Каркасы цеолитов похожи на пчелиные соты и образованы из цепочек анионитов кремния и алюминия. Из-за своего строения каркас имеет отрицательный заряд и этот заряд компенсируется катионами щелочных или щелочноземельных металлов, находящихся в полостях-сотах. Тип цеолита (диаметр его пор ) определяется соотношением кремния и алюминия и типом катионов. Главным образом это вода. Она удаляется при нагревании до 600-800 гр. С, сам каркас при этом не разрушается, он сохраняет первоначальную структуру. Именно поэтому цеолит способен вновь поглащать потерянную воду и другие вещества. Размером пор определяется и размер частиц, способных в них проникать; цеолиты могут как бы просеивать молекулы, сортировать их по размерам. Кроме того они используются как адсорбенты, они в 10-100 раз эффективнее , чем все другие осушители и работают при различных температурах. При -196 гр. С адсорбационная способность цеолитов резко повышается. Они поглощают даже воздух, создавая в сосуде разряжение до 1.0е- мм рт.ст. Цеолиты используют как ионообменники, не разрушающиеся под действием излучения. В качестве катализаторов устойчивы к действию высоких температур,каталических ядов, позволяют гибко менять свойства.
   А.с. N 550372 : Способ получения пентенов путем контактирования 1,3 пентадиенов с твердым окисным катализатором при 300-500 гр. С , отличающийся тем, что с целью повышения выхода целевого продукта, в качестве катализатора используют композицию аморфного алюмосиликата с силлиманитом.
   Размер ячеек цеолита сохраняется практически постоянным в широком диапазоне температур т.к. коэффициент расширения полностью гидратированного цеолита близок к коэффициенту терморасширения кварца: соответственно 6.91 и 5.21 .
   3.8.1 Чистые цеолиты бесцветны. Если катионы щелочных или щелочноземельных металлов , обычно присутствующие в синтетических цеолитах , обменять на ионы переходных металлов, цеолиты могут приобрести окраску. Если окраска индивидуального иона зависит от того , находится он в гидратизированном или безводном состоянии, окраска цеолита будет меняться со степенью гидратации. Так, бесцветный цеолит А-А окрашивается в глубокий желто-красный цвет, а затем в ярко-канареечный. Такой переход окраски наблюдается при изменении парциального давления воды над цеолитом от 3.10 мм рт.ст. до 5.10 мм рт.ст. Окрашенная в сиреневый цвет никелевая форма цеолита при дегидротации становится светло-зеленой, розовая кобальтовая форма-синей.
   С п о с о б н о с т ь ц е о л и т о в м е н я т ь ц в е т в п р и с у т с т в и и п а р о в в о д ы и с п о л ь з у е т с я д л я е е о п р е д е л е н и я .
   Цеолиты имеют очень интересные диэлектрические и электропроводные свойства.
   ЛИТЕРАТУРА
   к 3.2 Б.Г.Гейликман, Статистическая физика фазовых переходов,
   т.1.М.,"наука",1954. к 3.3 О.С.кондо,"Молекулярная теория поверхностного натяжения
   в жидкостях",М.,"мир",1963.
   Б.Д.Суми,Ю.В.Горюнов,"Физико-химические основы смачива
   ния и растекания,М.,"Химия",1976. к 3.4 Ф.Ф.Волькштейн,"Полупроводники как катализаторы химиче
   ских реакций",М.,"Знание",1974
   (Новое в жизни,науке,технике. Серия "Химия",11).
   Ф.Ф.Волькштейн,"Радикало-рекомбинационная люминесценция
   полупроводников",М.,"Наука",1976
   Н.К.Адам,"физика и химия поверхностей",М.,1947.
   В.А.Пчелин,"В мире двух измерений",
   журнал "Химия и жизнь", 1976,6,стр.9-15. к 3.5 С.Р.де Грот,Термодинамика необратимых процессов
   М.,1956,Физическое металловедение, вып.2.М.,"мир",1968
   В.Зайт, "Диффузия в металлах",М.1958.
