине, зажигается и горит на ее поверхности. Продукты сжигания поступают в помещение.
Раньше эти излучатели использовались в основном для технологического обогрева – сушки бумаги на целлюлозных комбинатах, для размораживания вагонов и т. д. В дальнейшем их стали использовать для обогрева и отопления промышленных объектов.