Страница:
так например, при изменении количества примесей в стали от 0,1 до 1,1% ее удельное сопротивление изменяется от 10 до 30 10(в минус восьмой степени) Ом.см.
Широко используются изобретателями и обычные изменения сопротивления обьектов за счет изменения размеров или состава обьекта.
А.с. 462 067: Способ измерения линейных размеров изделия из электропроводного материала, заключающегося в том, что на поверхность изделия направляют струю жидкости, по параметрам которой судят о размерае, отличающийся тем, что с целью расширения диапазона измерений, подают электропроводящую жидкость и измеряют электрическое сопротивление струи.
А.с. 511 233: Способ определения качества пишущего инструмента, например, шариковой авторучки путем нанесения ею на опорную поверхность пишущей жидкости и измерения электрического сопротпоследней, отличающийся тем, что с цель повышения точности измерения, в качестве опорной поверхности используют токопроводящую подложку, а измерение сопротивлений осуществляют в цепи подложкаседло шарика.
А.с. 520 539: Способ измерения удельного электрического сопротивления образцов, заключающийся в измернии пропускаемого через образец тока, отличающийся тем, что с целью повышения точности и упрощения процесса измерения, образец последовательно помещают в сосуды с растворами с известными удельными сопротивлениями, измеряют ток проходящий через эти растворы до и после погружения в них образца и об удельном сопротивлении образца судят по величине удельного сопротивления того раствора, при погружении образца в который, ток, проходящий через этот раствор, не менялся.
6.6. При низких температурах поведение сопротивления металлов весьма сложно. У некоторых металлов и сплавов обнаруживается явление с в е р х п р о в о д и м о с т и. Сверхпроводящее состояние устойчиво, если температура, магнитное поле и плотность тока не превышает некоторых критических пределов. В 1976 г. достигнуты следующие максимальные значения этих параметров: критическая температура 23,4К, критическое поле 600 кЗ, плотность тока 11 в 11-ой степени а см2.
А.с. 240 844: Устройство для получения сверхсильных магнитных полей, представляющее собой охлажденный солиноид из несверхпроводящего материала, отличающийся тем, что с целью повышения напряженности магнитного поля, снижения себестоимости и потребления электроэнергии, снаружи солиноида расположен в кристалле с рабочим обьемом вне криостата сверхпроводящий соленоид.
6.6.1. Если один из параметров поддерживать вблизи критического значения, то сверхпроводящая система может быть использована для очень точного определения небольших изменений измеряемой величины, например, вблизи критической температуры - 10 см./градус.
А.с. 525 886: Способ измерения скорости течения жидкости заключающийся в пропускании через чувствительный элемент электрического сигнала, подведения к нему тепла от дополнительного источника и определении скорости течения жидкости по изменению величины сигнала с чувствительного элемента, отличающийся тем, что с целью повышения точности измерния скорости течения криогенных жидкостей, ее определяют по величине теплового потока от дополнительного источника тепла в момент перехода чувствительного элемента из сверхпроводящего состояния в нормальное.
6.7. Электрическое и магнитные поля тесно связаны между собой. В природе существует электромагнитное поле - чисто электрические и чисто магнитные поля являются лишь его частными случаями. Изменяющиеся электрические и магнитные поля индуктируют друг друга.(под изменением поля надо понимать не только изменение его интенсивности, но и движение поля как целого).
Патент США 3 825 910: Способ передачи магнитных доменов при помощи самовозбуждаемых управляемых полей. Устройство передачи магнитных доменов использует самовозбуждающее управляющее поле для перемещения магнитного домена в тонком магнитном слое из ферромагнитного материала. Слой управления перемещением доменов сформирован из тонкопроводящего материала. При подаче на управляющий слой электрического поля по соседству с магнитным слоем и в управляющем слое возникает равномерно распределенный электрический ток. Магнитный домен, расположеный в магнитном слое, изменяет плотность тока в управляющем слое и вырабатывает вблизи себя область токового возмущения. Ток возмущения, взаимодействуя с магнитным полем домена, обеспечивает выработку результирующего индуцированного управляющего магнитного поля. Скорость и направление распространения магнитного домена управляются путем изменения прикладываемого электрического поля или путем изенения тока возмущения в управляющем слое.
Взаимное индуктирование электрического и магнитного полей происходит в пространстве с огромной скоростью /со скоростью света/ и представляет собой распространение электромагнитных волн. Такими электромагнитными волнами являются радиоволны, свет - инфракрасный, видимый, ультрафиолетовый, а также рентгеновские и гамма-лучи. Поэтому многие эффекты, описанные в этом разделе, имеют аналоги и в оптике, и, наоборот, "оптические" эффекты широко применяются в радиотехнике, особенно в диапозоне СВЧ (например, эффект Фарадея).