   Я.Е.Гегузин,"Очерки о диффузиях в кристаллах",
   М.,"Наука",1974 к 3.7 Л.Л.Васильев,С.В.Конев,Теплопередающие трубки,Минск,
   "Наука и техника",1972. к 3.8 Д.Брек,"Цеолитовые молекулярные сита",М."Мир",1976.
   4.1.2. Закон Паскаля
   Давление,производимое внешними силами на поверхность жидкости или газа,передается по всем направлениям без изменений.Такая передача давления происходит вследствии возможности молекул жидкости или газа свободно перемещаться относительно друг друга.
   Напомним, что это движение полностью хаотично, и, следовательно, в отсутствии силы тяжести или в состоянии невесомости давление во всех точках жидкости согласно закону Паскаля будет одинаковым.
   Соответственно, поэтому и "не работает" закон Архимеда в этих условиях. На основе закона Паскаля работают гидравлические прессы и под'емники, некоторые вакууметры различного рода гидро- и пневмо- усилители.
   4.2 Течение жидкости и газа.
   4.2.1 ЛАМИНАРНОСТЬ И ТУРБУЛЕНТНОСТЬ.
   Упорядоченное движение вязкой жидкости ( или газа ) без междуслойного перемешивания называется ламинарным течением. При увеличении скорости потока возникающие в жидкости ( или газе ) случайные возмущения приводят к образованию хаотического турбулентного движения, при котором частицы жидкости ( или газа ) совершают неустановившиеся беспорядочные движения по сложным траекториям, в результате чего происходит интенсивное перемешивание жидкости ( или газа ). При ламинарном течении жидкости ( или газа ) передача импульса от слоя к слою происходит за счет молекулярного механизма ( вязкость ) , поэтому скорость потока жидкости ( или газа ) в трубе плавно убывает от центра трубы к стенкам. При турбулентном потоке скорость почти постоянна по сечению трубы, резко убывая на самой границе жидкости ( или газа ) со стенкой трубы.
   А.С. N 508262 : Спосоп диспергирования нитевидных кристаллов путем перемешивания кристалической массы в вязкой жидкости, отличающийся тем, что с целью уменьшения процениа поломки кристаллов и времени процесса, перемешивание ведут в режиме ламинарного течения жидкости с вихрями Тейлора в коаксиальном зазоре гладкоствольного роторного аппарата.
   А.С. N 523277 : Способ контроля шероховатости с помощью сопла, самоустанавливающегося по контролируемой поверхности, основанной на измерении давления жидкости при турбулентном режиме течения в зазоре между соплом и контролируемой поверхностью, отличающийся тем, что с целью повышения чувствительности и точности контроля, сначала создают ламинарный режим течения в зазаоре, а затем фиксируют положение сопла и увеличивают расход газа или жидкости до достижения турбулентного режима течения.
   4.2.2 ЗАКОН БЕРНУЛЛИ.
   для ламинарного режима течения справедлив закон Бернулли, согласно которому полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока. Полное давление состоит из весового, статического и динамического давления. Из закона Бернулли следует, что при уменьшении сечения потока , из-за возрастания скорости, т.е. динамического давления, статическое давление падает. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров, водо и пароструйных насосов. Отметим , что закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, т.е. таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела всегда в точности равна нулю. Именно поэтому на поверхностях , находящихся в потоке жидкости, всегда образуются какие-то наросты, осаждения; этим же об'ясняется и тот факт, что на лопастях крутящегося вентилятора всегда появляется слой пыли.
   Патент США N 3811323 : в измерителе потока жидкости турбинного типа отсутствие осевого давления на подшипники ротора достигнуто увеличением эффективной площади сечения потока на участке, что обеспечивает возникновение эффекта Бернулли, под влиянием чего на ротор воздействует усилие на участке, расположенном относительно ротора выше по течению потока.
   А.С. N 437846 : Способ определения производительности центробежного вентилятора с осевым направляющим аппаратом по перепаду статических давлений в двух сечениях, расположенных до и после направляющего аппарата, отличающийся тем , что с целью повышения точности измерения и обеспечения возможности определения производительности при произвольном угле поворота лопаток направляющего аппарата , последние устанавливают на угол, равный нулю, и замеряют статическое давление в вентиляционном канале перед направляющим аппаратом и позади него в самом узком сечении выходного патрубка , затем лопатки устанавливают на заданный угол поворота и определяют статическое давление в сечении перед направляющим аппаратом, после чего производительность подсчитывают по зависимости, полученной на основании уравнений Бернулли и неразрывности потока.
