Второго августа 1939 года Эйнштейн обратился с письмом к президенту США Франклину Рузвельту о предупреждении возможности использования атомного оружия фашистской Германией. Он писал о том, что исследования по расщеплению урана могут привести к созданию оружия огромной разрушительной силы.
   Позднее ученый жалел об этом письме. Эйнштейн выступал с осуждением американской «атомной дипломатии», заключавшейся в монополии США в области атомного оружия. Он критиковал правительство Соединенных Штатов за то, что оно пыталось шантажировать другие страны.
   Незадолго до смерти Эйнштейн стал одним из инициаторов воззвания крупнейших ученых мира, обращенного к правительствам всех стран, с предупреждением об опасности применения водородной бомбы. Это воззвание стало началом движения, объединившего виднейших ученых в борьбе за мир, которое получило название Пагуошского. После смерти Эйнштейна его возглавил крупнейший английский философ и физик Б. Рассел.
   18 апреля 1955 года в 1 час 25 минут Эйнштейн умер. Речей не было, прах ученого был предан огню в крематории Юинг-Симтери, пепел развеяли по ветру.

НИЛЬС БОР
(1885—1962)

   Как метко сказал советский ученый П.Л. Капица: «Во всей мировой науке в наши дни не было человека с таким влиянием на естествознание, как Бор. Из всех теоретических троп тропа Бора была самой значительной».
   Датский физик Нильс Хенрик Давид Бор родился 7 октября 1885 года в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен (в девичестве Адлер) Бор. Его отец был известным профессором физиологии в Копенгагенском университете. Мать происходила из еврейской семьи, хорошо известной в банковских, политических и интеллектуальных кругах.
   Как вспоминал позднее ученый: «Я рос в семье с глубокими духовными интересами, где обычными были научные дискуссии; да и для моего отца вряд ли существовало строгое различие между его собственной научной работой и его живым интересом ко всем проблемам человеческой жизни».
   Сначала Нильс учился в Гаммельхольмской грамматической школе в Копенгагене. Он хорошо успевал по всем школьным предметам, особенно по физике и математике. Бор и его брат Харальд, который стал известным математиком, в школьные годы были заядлыми футболистами. И в дальнейшем настольный теннис, парусный спорт, лыжи были постоянными спутниками жизни ученого.
   Окончив школу в 1903 году, Нильс поступил на естественнонаучный факультет Копенгагенского университета. Здесь его успехи были столь велики, что уже на втором году обучения профессор мог использовать его в качестве помощника.
   За экспериментальное исследование поверхностного натяжения воды, которое он провел в 1907 году в лаборатории своего отца на основе работ Рэлея, студент Бор был награжден золотой медалью Копенгагенской Академии наук. Это исследование осталось, собственно, его единственной большой экспериментальной работой. Обладая ярко выраженными склонностями и к экспериментальной физике Бор принадлежал к тем физикам-теоретикам, которые экспериментировали только в годы своей юности.
   В 1907 году Бор стал бакалавром. Степень магистра он получил в Копенгагенском университете в 1909 году. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием. Среди прочего в ней вскрывалась неспособность классической электродинамики объяснить магнитные явления в металлах. Это исследование помогло Бору понять на ранней стадии своей научной деятельности, что классическая теория не может полностью описать поведение электронов.
   В 1911 году Бор получил докторскую степень, а также специальную стипендию для годичной стажировки в Кембридже у самого Дж.Дж. Томсона, наиболее признанного среди физиков того времени. Правда, к тому времени Томсон начал заниматься уже другими темами и проявил мало интереса к диссертации Бора и содержащимся там выводам.
   От Томсона Нильс в начале 1912 года отправился в Манчестер к Эрнсту Резерфорду. Там он занимался вначале теоретическим исследованием торможения альфа– и бета-частиц, а затем приступил к изучению структуры атомов.