Магнитное поле может быть создано постоянными магнитными, переменными электрическим полем и движущимися электрическими зарядами, в частности теми, которые движутся в проводнике, создавая электрический ток.
А.с. 553 707: Способ защиты человека от поражения электрическим током в сетях с напряжением до 1000 В. путем отключения сети при поступлении на исполнительные органы аварийного сигнала, вырабатываемого размещенными на теле человека датчиком на основе тока, протекающего через тело человека при его соприкосновении с токоведущими частями, отличающийся тем, что с целью повышения эффективности для формирования аварийного сигнала используют электромагнитные колебания, излучаемые телом человека, которые фиксирует антенны служащие указанным датчиком.
А.с. 516 484: Способ автоматического регулирования положения электрода при сварке путем контроля физических возмущений в зоне сварки, отличающийся тем, что с целью повышения точности и обеспечения возможности регулирования при электрошлаковой сварке, вокруг контролируемого участка зоны сварки создают магнитопроводящий контур и о положении электрода при сварке судят по распределению магнитной индукции, наводимой сварочным током внутри этого контура.
6.7.1. Основной характеристикой электрического поля является напряженность, определяемая через силу, действующую на заряд. Основной характеристикой магнитного поля является вектор магнитной индукции, также определяемый через силу, действующую на заряд в магнитном поле.
На неподвижные заряды магнитное поле вобще не действует. Движущийся заряд магнит не притягивает и не отталки, а действует на него в направл, перпендикулярном к полю и к скорости заряда. Сила, действующая на заряд в этом случае, называется силой Лоренца.
А.с. 491 517: Способ изменения подьемной силы крыла с постоянным углом атаки, например, судно на автоматически управляемых подводных крыльях. С целью повышения быстродействия и надежности системы управления подводными крыльями, снижения уровня гидродинамических шумов по крылу пропускают магнитный поток, возбуждаемый электромагнитным полем, через морскую воду электрический ток, направленный поперек магнитного потока.
Патент США 3 138 129: Гидродинамический электромагнитный движитель. Движетельная система для удлиненного гидродинамического плавсредства содержат цилиндрическую оболочку из ферромагнитного материала; несколько параллельных магнитных полюсов, расположенных по переферии оболочки на одинаковом расстоянии один от другого; электромагнитные катушки надетые на удлиненные электроды, число которых равно числу полюсов. На судне установлен источник переменного тока. Управляющее устройство соединяет источник переменного тока с электродами и катушками электромагнита для попеременного создания северного и южного полюсов в катушках и получения пересекающихся электрического и магнитного полей в нужных фазах, для создания однонаправленного движения заряженных частиц вокруг плавсредства. Управляющее устройство включает приспособление для раздельного возбуждения электродов при управлении плавсредством.
6.7.2. При движении зарядов в магнитнм поле не вдоль линии этого поля из -за силы Лоренца траектория их движения будет представлять собой спираль. Чем сильнее поле, тем меньше радиус этой спирали. Период обращения заряда не зависит от скорости движения, а только от отношения величины заряда к массе заряженной частицы.
А.с. 542 363: Устройство для измерения заряда аэрозоли, содержащее измерительный электрод, блок питания, выпрямитель и операционный усилитель, отличающееся тем, что с целью повышения эффективности, оно снабжено магнитом, создающим поперечное к напрвлению движения аэрозоли поле, а измерительный электрод выполнен плоским и установлен так, что его плоскость параллельна силовым линиям магнитного поля и направления движения аэрозоли.
В случае перпендикулярности силовых линий магнитного поля плоскости движения заряженной частицы она начинает двигаться по кругу, причем радиус этого круга зависит от напряженности магнитного поля.
А.с. 516 905: Датчик расхода, содержащий корпус, крыльчатку, преобразователь угловой скорости крыльчатки в электрический сигнал, отличающийся тем, что с целью расширения облсти применения и диапазона измерения, а также упрощение конструкции датчика расхода, преобразователь угловой скорости крыльчатки выполнен ввиде магнетрона, анод которого выполнен с вырезами, расположенными в плоскости, параллельно оси вращения крыльчатки, в теле крыльчатки укреплены магниты с одноименными полюсами в одном торце, а на корпусе датчика расхода установлен подпорный магнит, причем магниты в теле крыльчатки и подпорный магнит обращены к магнетрону разноименными полюсами.
6.8. Когда по проводнику, помещенному в магнитное поле, идет электрический ток, электроны движутся относительно положительных ионов, составляющих кристаллическую решетку. Поэтому и в системе отсчета, связанной с решеткой (т.е. в системе отсчета, в которой проводник неподвижен, сила Лоренца действует только на электроны). Через взаимодействие электронов с ионами эта сила передается решетке.