   4.2.3 ВЯЗКОСТЬ
   ВЯЗКОСТЬ- свойство жидкости и газов, характеризующее сопротивление их течению под действием внешних сил. Вязкость об'ясняется движением и взаимодействием молекул . В газах расстояние между молекулами существенно больше радиуса действия молекулярных сил, поэтому вязкость газа определяется главным образом молекулярным движением . Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами , обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определенного количества движения. В результате медленные слои ускоряются, а более быстрые замедляются.
   В жидкостях , где расстояние между молекулами много меньше , чем в газах, вязкость обусловлена в первую очередь межмолекулярными взаимодействиями, ограничивающими подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нем полости, достаточной для перескакивания туда молекулы. На образование полости расходуется энергия активизации вязкого течения. Энергия активации падает с ростом температуры и понижением давления. По вязкости во многих случаях судят о готовности или качестве продукта, поскольку вязкость тесно связана со структурой вещества и отражает физико-химические изменения материала, которые происходят во время технологических процессов.
   4.2.4 ВЯЗКОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ.
   Протекание полярной непроводящей жидкости между обкладками конденсатора сопровождается некоторым увеличением вязкости мгновенно исчезающим при снятии поля. Это явление в чистых жидкостях получило название ВЯЗКОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА.
   Установлено, что эффект возникает только в поперечных полях и отсутсвует в продольных. Вязкость полярных жидкостей возрастает с увеличением напряженности поля в начале пропорционально квадрату напряженности, а затем приближается к некоторому постоянному предельному значению ( ВЯЗКОСТИ НАСЫЩЕНИЯ ) , зависящему от проводимости жидкости. Увеличение про водимости приводит к увеличению вязкости насыщения.
   На эффект оказывает влияние частота поля. В начале с повышением частоты вязкоэлектрический эффект увеличивается до определенного предела, затем вырождается до нуля.
   Увеличение вязкости под действием электрического поля происходит за счет того, что в жидкости могут находиться или возникать под действием поля свободные ионы. Они становятся центрами ориентации полярных молекул, т.е. источниками заряженных групп, для которых в электрическом поле возможно движение типа электрофореза. Количество движения таким образом, переносится от слоя к слою поперек потока.
   Другая возможность образования групп-ориентация полярных молекул, имеющих постоянный дипольный момент. Молекулы следят за электрическим полем, ориентируясь поперек потока : для преодоления доплнительного сопротивления нужны затраты энергии.
   4.3 ЯВЛЕНИЕ СВЕРХТЕКУЧЕСТИ.
   Особыми вязкостными свойствами обладает жидкий гелий, который при понижении температуры испытывает фазовый переход второго рода, превращаясь в сверхтекучую модификацию гелия --Не II. Причем в Не II превращается не весь гелий, а только часть, т.е. при температуре ниже - - перехода (Т=2.17 К) гелий можно представить себе состоящим из двух компонент - нормальный, свойства которого аналогичны свойствам гелия до перехода (Не I) и сверхтекучей , вязкость которой чрезвычайно мала ( меньше 1.0е-1 ).
   Компоненты могут двигаться независимо друг от друга, причем движение сверхтекучей компоненты не связано с переносом тепла ( ее энтропия равна нулю).
   Низкая вязкость гелия позволяет использовать его в качестве смазки, например в подшипниках.
   Свойство сверхтекучей компоненты легко проникать в малейшую щель делает Не II удобным для поиска течей: погружение в Не II - самая строгая проверка герметичности.
   Малая ширина перехода ( 1.0е- К ) позволяет использовать его как опорную точку при измерении температуры.
   4.3.1 СВЕРХПРОВОДИМОСТЬ.
   Благодаря встречному конвективному движению двух компонент тепло-передача в Не II происходит без переноса массы, в результате чего теплопроводность Не II чрезвычайно высока. Проявляется это, например, в прекращении кипения после II- перехода - теплопроводность настолько высока, что пузырьки газа образоваться не могут и испарение происходит с поверхности.