   Еще в 1910 году Нильс встретил Маргарет Нерлунд, дочь аптекаря. В 1911 году состоялась их помолвка. Летом 1912 года Бор вернулся в Копенгаген и стал ассистент-профессором Копенгагенского университета. 1 августа этого же года, через четыре дня после возвращения Бора из своей первой короткой учебной поездки к Резерфорду, он женился на Маргарет. Свадебное путешествие привело их в Англию, где после недельного пребывания в Кембридже молодая пара посетила Резерфорда. Нильс Бор оставил ему свою работу о торможении альфа-частиц, начатую незадолго до возвращения домой.
   Брак Нильса и Маргарет принес им обоим настоящее счастье – они так много значили друг для друга. Один из их сыновей позднее писал: «Нельзя не отметить, какую роль в нашей семье играла мать. Ее мнение было для отца решающим, его жизнь была ее жизнью. В любом событии – маленьком или большом – она принимала участие и, разумеется, была ближайшим советником отца, когда нужно было принять какое-либо решение».
   Исходя из резерфордовской модели атома, Бор, вернувшись в Копенгаген, в начале 1913 года развил новый взгляд на строение атома водорода. При содействии Резерфорда его работа «О строении атомов и молекул» была опубликована в «Философикал мэгэзин». В этой работе Бор творчески объединил идеи Резерфорда, Планка и Эйнштейна.
   Бор понял, что существует противоречие между представлениями Резерфорда о строении атома, с одной стороны, и положениями классической электродинамики, а также определенными экспериментальными данными – с другой. На примере атома водорода Бор констатировал, что излучение электрона, движущегося вокруг ядра, не представляет непрерывного спектра и, значит, не описывается законами классической электродинамики. По этим законам электроны вследствие своего ускоряющегося движения непрерывно теряли бы электромагнитную энергию и должны были бы, в конце концов, упасть на ядро.
   Для устранения этого противоречия Бор предпочел опереться на данные эксперимента, а не на положения классической науки, которая не могла здесь предложить никакого объяснения. Бор ввел постулаты, основанные на квантовой теории Планка. Благодаря этому ученому удалось составить более правильный взгляд на строение атомных оболочек по сравнению с представлениями Резерфорда. В соответствии с постулатами Бора, электрон в свободном атоме водорода может вращаться вокруг ядра не по произвольной траектории, а по такому пути, который не связан с излучением энергии. Образование линейчатого спектра водорода объясняется тем, что электрон, поглощая фотон, переходит на более высокую орбиту. При потере энергии, согласно Бору, электрон вновь переходит на более низкую орбиту. Эта теория объясняла также потерю электронов при образовании положительных ионов.
   Десять лет спустя Планк говорил, что смелость теории атомного механизма Бора и полнота его разрыва с укоренившимися и якобы надежными воззрениями не имеет себе равных в истории физической науки. Теория Бора блестяще согласовалась с фактами, что как раз и является важнейшей задачей теории. Наряду с несомненным дарованием в «искусстве синтеза» он обнаружил также отчетливое понимание действительности.
   Ставшая всемирно известной модель атома Бора построена на двух требованиях – «квантовых условиях».
   Первое: электроны в атоме вращаются под влиянием кулоновских сил по известным свободным от излучения «квантовым орбитам», соответствующим определенным энергетическим уровням. Движение электронов при этом определяется константой Планка и последовательностью целых чисел.
   Второе: электроны совершают внезапные скачкообразные переходы, «квантовые скачки», между своими свободными от излучения орбитами. Частота колебаний испускаемого при этом света регулируется также квантом действия.
   Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете – пост, который Бор занимал с 1914 по 1916 год. В 1916 году он занял пост профессора, созданный для него в Копенгагенском университете, где он продолжал работать над строением атома. В 1920 году Бор основал Институт теоретической физики в Копенгагене. За исключением периода Второй мировой войны, когда ученого не было в Дании, он руководил этим институтом до конца своей жизни.
