Рис.
   а - синхронная окружность,
   б - спиральная ветвь,
   в - место остаточного заражения радиоактивным йодом и плутонием (I[129], Pu[244]),
   г - распад изотопов йода и плутония,
   д - возникновение Солнца и остаточное радиоактивное заражение у Сверхновой (Al[26])
   Рисунок (согласно Л.С. Морочкину "Природа" No6, Москва 1982) показывает схему нашей Галактики, радиус (дугу) синхронной окружности, а также орбиту, по которой Солнечная система обращается вокруг галактического ядра. Скорость, с которой Солнце вместе с планетами двигается относительно спиральных ветвей, является предметом спора. На представленной схеме наша система прошла уже через обе ветви. Если было так, то первый проход осуществило газово-пылевое облако, которое начало конденсироваться только пересекая другую галактическую ветвь. Альтернатива, либо "мы имеем за собой" один проход, либо два, не является существенной, так как относится ко времени существования облака, то есть тогда, когда оно начало формироваться, а не тогда, когда оно начало подвергаться фрагментации и, тем самым, вошло в стадию астрогенеза. Звезды возникают таким способом и сегодня. Обособленное облако не может сжаться в звезду под действием гравитации, так как сохраняется (в соответствии с законами динамики) момент вращения; облако вращалось бы тем быстрее, чем меньше был бы его радиус. В конце возникла бы звезда, у которой скорость вращения экватора превосходила бы скорость света, что невозможно. Центробежные силы разорвали бы ее намного раньше. Звезды же возникают массами из отдельных фрагментов облака в ходе процессов, сначала медленных, а затем гораздо более бурных. Рассеиваясь во время конденсации, фрагменты облака отбирают у молодых звезд часть их момента вращения. Если говорить о "производительности астрогенеза", как отношения между массой первоначального облака и соответствующей массы возникших из него звезд, то эта производительность окажется небольшой. Галактика является, следовательно, "производителем", поступающим очень расточительно с выходным капиталом материи. Но рассеянные части звездородных облаков, спустя какое-то время, опять начинает сгущаться под действием гравитации, и процесс повторяется.
   Не всякий из фрагментов облака, вошедший в конденсацию, ведет себя таким образом. Когда начинается звездородный коллапс, центр облака является более плотным, чем его периферия. Поэтому различаются массы звездородных фрагментов. Они составляют от 2 до 4 солнечных масс в центре и 10 -- 20 на периферии. Из внутренних сгущений могут возникнуть звезды небольшие, долговечные и светящиеся более менее равномерно в течение миллиардов лет. Зато из больших периферийных звезд могут возникнуть Сверхновые, разрываемые мощными взрывами после астрономически короткой жизни.
   О том, как начало конденсироваться облако, из которого мы возникли, ничего не известно; можно восстановить только судьбу того локального фрагмента, в котором дошло до возникновения Солнца и планет. Когда этот процесс начался, вспыхнувшая поблизости Сверхновая заразила протосолярное облако своими радиоактивными веществами. Такое заражение произошло по меньшей мере двукратно. Протосолярное облако в первый раз подверглось заражению изотопами йода и плутония, -- вероятно вблизи внутреннего края спиральной ветви -- а во второй раз в глубине спирали другая Сверхновая бомбардировала его радиоактивным изотопом алюминия (на 300 000 000 лет позднее).
   Зная время, за которое эти изотопы превращаются за счет распада в другие элементы, можно оценить, когда произошли оба заражения. Короткоживущие изотопы йода и плутония образовали в конце распада стабильный изотоп ксенона, а радиоактивный изотоп алюминия превратился в магний. Эти изотопы ксенона и магния обнаружены в метеоритах нашей системы. Сравнивая эти данные с возрастом земной коры (по времени распада содержащихся в ней долгоживущих изотопов урана и тория), можно приблизительно реконструировать, хотя и не тождественно, сценарий солнечной космогонии. Рисунок отвечает тому сценарию, в котором газовое облако в первый раз прошло через спиральную ветвь 10,5 миллиардов лет тому назад. Его плотность была в то время подкритичной, следовательно, процесс не дошел еще до фрагментации и возникновения сгущений. Это произошло только после входа в следующую ветвь 4,6 миллиарда лет тому назад. На периферии сгущений господствовали условия благоприятные для возникновения Сверхновых, а внутри были условия для меньших звезд типа Солнца. Подвергаясь сжатию и вспышкам Сверхновых, протосолярный сгусток превратился в молодое Солнце с планетами, кометами и метеоритами. Этот космогонический сценарий не свободен от упрощений. Фрагментация газовых облаков происходила случайным образом; через огромные пространства ветвей бегут ударные фронты, вызванные разнообразными катаклизмами; извержения Сверхновых могут содействовать возникновению таких фронтов.