   Благодаря сверхвысокой теплопроводности Не II может служить хорошим хладоагентом для охлаждения.
   Для различных целей физики низких температур часто требуются тепловые ключи - устройства, теплопроводность которых можно менять по своему усмотрению. Одной из возможных реализаций теплового ключа является трубка, наполненная гелием, который мы, меняя давление можем переводить изсвехтекучего состояния в нормальное и обратно.
   4.3.2 ТЕРМОМЕХАНИЧЕСКИЙ ЭФФЕКТ.
   Если нагреть Не II в одном из сосудов ,сообщающихся между собой через тонкий капилляр или пористую перегородку, то в нем за счет перехода в обычную понизится концентрация сверхтекучей компоненты. Т.к. сверхтекучая компонента, стремясь к установлению равновесия, будет по капилляру поступать из ненагретого сосуда, а нормальная компонента из нагретого выходить не будет, уровень гелия в нагреваемом сосуде увеличится .
   Этот эффект может быть использован для создания своеобразных насосов Не II .
   4.3.3 МЕХАНО-КАЛОРИЧЕСКИЙ ЭФФЕКТ.
   Если повысить давление в одном из сосудов , рассматриваемых в предыдущем пункте, заполненных Не , находящемся в сверхтекучем состоянии, то сквозь капилляр будет протекать только сверхтекучая компонента.
   Сверхтекучая компонента теплоту из сосуда , из которого она вытекает , не уносит, вследствие чего температура внутри этого сосуда будет повышаться. Температура же сосуда , в который притекает сверхтекучая компонента будет уменьшаться.
   На основе этого эффекта П.Л.Капицей был построен охладитель. Одна ступень охладителя давала перепад температур 0.4 К.
   Достоинствами метода является то, что его холодопроизводительность не уменьшается с понижением температуры.
   Используя Не II ка холодильный агент возможно в принципе приблизиться сколь угодно близко к температуре абсолютного нуля.
   4.3.4 ПЕРЕНОС ПО ПЛЕНКЕ.
   Поверхность тела, соприкасающегося с Не II покрывается пленкой сверхтекучего гелия, по которой может происходить перенос жидкости из оного сосуда в другой.
   Так, например , пустой сткан, погруженный не до краев в Не II через некоторое время заполнится гелием. Скорость переноса от разности уровней жидкости не зависит , и определяется только периметром стенок в самом узком месте соединения.
   Поскольку тонкую пленку можно рассматривать как капилляр, то при переносе гелия на пленке имеет место термохимический эффект. Можно усилить эффект , увеличив периметр тела, соединяющего два сосуда, например, вставив пучок проволок.
   Эффект нашел применение для разделения изотопов гелия Не3 и Не-4. Не-3 не свехтекучий, и по пленке сосуда, содержащего смесь изотопов удаляется сам собой только изотоп Не-4.
   Движение пленки можно остановить , если поместить пленку между обкладками конденсатора, на который подано напряжение с частотой 40-50 Герц.
   4.4.1 ЭФФЕКТ ТОМСА.
   Сопротивление , оказываемое трубопроводом потоку жидкости при ламинарном режиме течения меньше , чем при турбулентном.
   В 1948 г. Б.Томс ( Англия ) установил, что при добавлении в воду полимерной добавки трение между турбулентным потоком и трубопроводом значительно снижается .
   Сам Томс работал с полиметилметакрилатом, растворенным в монохлорбензоле; в последующие годы ученые и изобретатели в различных странах нашли много других присадок, работающих еще более эффективно.
   Практическое применение эффекта Томса весьма разнообразно : по традиции "смазывают" различными присадками трубопроводы, "смазывают" полимерами морские и речные суда, напорные колонны глубоких скважин и т.д.
   Эффект Томса обуславливается образованием на границе твердое тело-жидкость молекулярных растворов, которые ограничивают турбулентность потока. Установлено , что добавка полимеров более эффективно действует при высоких скоростях потока , где развивающаяся турбулентность потока больше.