А.с. 269 645: Способ возбуждения акустических колебаний в токопроводящей жидкофазной среде, отличающийся тем, что с целью повышения эффекивности процесса излучения, на среду накладывают постоянное магнитное поле и одновременно пропускают через нее переменный электрический ток.
А.с. 444 653: Способ уплотнения бетонной смеси, заключающийся во взаимодействии на уложеную в форму смесь, колебаниями, отличающийся тем, что с целью повышения эффективности процесса, в форме вызывают импульсные деформации создаваемые взаимодействием кратковременных мощных электромагнитных полей, одно из которых генерируется индуктором, а другое создается импульсным токов.
А.с. 286 318: Способ контроля и дефектоскопии однотипных изделий, имеющих открытые деффекты, например ввиде пустот или инородных включений, отличающийся тем, что с целью упрощения процесса контроля изделие помещают в ванну с электропроводной жидкостью, пропускают через нее электрический ток, а затем воздействуют на жидкость магнитным полем для изменения ее кажущейся плотности до достижения безразличного положения в ней исправных изделий, и наличия деффектов определяют по изменению положения изделия относительно дна ванны.
Возможен и обратный эффект: колебания решетки передаются электронам, а их движение в магнитном поле приводит к возникновению тока.
А.с. 549 732: Способ неразрешающего контроля магнитных материалов, заключающийся в том, что контролируемые магнитные материалы помещают в магнитное поле и подвергают воздействию механических напряжений в пределах области упругой деформации, а о механических свойствах материала судят по изменению индукции в них, отличающийся тем, что с целью повышения точности и производительности контроля, используют постоянное магнитное поле, механические напряжения создают с помощью ультразвуковых колебаний, а о механических свойствах материалов судят по величине переменной составляющей индукции в них.
6.8.1. Взаимодействие двух проводников, по которым текут электрические токи, осуществляется через магнитное поле. Каждый ток создает магнитное поле, которое действует на другой проводник. Таким образом, взаимодействуют отнюдь не поля между собой, а поле и ток.
Аналогичным образом взаимодействуют и движущиеся электрические заряды. Причем для магнитных взаимодействий третий закон Ньютона не выполняется (сила, действующая на один заряд со стороны другого, не равна силе действующей на второй заряд со стороны первого).
6.9. При движении (изменении) магнитного поля в замкнутом проводнике возникает ЭДС индукции. В соответствии с правилом Ленца направление индукционного тока таково, что его собственное поле препятствует изменению магнитного потока, вызывающего индукцию. Внешние силы, двигающие магнит, встречают сопротивление со стороны проводящего контура. Собственное поле контура таково, что при приближении магнита рамка и магнит отталкиваются, а при удалении притягиваются. Во всех случаях внешние силы должны будут выполнять работу, которая превратится в конечном счете в работу тока.
Патент США 3 787 770: Способ обнаружения снаряда вылетающего из ствола орудия, и прибор для его осуществления. Магнит располагают вблизи дула орудия для того, чтобы вылетающий из ствола снаряд пересекал некоторые магнитные силовые линии магнита. При отделении снаряда от орудия и прохождении снаряда над постоянным магнитом, в считывающей катушке, намотанной на магните, наводятся импульсы напряжения, которые после прохождения через усилитель подводятся к осцилографу или хронографу для обеспечения отсчета.
А.с. 279 117: Термостат содержащий теплоизолированную камеру, магнит и нагреватель, отличающийся тем, что с целью упрощения конструкции и повышения надежности, в нем нагреватель выполнен из ферромагнитного материала, устаномлен на валу электродвигателя и расположен в поле магнита.
Это явление наблюдается и в том случае, когда перемещения проводника не происходит, а магнитное поле меняется во времени. Если контур проводящий ЭДС индукции вызывает в нем индукционный ток, если непроводящий (например, условно проведенный в воздухе), то возникает лишь ЭДС.
6.9.1. Рассмотрим два контура, расположенные рядом. Переменный ток протекающий в одном из них, создает переменное магнитное поле, которое вызывает появление ЭДС индукции в другом контуре. Такое явление называется взаимной индукцией.
6.9.2. Переменный магнитный поток может вызываться переменным током самого контура. В этом случае в контуре также появляется ЭДС - она называется ЭДС самоиндукции.
6.10. Если в изменяющемся магнитном поле перпендикулярно к его силовым линиям поместить металлическую (не ферромагнитную) пластинку, в ней начнут протекать круговые индукционные токи.