   В 1922 году Бор был награжден Нобелевской премией по физике «за заслуги в исследовании строения атомов и испускаемого ими излучения». При презентации лауреата С. Аррениус, член Шведской королевской академии наук, отметил, что открытия Бора «подвели его к теоретическим идеям, которые существенно отличаются от тех, какие лежали в основе классических постулатов Джеймса Клерка Максвелла». Аррениус добавил, что заложенные Бором принципы «обещают обильные плоды в будущих исследованиях».
   В двадцатые годы ученый сделал решающий вклад в то, что позднее было названо копенгагенской интерпретацией квантовой механики. В основе этой интерпретации лежит положение о том, что мы вынуждены выражать закономерности в микропроцессах понятиями макрофизики, справедливыми лишь до некоторых границ, определяемых соотношениями Гейзенберга. Бор сформулировал два из фундаментальных принципов, определивших развитие квантовой механики: принцип соответствия и принцип дополнительности.
   Принцип соответствия утверждает, что квантово-механическое описание макроскопического мира должно соответствовать его описанию в рамках классической механики. Или, как пишет Бор, «как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий».
   Принцип дополнительности является общим законом квантовой механики. В наиболее общем виде Бор сформулировал его следующим образом: «Любое данное использование одних классических понятий исключает одновременное использование других классических понятий, которые при ином подходе столь же необходимы для объяснения явлений».
   Приняв сосуществование двух очевидно противоречащих друг другу интерпретаций, мы вынуждены обходиться без визуальных моделей – такова мысль, выраженная Бором в его нобелевской лекции. Имея дело с миром атома, сказал он, «мы должны быть скромными в наших запросах и довольствоваться концепциями, которые являются формальными в том смысле, что в них отсутствует столь привычная нам визуальная картина».
   В тридцатые годы Бор вплотную приступил к изучению свойств ядра. В 1936 году он создал капельную модель ядра, введя в ядерную физику термодинамические понятия. После открытия цепной реакции ученый продолжал совершенствовать теорию деления ядер и эффектов, связанных с этим процессом. Большое значение для развития квантовой электродинамики имели его работы по излучению.
   В конце сентября 1943 года ученый узнал, что нацисты готовятся перевезти его в Германию. Следующей же ночью на лодке датские антифашисты переправили его в Швецию, чтобы спасти от лап гестапо.
   Из Швеции ученый направился на самолете в Англию, откуда затем вместе со своим сыном Оге вылетел в США. «И этот полет имел свои опасности, – сообщал Д. Франк. – Череп Бора был слишком велик для дужек, с помощью которых в этих самолетах прижимали к ушам необходимые для связи микрофоны. Поэтому он не слышал требования пилота надеть кислородную маску и потерял сознание. Он пришел в себя лишь после того, как Оге Бор указал пилоту на его состояние и тот перевел самолет в нижние слои атмосферы».
   В США Бор под вымышленной фамилией Бейкер участвовал как советник-сотрудник в Лос-Аламосе в изготовлении американской атомной бомбы. Когда стало ясно, что гитлеровская Германия уже не в состоянии овладеть атомным оружием, Бор употребил все свое влияние для того, чтобы воспрепятствовать применению американских атомных бомб. С этой целью он лично беседовал с президентом Рузвельтом.
   После войны Бор вернулся в Институт теоретической физики, который расширился под его руководством. Он помогал основать ЦЕРН (Европейский центр ядерных исследований) и играл активную роль в его научной программе в пятидесятые годы. Он также принял участие в основании Нордического института теоретической атомной физики (Нордита) в Копенгагене – объединенного научного центра Скандинавских государств. В эти годы ученый продолжал выступать в прессе за мирное использование ядерной энергии и предупреждал об опасности ядерного оружия. В 1950 году он послал открытое письмо в ООН, повторив свой призыв военных лет к «открытому миру» и международному контролю над вооружениями.