   Патент США N 3435796 : В устройстве, уменьшающем сопротивление подводного аппарата, используется слабый раствор полимера, образующий в пограничном слое забортной воды при смещении подогретой жидкой смеси либо гранулированного или порошкообразного полимера с морской водой. Подогретая жидкая смесь представляет собой дисперсию макромолекул полимера, растворимую в морс при температуре окружающей среды, но нерастворимую в воде температуре выше 70 градус Цельсия.Когда подогретая жидкая смесь попадает в холодную воду при соответствующих условиях окружающей среды, микрочастицы набухают и растворяются, образуя клейкую массу. В пограничном слое обтекающего потока они образуют молекулярный раствор макромолекул, препятствуя турбулизации потока.
   А.с. N 244032: Способ снижения потерь напора при перемещении жидкости по трубопроводу, отличающийся тем, что с целью достижения жидкостью свойства псевдопластичности, в нее вводят длинноцепочный полимер, например полиакриламид, в колличестве 0,01-0,2% по весу.
   Снижение гидродинамического сопротивления может быть до за счет образования под воздействием какого-либо поля из молекул самой жидкости присадок, аналогичных по свойствам полимерным молекулам.
   А.с. N 364493: Способ снижения гидродинамического сопротивления движению тел, например, судов, путем уменьшения сил трения в пограничном слое, отличающийся тем, что с целью упрощения способа и повышения его эксплуатационной надежности путем исключения подачи в пограничные слои высокомолекулярных составов, в пограничном слое создают электромагнитное поле, генерирующее комплексы молекул.
   Применение способа по п.1 для решения внутренней задачи, например, для снижения сопротивления жидкости в трубопроводе.
   4.4.2. С к а ч о к у п л о т н е н и я.
   Что такое лобовое сопротивление при обтекании твердых тел потоком жидкости или газа - общеизвестно. Однако, кроме лобового сопротивления, при обтекании возникает так называемое волновое сопротивление, являющееся результатом затрат энергии на образование акустических или ударных волн. В газе, например, ударные волны возникают при образовании скачка уплотнения у лобовой поверхности тела при обтекании его сверхзвуковым потоком газа. При образовании скачка уплотнения резко увеличивается плотность, температура, давление и скорость вещества потока; в результате могут иметь место процессы диссоциации и ионизации молекул, сопровождающиеся мощным световым излучением. Световое излучение может сильно разогреть как газ перед фронтомволны, так и поверхность движущегося тела.
   4.4.3. Э ф ф е к т К о а н д а.
   Румынский ученый Генри Коанд в 1932 году установил, что струя жидкости, вытекающая из сопла, стремится отклониться по направлению к стенке и при определенных условиях прилипает к ней. Это обьясняется тем, что боковая стенка препятствует свободному поступлению воздуха с одной стороны струи, создавая вихрь в зоне и пониженоого давления. Аналогично и поведение струи газа. На основе этого эффекта строится одна из ветвей пневмоники (струйной автоматики).
   4.4.4. Э ф ф е к т в о р о н к и.
   Если уровень жидкости в сосуде с открытой поверхностью понизится до определенного уровня при свободном сливе жидкости че отверстие в нижней части сосуда, то на поверхности жидкости об водоворот (т.е. вихревое движение воды), который на редкость устойчив, и нарушить его трудно.
   4.5. Э ф ф е к т М а г н у с а.
   Если твердый цилиндр вращется вокруг продольной оси в набегающем потоке жидкости или газа, то он увлекает во вращение прилегающие к нему слои жидкости или газа; в результате окружающая среда движется отнительно цилиндра не только поступательно, но еще и вращается вокруг него. В той зоне, где направление поступательного и вращательного движения совпадают, результирующая скорость движения окружающей средыпревосходит скорость потока. С противоположной стороны цилиндра поток, возникающий из-за вращения, противодействует поступательному потоку и результирующая скорость падает. А из закона Бернулли известно, что в тех местах, где скорость больше, давление понижено и наоборот. Поэтому с разных сторонна вращающийся цилиндр действуют разные силы. В итоге появляется результирующая сила, которая всегда направлена перпендикулярно образующим цилиндра и потоку.