   Галактики все еще рождают звезды, потому что Космос, в котором мы живем, хотя и не является, по правде говоря, молодым, но все еще не состарился. Далее, направленный в прошлое расчет показывает, что в конце весь звездородный материал будет исчерпан, а все Галактики подвергнутся радиационному и корпускулярному испарению.
   От этой "термодинамической смерти" нас отделяет около 10[100] лет. Значительно раньше (примерно через 10[15] лет) все звезды утратят свои планеты в результате близкого прохождения других звезд. И мертвые, и планеты с жизнью -- все планеты, вытолкнутые со своих орбит сильными пертурбациями, утонут в бесконечном мраке при температуре близкой к абсолютному нулю. Хотя это покажется парадоксальным, легче предвидеть, что случится через 10[15] или 10[100] лет, либо, что происходило в первые минуты ее существования, чем точно реконструировать все этапы солнечной и земной истории. Еще труднее предвидеть, что случится с нашей системой, когда она покинет спокойную пустоту, двигаясь между звездными облаками обеих галактических ветвей -- Персея и Стрельца. Если мы примем, что разница в скорости движения Солнца и спирали равняется 1 км/сек, то в следующий раз мы окажемся в глубине ветви спирали примерно через 500 000 000 лет. Астрофизика поступает, в разделе посвященном космогонии, также, как следствие с уликами. Все, что можно собрать, -- это некоторое число "следов и вещественных доказательств", из которых, как из рассыпанной головоломки (в которой многие части пропали) необходимо построить непротиворечивое целое. Хуже того, оказывается, что из сохранившихся фрагментов можно составить ряд различных узоров. Особенно в интересующем нас случае не все данные можно точно численно определить (например, разницу скоростей обращения Солнца и галактической спирали). Кроме того, сами ветви спирали не такие компактные и не переходят в пустоту так четко и правильно как в нашей схеме. И, наконец, все спиральные туманности похожи на себя как люди различного роста, веса, расы, пола и т.д. Реконструированная космогоническая деятельность гораздо ближе действительному положению вещей. Звезды рождаются, главным образом, внутри спиральных ветвей; Сверхновые тоже вспыхивают чаще всего внутри этих ветвей; Солнце, вероятно, находится вблизи синхронной окружности, и, следовательно не "где-нибудь" в Галактике, так как (как уже говорилось) в полосе, расположенной вблизи от синхронной окружности, существуют условия отличные от господствующих как вблизи ядра, так и на периферии спирального диска. Благодаря компьютерному моделированию космогоники могут в короткое время проверить множество пробных вариантов астро- и планетогенеза, что еще недавно требовало чрезвычайно кропотливых, поглощающих много времени вычислений. Вместе с тем, наблюдательная астрофизика доставляет все более новые и более точные данные для такого моделирования. Расследование, однако все еще идет; вещественные доказательства и математические догадки, указывающие на Виновников того, что произошло, говорят о том, что это обоснованная гипотеза, а не необоснованные домыслы. Обвинительный акт против Спиральных туманностей в том, что они являются одновременно и Родителями и Детоубийцами, дошел уже до трибунала астрономии; разбирательство продолжается, но окончательный приговор еще не вынесен.
   III.
   Почерпнутая из судопроизводства терминология не является наихудшей, если мы говорим об истории Солнечной системы в Галактике, так как космогония занимается реконструкцией происшествий прошлого, и, тем самым, поступает как суд в уголовном расследовании, в котором нет ни одного не опровергнутого свидетельства против обвинения, а только набор обстоятельств, подтверждающих виновность.
   Космогоник, подобно судье, должен установить, что произошло в данном конкретном случае, но не должен, однако, заниматься тем, как часто такого рода случаи происходят, какова была вероятность произойти рассматриваемому случаю, прежде чем он осуществился. Однако, в противоположность судопроизводству космогония старается узнать о деле значительно большем.