   Достигнув возраста обязательной отставки, Бор ушел с поста профессора Копенгагенского университета, но оставался главой Института теоретической физики. В последние годы своей жизни он продолжал вносить свой вклад в развитие квантовой физики и проявлял большой интерес к новой области молекулярной биологии.
   Бор умер 18 ноября 1962 года в своем доме в Копенгагене в результате сердечного приступа. В некрологе советские ученые, в частности, писали: «В лице Нильса Бора люди потеряли гениального ученого и мыслителя, борца за мир и взаимопонимание между народами, друга всего человечества».
   В честь великого ученого советские ученые назвали 105-й химический элемент нильсборием (Ns).

ЛУИ ДЕ БРОЙЛЬ
(1892—1987)

   Нобелевский лауреат 1929 года, Луи де Бройль внес в современную физику идею о волновых свойствах микрочастиц. А. Эйнштейн писал: «Де Бройль был первым, кто осознал тесную физическую и формальную взаимосвязь между квантовыми состояниями материи и явлениями резонанса еще в те времена, когда волновая природа материи не была открыта экспериментально».
   Луи Виктор Пьер Раймон де Бройль родился 15 августа 1892 года в Дьеппе. Он был младшим из троих детей Виктора де Бройля, представителя одного из самых знатных аристократических семейств Франции. Мальчик получил блестящее домашнее воспитание и образование. В юности он увлекался историей и литературой. Поэтому после окончания престижного лицея Жансон де Сайн Луи поступил на факультет искусств и литературы Парижского университета.
   В 1910 году де Бройль по окончании университета получил степень бакалавра истории. Однако его не удовлетворяли чисто описательные методы, господствовавшие в то время в гуманитарных науках. Луи читал книги великого французского математика А. Пуанкаре, искавшего подходы к теории относительности, и физика увлекла его.
   Сказалось и влияние старшего брата, известного физика, исследователя рентгеновских лучей Мориса де Бройля. Брат, участник I Сольвеевского конгресса по физике в 1911 году, рассказал ему об актуальных проблемах современной физики. Ознакомившись с материалами конгресса, посвященного вопросам квантовой теории, он решил «посвятить все свои силы выяснению истинной природы введенных за десять лет до этого в теоретическую физику Максом Планком таинственных квантов, глубокий смысл которых еще мало кто понимал».
   Всего за три года он прошел университетский курс физики на факультете естественных наук и в 1913 году получил вторую ученую степень.
   В том же году Луи призвали на военную службу и направили во французский инженерный корпус. Всю Первую мировую войну де Бройль прослужил на станции беспроволочного телеграфа при Эйфелевой башне. Лишь в 1920 году он в частной лаборатории своего брата возобновил исследования. Результаты его первых теоретических изысканий по квантовой теории излучения «абсолютно черного тела» были опубликованы в 1922 году.
   Увлечение историей не прошло для ученого бесследно. Во многих своих исследованиях де Бройль исходил непосредственно из исторических соображений. Идея о волновой природе материи также возникла у него в конечном счете в результате размышлений над историей оптики: «Новая динамика свободной материальной точки относится к прежней динамике (включая динамику Эйнштейна) так же, как волновая оптика относится к геометрической. Размышления покажут, что предлагаемый синтез представляется логическим венцом совместного развития динамики и оптики со времени XVII века».
   Так в 1923 году он в трех небольших статьях выдвинул и обосновал гипотезу об универсальности дуализма в микромире, т е. распространил идею Эйнштейна о двойственной природе света на вещество – поначалу на электрон, предсказав возможность его дифракции.