   Естественно, что такая же сила возникает при движении вращающейся сферы в вязкой жидкости или газе (вспомните кручены футболе, тенисе волейболе). На основе эффекта Магнуса в свое время был построен корабль с вращающимися цилиндрами вместо парусов. Конечно, эти цилиндры работали в качестве двигателя только при боковом ветре.
   В эффекте Магнуса взаимосвязаны: направление и скорость потока, направление и величина угловой скорости, направление и величина возникающей силы. Соответственно можно измерять поток и угловую скорость.
   Патент США N 3587327: В устройстве для измерения угловой скорости и индикации направления вращения газовая струя разделяется на две струи, каждая из которых тангенциально касается противоположных сторон диска неподвижно закрепленного на аксиально вращающемся валу. Вращение диска накладывается на струи разность давлений, величина которых пропорциональна скорости вращения вала. В зависимости от направления вращения вала на ту или другую струю накладывается большее относительное давление.
   А.с. N 514616: Способ разделения неоднородных жидких сред на легкую тяжелую фракции, предусматривает общее воздействие на поток разделяемой среды центробежного и гравитационного полей отличающийся тем, что с целью повышения эффективности, поток разделяемой среды при воздействии на него центробежного и гравитационного полей перемещают ввиде ряда, например, параллельных слоев с расстоянием между слоями, меньшими величины диаметра частиц тяжелой фракции, и последовательно возрастающими при переходе от одного слоя к другому, скоростями обеспечивающими градиент скорости, направленной перпендикулярно перемещению слоев жидкости и создающий вращение частиц тяжелой фракции вокруг своей оси, и гидродинамическую подьемную силу, например силу эффекта Магнуса.
   4.6. Дросселирование жидкостей и газов.
   Дросселирование - расширение жидкости, пара или газа при прохождении через дроссель - местное гидродинамическое сопротивление (сужение трубопровода, вентиль, кран и другие), сопровождающиеся изменением температур. Дросселирование широко применяется для измерения и регулирования расхода жидкостей газов.
   4.6.1. Э ф ф е к т Д ж о у л я - Т о м с о н а.
   (Дроссельэффект) заключается в изменении температуры газа при его адиабатическом (без теплообмена с окружающей средой) дросселировании, т.е. протекании через пористую перегородку, диафрагму или вентель. Эффект называется положительным, если температура газа при адиабатическом дросселировании понижается, и отрицательным, если она повышается. Для каждого реального газа существует точка инверсии - значение температуры при которой измеряется знак эффекта. Для воздуха и многих других газов точка инверсии лежит выше комнатной температуры и они охлаждаются в процессе Джоуля-Томсона. Дросселирование - один из основных процессов, применяемых в технике снижения газов и получения сверхнизких температур.
   А.с.257801: Способ определения термодинамических величин газов, например, энтальции, путем термостатирования исходного газа, дросселирования его с последующим измерением тепла, подведенного к газу, отличающийся тем, что с целью определения термодинамических величин газов с отрицательным эффектом Джоуля-Томсона, газ после дросселирования охлаждают до первоначальной температуры, затем нагревают до температуры после дросселя с измерением подведенного к нему тепла и по известным соотношениям определяют искомые величины.
   4.7. Гидравлические удары.
   Быстрое перекрытие трубопровода с движущейся жидкостью вызывает резкое повышение давления, которое распределяет упругой волны сжатия по трубопроводу против течения жидкости. Эта волна несет с собой энергию, полученную за счет кинетической энергии жидкости. Подход волны к какому-нибудь препятствию (изгибу трубопровода, задвижке и т.д.) вызывает явление гидравлического удара. Ослабление гидравлического удара может быть достигнуто или увеличением времени перекрытия, или же включением каких-либо, демпферов поглощающих энергию волны. Для увеличения силы удара целесообразно применять жидкости без неоднородностей и мгновенные перекрытия. Обычно вслед за гидравлическим ударом следует удар кавитационный, возникающий изза понижения давления за фронтом ударной волны сжатия (о кавитации смотри раздел 4.8). Волны сжатия в жидкости возникают также при различного рода врывных явлениях в движущейся или покоящейся жидкости (глубинные бомбы).