   Если бросить в окно бутылку из-под шампанского, и, следовательно, из толстого стекла и с характерной ямкой в основании, и бутылка разобьется, то, повторяя такой опыт, мы убеждаемся, что горлышко и основание поле разбивания остаются в совокупности целыми, остальное же стекло лопается на множество разнообразных осколков. Может случиться так, что один из таких осколков будет иметь в длину шесть, а в ширину половину сантиметра.
   На вопрос, как часто можно, разбивая бутылку, получать точно такие же осколки, не возможно ответить точным образом. Можно только установить на сколько кусков чаще всего разлетается разбитая бутылка. Такую статистику можно получить без особенных хлопот, повторяя этот эксперимент много раз при сохранении одних и тех же условий (с какой высоты упала бутылка, упала на бетон или на дерево). Может, однако, случиться, что бутылка, падая, столкнется с мячом, который в ту же минуту пнет какой-нибудь ребенок, играющий во дворе, в следствие чего бутылка отскочит и влетит через открытое окно на первом этаже в комнату старушки, выращивающей золотых рыбок в аквариуме, упадет в него, наполнится водой и утонет, не разбившись. Всякий признает, что как ни малоправдоподобен такой случай он, ведь, возможен, и никто не сочтет его сверхъестественным явлением, чудом, а только исключительным стечением обстоятельств. Следовательно, статистики таких исключений составить уже нельзя. Кроме законов механики Ньютона, прочности стекла на удар, следовало бы принять во внимание, как часто дети играют во дворе в мяч, как часто во время игры мяч находится там, где падает бутылка, как часто старушка оставляет открытым окно, как часто аквариум стоит рядом с окном, и, если бы мы захотели получить "общую теорию бутылок, падающих путем попадания в мяч в аквариум и без повреждения наполняющихся водой", учитывающую всякие бутылки, детей, дома, дворы, золотых рыбок, аквариумы у окна, то никогда такую статистическую теорию не получили.
   Ключевым вопросом при реконструкции истории Солнечной системы с жизнью на Земле является: происходило ли в Галактике в то время нечто такое, как при простом разбивании бутылок, и дающее возможность получения статистики, либо нечто такое, как в приключении с мячом и аквариумом.
   Явление, вычислимое статистически, не переходит внезапно в явление, не вычисляемое статистически, на некоторой четкой границе, а переходит постепенно. Ученый занимает позицию познавательного оптимизма, а именно, принимает, что предметы, которые он исследует, могут быть вычислены. Лучше всего, когда они подлежат детерминистическим вычислениям: угол падения равняется углу отражения, тело, погруженное в воду, теряет в весе столько, сколько воды оно вытеснило и т.д. Немного хуже, когда уверенность заменяется правдоподобностью (вероятностью). Но совсем плохо, когда ничего вообще нельзя вычислить. Обычно сообщается, что там, где невозможно ничего вычислить и, следовательно, предвидеть, господствует хаос. Однако, "хаос" в точных науках совсем не означает, что ничего ни о чем вовсе неизвестно, что мы имеем дело с каким-то "абсолютным беспорядком". "Абсолютный беспорядок" вообще не существует, а уж в рассказанной истории с мячом не видно никакого хаоса; каждое происшествие, взятое в отдельности, подчиняется законам физики, и, при этом, физики дететерминистической, а не квантовой, так как измерена сила, с которой ребенок пнул мяч, угол столкновения мяча с бутылкой, скорость столкновения обоих тел в тот момент, путь по которому двигалась бутылка, отскочив от мяча и скорость, с которой упав, в аквариум, бутылка наполнилась водой. Каждый из этапов этого происшествия, взятый в отдельности, подчиняется физическим расчетам, но их серия, составленная из всех этапов, не может быть рассчитана (т.е. не возможно установить, как часто может происходить то, что именно тогда произошло). Дело в том, что все теории "широкого радиуса действия", которыми оперирует физика, не полны, так как ничего не говорят о начальных условиях. Начальные условия следует вводить отдельно, извне. Как, однако, видно, когда одни начальные условия должны стать точно выполненными посредством случая, для того, чтобы образовались начальные условия, также очень точно подогнанные для следующего происшествия и так далее, вероятность возникновения в следствии правдоподобных (вероятных) событий остается неизвестной, и о ней невозможно уже ничего больше сказать, как только то, что "случилось что-то чрезвычайно особенное"
   Поэтому с самого начала скажем, что мир является собранием случайных катастроф, управляемых точными законами.