   «В первой статье «Волны и кванты» де Бройль рассматривает движение свободной частицы и связывает ее с волной определенной длины, – пишет Г. Голин. – На основе выдвинутой гипотезы он обосновывает казавшийся загадочным принцип отбора стационарных орбит в атоме Бора—Зоммерфельда, рассматривая поведение электронов на стационарных орбитах как результат явления резонанса фазовой волны на длине замкнутой траектории, и делает вывод, что стационарными орбитами являются те, на которых целое число раз укладывается длина волны, связанной с равномерно вращающимся электроном. Во второй статье «Кванты света, дифракция и интерференция» де Бройль строит теорию интерференции и дифракции света исходя из существования фотонов. В статье «Кванты, кинетическая теория газов и принцип Ферма» он на основе своей идеи дуализма выводит формулу Планка для «излучения абсолютно черного тела» и устанавливает соответствие между принципом наименьшего действия Мопертюи, примененным к движению частицы, и принципом Ферма, примененным к распространению связанной с частицей волны».
   В следующем году ученый обобщил и развил свои идеи в диссертации «Исследования по квантовой теории», которую успешно защитил в Сорбонне. Ученый писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением Эйнштейна в теории света, но также и в теории материи. «При этом следует полагать, – объяснял он позднее в своей прекрасной и сегодня заслуживающей внимания книге «Свет и материя», – что каждая корпускула сопровождается определенной волной и каждая волна связана с движением одной или многих корпускул».
   Вследствие этого понятие «корпускула» и понятие «волна» должны применяться одновременно: к излучению так же, как и к веществу, к материи. «Электрон, – считал де Бройль, – не может более рассматриваться как простая крупинка электричества; с ним следует связать волну». Отношение между энергией движущихся частиц и частотой колебания волнового движения передается константой Планка. Она вместе с величиной движения определяет и длину волны. Как одному кванту света соответствует одна световая волна, так и частице материи должна, по мнению Луи де Бройля, соответствовать волна материи.
   Эта смелая мысль о всеобщем «дуализме» частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.
   П. Ланжевен обратил внимание Эйнштейна на статью де Бройля «Исследования по квантовой теории». В письме к Борну Эйнштейн писал: «Прочтите ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно».
   Многие физики, однако, с недоверием отнеслись к гипотезе де Бройля. Среди них был и Э. Шрёдингер. Но в итоге он увлекся идеей французского ученого и попытался обосновать ее математически. В результате в 1926 году Шрёдингер вывел знаменитое уравнение, положенное в основу волновой механики.
   О том, насколько революционизирующе подействовало на старшее поколение физиков представление о волнах материи, свидетельствует речь, с которой в 1938 году выступил М. Планк на чествовании Луи де Бройля. Планк говорил: «Еще в 1924 году г-н Луи де Бройль изложил свои новые идеи об аналогии между движущейся материальной частицей определенной энергии и волной определенной частоты. Тогда эти идеи были настолько новы, что никто не хотел верить в их правильность, и я сам познакомился с ними только три года спустя, прослушав доклад, прочитанный профессором Крамерсом в Лейдене перед аудиторией физиков, среди которых был и наш выдающийся ученый Лоренц… Смелость этой идеи была так велика, что я сам, сказать по справедливости, только покачал головой, и я очень хорошо помню, как г-н Лоренц доверительно сказал мне тогда: «Эти молодые люди считают, что отбрасывать в сторону старые понятия в физике чрезвычайно легко!» Речь шла при этом о волнах Бройля, о соотношении неопределенностей Гейзенберга – все это для нас, стариков, было чем-то очень трудным для понимания. И вот развитие неизбежно оставило позади эти сомнения. Осенью того же 1927 года я лично познакомился с г-ном де Бройлем на 5-м Сольвеевском конгрессе в Брюсселе и был восхищен его скромностью и образованностью».
   Уже в ближайшем будущем гипотеза де Бройля получила надежное экспериментальное подтверждение, а созданная на ее основе волновая механика стала широко применяться в ядерной физике, химии, биологии и технике.
   В 1929 году де Бройль был удостоен Нобелевской премии по физике «за открытие волновой природы электронов». В речи, которой представили лауреата на церемонии вручения премии, были такие слова: «Де Бройль открыл совершенно новый аспект природы материи, о котором ранее никто не подозревал. Блестящая догадка де Бройля разрешила давний спор, установив, что не существует двух миров, один – света и волн, другой – материи и корпускул. Есть только один общий мир».