   На вопрос "как часто происходит в Космосе то, что произошло с Солнцем и Землей", так до сих пор не возможно ответить, так как неизвестно к какой категории происшествий следует отнести этот casus. Благодаря успехам астрофизики и космогонии вопрос этот будет постепенно проясняться. Довольно многое из того, что специалисты говорили на симпозиуме по вопросам CETI в Бюрокане в 1971 г., потеряло актуальность, либо оказалось ложным домыслом. Итак, неизбежно, через десять и, тем более, через двадцать, в начале XXI века, довольно много вопросов, сегодня еще таинственных, найдут объяснение.
   Луна сыграла огромную, если не решающую роль при возникновении жизни на Земле, так как жизнь могла возникнуть только в водных растворах некоторых химических соединений, и то, не в глубоководном океане, а на прибрежных отмелях, причем, на прабиогенез ускоряющим образом влияло их частое (но в меру) перемешивание, вызванное приливами и отливами, а их причиной была Луна.
   Способ, которым возникали спутники всех планет, значительно менее известен, чем способ возникновения самих планет. Пока нельзя исключить "чрезвычайности" возникновения планетных спутников, соответствующей истории с бутылкой и аквариумом. Обычный удар волны извержения Сверхновой оказывается пригодным, чтобы его хватило для первичной фрагментации диска протосолярной туманности, но, возможно, для того, чтобы около планет начали конденсироваться их спутники, непременно было нечто вроде пересечения двух круговых волн, расходящихся по поверхности воды, если бросить в нее два камня (недалеко друг от друга). Иными словами, может быть для того, чтобы возникли спутники, необходима была после первой вспышки Сверхновой другая, тоже на не слишком большом расстоянии от прасолнечной системы. Если не все эти вопросы получат ответы, то, во всяком случае, некоторые ответы будут даны, и, тем самым, вероятность возникновения жизни в Космосе, называемая также его биогенетической производительностью, или частотой, получит приблизительное числовое значение. Может быть, это значение окажется слишком большим, и мы, тем самым, будем в праве признать обычность жизни в бесчисленных образах на многочисленных планетах того биллиона галактик, которые нас окружают. Но даже если так будет, книги, предсказанных мной названий, начнут появляться.
   Теперь приступим к изложению того, как это произойдет. Выразим мрачное положение вещей в шести словах: без глобальной катастрофы жизни не было бы Человека.
   IV
   Чем новый образ жизни в Космосе отличается от существовавшего до сих пор? Издавна было известно, что планетарное зарождение жизни должно было произойти после длительного хода определенных событий, начавшегося возникновением долговечной и спокойно горящей звезды типа Солнца, а затем та звезда должна создать планетарную семью. Зато не было известно, что спиральные ветви Галактики являются (или могут быть) попеременно рождающими руслами и гильотинами жизни, в зависимости от того, в какой стадии развития звездородная материя проплывает через спираль, а также в каком месте ветви происходит этот проход.
   Во время симпозиума в Бюрокане никто кроме меня не утверждал, что распределение жизнеродных небесных тел было специальным образом поставлено в зависимость от происшествий планетарного и сверхзвездного (т.е. галактического) масштаба. Разумеется, и я не знал, что цепь этих происшествий охватывает движение звездородной туманности поблизости от синхронной окружности, что необходима "специальная" синхронизация астрогенеза внутри такой туманности со вспышками Сверхновых на периферии, и, кроме того, -- conditio, sine qua non est longa vita (условие, без которого нет долгой жизни) -- что система биогенеза "должна" выйти из бурной зоны спирали в пространство спокойной пустоты между ветвями.
   В конце семидесятых годов модным стало включать в космогонические гипотезы фактор, называемый Antropic Principle (человеческий принцип). Фактор этот сводит загадку начальных условий Космоса к аргументам ad hominem (от человека): если бы эти условия были радикально другими, чем они были на самом деле, то и вопрос бы не возник, так как и нас тогда бы не было.
   Нетрудно заметить, что Antropic Principle в точном понимании (Homo sapiens возник потому, что эта возможность была уже заложена в Big Bang, или в начальных условиях Универсума), стоит в познавательном смысле столько же, как Chartreuse Liqueur Principle (принцип шартрезского ликера), в качестве космологического критерия. Производство этого ликера было поистине возможно благодаря свойствам материи ЭТОГО космоса, но можно себе отлично представить историю ЭТОГО Космоса, ЭТОГО Солнца, ЭТОЙ Земли и ЭТОГО человечества БЕЗ возникновения Chartreuse. Этот ликер возник, когда люди уже занимались долгое время созданием разнородных напитков, и, в числе других, включающих алкоголь, сахар и экстракты лечебных трав. Это осмысленный ответ, хотя и общий. Однако, ответ на вопрос, откуда взялся этот ликер, гласящий: "взялся от того, что ТАКОВЫ были начальные условия Космоса", недостаточен до смешного. Также можно утверждать, что Фольксвагены или почтовые марки обязаны своим возникновением начальным условиям Вселенной. Такой ответ объясняет ignotum per ignotum (неизвестное через неизвестное). Это одновременно и circulus in explicando (круг в объяснении): возникло то, что могло возникнуть. Такой ответ говорит об особенных свойствах Пракосмоса. Согласно действующей теории Big Bang возникновение Космоса было рождающим взрывом, который сотворил одновременно материю, время и пространство. Мощное излучение миро-творящего взрыва оставило свои следы в Космосе до нашего времени, так как в нем везде присутствует остаточная радиация звездного фона. В течение примерно 20 миллиардов лет существования Космоса излучение его первой минуты существования успело остыть до нескольких градусов выше абсолютного нуля. Однако, интенсивность этого остаточного излучения не должна быть однородной на всей небесной сфере. Космос возник из точки с бесконечно большой плотностью и в течение 10[-35] сек. раздулся до объема мяча. Уже в тот момент он был слишком большим и расширялся слишком быстро, чтобы он мог оставаться совершенно однородным. Причинные связи событий ограничены наибольшей скоростью взаимодействия, т.е. скоростью света. Такие связи могли протягиваться только в областях размером 10[-25] см, а в Космосе размером с мяч поместилось бы 10[78] таких областей. Итак, то, что происходило в одних, областях не могло влиять на события в других. Тем самым Космос должен был расширяться неоднородно, без сохранения той симметрии, тех везде одинаковых свойств, какие мы наблюдаем. Теорию Big Bang спасает гипотеза о том, что в творящем взрыве возникло одновременно огромное количество Вселенных. Наш Космос был только одним из них. Теория, согласующая однородность (гомогенность) действительного Космоса с невозможной однородностью его расширения посредством той предпосылки, что Пракосмос не был Универсумом, а был ПОЛИВЕРСУМОМ, была объявлена в 1982 г. Гипотезу Поливерсума можно найти в моей книге Мнимая величина, которую я написал десять лет назад (в 1972 г.). Сходство моих догадок и появившейся позднее теории дает мне смелость для дальнейших догадок.
   Вспомним бутылку, которая, отскочив от мяча, упала через открытое окно в аквариум. Как-нибудь вычислить статистическую вероятность такого случая невозможно, поймем это так, что случай этот был возможен (т.е., не противореча законам природы, не становился чудом), так и то, что если бы бутылка, падая в аквариум полный гнилой воды с мертвыми рыбками, так выплеснула воду, чтобы несколько икринок упало в стоящее рядом ведро с чистой водой, благодаря чему из той икры родились бы живые рыбки, то это было бы происшествием еще более редким, чем без того ведра, икры и последующих рыбок.
   Скажем, что дети по-прежнему играют в мяч, кто-то по-прежнему бросает в какое-то время бутылку во двор с верхнего этажа, что очередная пустая бутылка, отскочив от мяча, (который снова пересекает путь ее падения) влетает на этот раз в ведро так, что рыбки, родившиеся из икры и выплеснутые из воды, попадают в сало, кипящее на электрической плите, а потом хозяйка квартиры, возвратившись на кухню с намерением жарить картофель, находит в сковородке поджаренную рыбу.
   Было бы это уже "абсолютной невозможностью"? Этого нельзя утверждать. Можно только признать, что был бы такой случай sui generis (своего рода), который во всем своем протяжении (начиная от первого выбрасывания бутылки в окно) не произойдет уже в другой раз в точности так. Малейшее отклонение от сценария, когда бутылка не попадает в кухню, так как не отскочила "как надо" от мяча, когда разбивается об пол, когда утонет в аквариуме, и тогда уже ничего дальше не произойдет, а если и выплеснется немного икры, то слишком слабо и из нее ничего не родится, так как икра не попадет в ведро, которое может быть, впрочем, пустым или заполненным бельем, замоченным в порошке для стирки смертельном для рыбок и т.д.