   В свою очередь, в нобелевском докладе ученый сказал, что его интерес к теоретической физике пробудил тот факт, «что структура материи и структура излучений становились все таинственней, по мере того как физику все более и более завоевывало странное понятие «квант», введенное Планком в 1900 году при исследовании черного излучения». Движущей причиной научно-исследовательской работы служит, по его мнению, также и та «святая любознательность», которую Эйнштейн рассматривал как первоисточник всех естественнонаучных и технических достижений. Луи де Бройль считал справедливым требование, предъявляемое к естествоиспытателю Шрёдингером: он должен «быть способным удивляться и быть помешанным на догадках».
   В 1928 году де Бройль занял пост профессора Парижского университета, который занимал до 1962 года. Блестящий лектор и педагог, глубоко интересовавшийся вопросами физического образования на всех уровнях от средней школы до аспирантуры, выдвинул ряд глубоких идей по модернизации современного обучения.
   У себя на родине ученый пользовался заслуженным авторитетом и признанием. С 1942 по 1975 год он был непременным секретарем Французской академии наук. Луи де Бройль удостоен многих почетных научных званий и степеней ряда стран. С 1958 года он является иностранным членом Академии наук СССР. Выдающегося французского физика до преклонного возраста интересовали самые современные проблемы науки: теория элементарных частиц, атомная энергия, кибернетика. В свободное время он любил читать и играть в шахматы.
   Иногда ученый выступал с биографическими работами о физиках прошлого. Так, гениальному французскому естествоиспытателю Амперу посвящена блестящая научная биография, написанная с законным чувством национальной гордости. В нашей стране были опубликованы книги де Бройля «По тропам науки» и «Революция в физике». Эти интересные произведения написаны простым и ясным языком. Не случайно де Бройля избрали почетным президентом Французской ассоциации писателей-ученых.
   Умер Луи де Бройль 19 марта 1987 года.

ВЕРНЕР ГЕЙЗЕНБЕРГ
(1901—1976)

   Гейзенберг был одним из самых молодых ученых, получивших Нобелевскую премию. Как сказал Н. Бор: «В этот период развития физической науки, который можно сравнить с чудесным приключением, Вернеру Гейзенбергу принадлежит выдающаяся роль».
   У Гейзенберга было необыкновенно развитое чувство интуиции. Сам ученый об этом говорил так: «Я должен начинать не с детального изучения вопроса, а сначала прислушаться… к подсознательному чувству, которое, как правило, подсказывает мне правильный путь».
   Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Его отец Август Гейзенберг, профессор Мюнхенского университета, был известным языковедом-византологом. Матерью мальчика была урожденная Анна Виклейн.
   В сентябре 1911 года Вернера отдали в престижную мюнхенскую гимназию, где мальчик увлекся математикой и быстро усвоил дифференциальное и интегральное исчисление.
   В 1920 году Гейзенберг поступил в Мюнхенский университет. Здесь Вернер учился у А. Зоммерфельда и В. Вина. Окончив университет, молодой ученый был назначен ассистентом профессора Макса Борна в Геттингенском университете.
   В 1923 году в Мюнхене Гейзенберг защитил докторскую диссертацию по проблеме турбулентности, в которой были разработаны приближенные методы нелинейной теории. Через год Вернер отправляется в полугодовую командировку в Копенгаген в качестве стипендиата-исследователя. Состояние атомной физики напоминало в это время какое-то нагромождение гипотез. В. Паули писал тогда: «Физика теперь снова зашла в тупик, во всяком случае, она для меня слишком трудна, и я предпочел бы быть комиком в кино или кем-нибудь вроде этого и не слышать ничего о физике».
   Свои первые работы Гейзенберг посвящает принципу соответствия, пытаясь найти для него математическую основу и превратить его из эмпирического правила в научный метод исследования внутриатомных процессов.