   Вводя Antropic Principle в космогонию, мы признаем, что возникновение человека следует из такого положения вещей, которое увенчало эволюцию земной жизни разумом, так как зарождение разумных существ тем более правдоподобно, чем дольше длится такая эволюция. Покидая область судопроизводства, признанную сегодня надежной или достаточно надежной, скажем, что наука будущего века установит по данному вопросу.
   V
   Прежде всего остановимся на собранных свидетельствах, указывающих на то, что та ветвь эволюционного древа, которая породила млекопитающих, не разветвилась бы и не дала бы им первенство среди животных, если бы на стыке мелового и третичного периодов, около 65 млн. лет назад, на Землю не обрушилась катастрофа в виде огромного метеорита весом 3,5-4 триллиона тонн.
   До этого времени господствующими животными были пресмыкающиеся. Они господствовали на суше, в воде и в воздухе в течение 200 млн. лет. Стараясь выяснить причину их стремительного вымирания в конце мезозойской эры, эволюционисты приписывали им черты современных пресмыкающихся: холоднокровность, примитивизм строения органов, обнаженность тела, покрытого только чешуей или роговым панцирем, кроме того, когда старались из найденных скелетов восстановить внешний вид и образ жизни этих животных, подгоняли реконструкцию под свои предположения. Можно назвать эти предположения "шовинизмом млекопитающих", одним из которых является и человек. Палеонтологи утверждали, например, что большие четвероногие пресмыкающиеся, такие как бронтозавры, вообще не были в состоянии двигаться по суше и проводили жизнь в мелких водах, питаясь водной растительностью. Что пресмыкающиеся, ходившие на двух ногах, жили, правда, на суше, но передвигались неуклюже, волоча по земле длинный, тяжелый хвост, и т.п.
   Только во второй половине XX века пришлось признать, что мезозойские пресмыкающиеся были такими же теплокровными, как млекопитающие, что их многочисленные разновидности -- особенно летающие -- покрывала шерсть, что двуногие пресмыкающиеся совсем не шагали, медленно волоча за собой хвост, но могли сравниться по скорости со страусом, хотя были в сто и двести раз его тяжелее, хвост же, удерживаемый горизонтально специальными стягивающими связками, играл при беге роль противовеса для вытянутого вперед тела. Что даже самые большие гигантозавры могли свободно передвигаться по суше и, что рассуждения о "примитивизме" пресмыкающихся являются глупостью. Не имея возможности вдаваться здесь в сравнение видов вымерших с современными, покажу, на одном только примере, какой никогда уже потом не достигавшейся эффективностью отличались некоторые летающие пресмыкающиеся. "Биологический рекорд авиации" вовсе не принадлежит птицам (и, тем более, летающим млекопитающим -- летучим мышам). Самым крупным животным земной атмосферы был Quetzalcoatlus Northropi с массой тела, превышающей человеческую. Это был, впрочем, один из множества видов, которое получило название Titanopterygia. Это были пресмыкающиеся, парящие над океаном и питающиеся рыбой. Не известно, как они могли приземляться и взлетать в воздух, так как вес тела требовал такой мощности, какую мышцы живущих сегодня животных (а, следовательно, и птиц) не в состоянии развить. Когда были найдены их останки в Техасе и Аргентине, предполагали сначала, что, имея эти огромные крылья, равные размаху крыльев авиетки и, даже, большого самолета (13-16 метров), они проводили жизнь и строили гнезда на вершинах гор, с которых бросались в воздух, распростерши крылья. Если бы они, однако, не были способны к старту с равнины, то каждая особь, хоть один раз севшая на ровном месте, была бы осуждена на смерть. Некоторые из этих больших планеристов питались падалью, а ее нет на вершинах скал. Более того, их огромные кости были найдены в местностях, лишенных гор. Способ, каким летали эти пресмыкающиеся, представляет загадку для специалистов по аэродинамике. Никакой гипотезы, выдвинутой для разъяснения этой загадки, не удалось утвердиться. Колоссы в роде Quetzalcoatla не могли садиться на деревья; это приводило бы к частым повреждениям или переломам крыльев. Наибольшим примером известной летающей птицы являются некоторые вымершие орлы с почти семиметровым размахом крыльев; удвоение этих размеров потребует учетверения мощности необходимой для подъема в воздух. Большие летающие пресмыкающиеся не могли также стартовать с разбега, так как они имели слишком короткие и слабые ноги.