А.с. 513 237: Способ магнитошумовой размерометрии ферромагнитных изделий, заключающийся в том, что преобразовывают магнитные шумы в электрические сигналы индуктивным преобразователем, а затем проводят амплитудно-частотный анализ спектра сигналов, по результатам которого судят о контролируемом размере, отличающийся тем, что с цель повышения точности контроля толщины электропроводных неферромагнитных покрытий на ферромагнитной основе выделяют ту часть спектра сигналов, компоненты которой изменились вследствие токовихревого взаимодействия с магнитными шумами.
6.10.1. Ток в пластинке может достигать больших величин, даже при небольшой напряженности поля, так как сопротивление массивного проводника мало. Индукционные токи в массивных проводниках называют токами Фуко или вихревыми точками.
А.с. 235 778: Устройство для оттаивания снеговой шубы испарителя, например, домашних холодильников, содержащее понижающий трансформатор, первичная обмотка которого включена в электрическую цепь переменного тока, отличающийся тем, что с целью ускорения процесса оттаиванияпевичная обмотка укреплена на стенке испарителя с тем, чтобы последний служил вторичной обмоткой трансформатора для наведения в нем вихревых токов.
6.10.2. Вихревые токи в пластинке создают магнитное поле. Это поле действует в соответствии с правилом Лоренца навстречу полю возбуждения. Это значит, что пластинка будет выталкиваться из поля.
А.с. 434 703: Способ ориентации немагнитных токопроводящих ассиметричных деталей в переменном магнитном поле, образованном в межполюсномпространстве электромагнита, отличающийся тем, что с целью уменьшения затрачиваемой мощности и повышения надежности ориентации, деталь в зону ориентации подают смещенной относительно плоскости симметрии магнитного поля так, что в одном из положений электродинамические силы, действующие на деталь уравновешиваются, а в других - неравновесие этих сил усугубляется.
Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка "увязает", если включить постоянный ток, питающий электромагнит, и останавливается. Вся ее энергия превращается в тепло выделяемое токоми Фуко. В неподвижной пластине токи, разумеется, отсутствуют. Тормоз, основной на этом эффекте не имеет трения покоя.
А.с. 497 069: Способ торможения проката на холодильниках сортовых прокатных станков, отличающийся тем, что с целью увеличения производительности холодильников торможение проката поисходит бегущим полем, создаваемым электромагнитами, встроенными в приемный желоб холодильника.
6.10.3. Чем лучше проводник пропускает ток, тем ближе по величине к первоначальному встречное магнитное поле. В идеальный проводник (сверхпроводник) электромагнитная волна вобще не проникает, вихревые токи текут в бесконечно малой по величине "кожице" металла.
Выталкивание магнитного поля из сверхпроводника называется эффектом Мейснера.
Этот эффект используется для создания магнитных экранов, позволяющих получить магнитный вакуум до 10 в минус восьмой степени эрстед. Им обьясняется интересное явление - парение постоянного магнита над чашей из сверхпроводящего материала.
6.10.4. В стационарном электростатическом или магнитном поле подвеска тела не может быть стабильной, если относительная диэлектрическая проницаемость или магнитная проницаемость тела больше или равна единице. Диэлектрическая проницаемость всех тел больше. Но магниная проницаемость диамагнитных материалов и сверхпроводников меньше единицы. Это дает возможность осуществлять с этими веществами стабильную повеску. Любое перемещение подвешенного тела приводит к появлению вихревых токов, энергии которых достаточно, чтобы удержать подвешенное тело.
Триумф индукционных токов - беличья клетка ротора асинхронного двигателя работают индукционные насосы для перекачивания жидких металлов в металлургии и ядерной энергетике.
6.10.5. На величину вихревого тока влияют удельная электрическая проводимость и магнитная проницаемость материала, толщина образца и частота тока.
При прохождении по проводнику тока высокой частоты наблюдается поверхностный эффект (скин-эффект) - ток идет только по поверхностному слою проводника. При частоте 10 в седьмой степени Гц для хорошего неферромагнитного проводника толщина слоя приблизительно 0,01 см. На этом основан метод поверхностной закалки.
А.с. 281 997: Способ испарения материалов в вакууме путем высокочастотного нагрева, отличающийся тем, что с целью осуществления процесса из кольцевого источника, испарению подвергают материал в форме диска при частоте магнитного поля, обеспечивающей появление скин-эффекта на его боковой поверхности.
Существование скин-эффекта означает, что электромагнитная волна, попадающая на поверхность проводника (металла, электролита или плазмы) быстро затухает в глубине проводника, проникая лишь на глубину скин-слоя.
А.с. 451 888: Способ очистки трубопроводов преимущественно от отложений гидратов путем их нагрева, отличающийся тем, что с целью повышения эффективности нагрев осуществляется сверхвысокочастотными электромагнитными волнами, которые направляют в трубопровод.
6.11. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ.
6.11.1. Электрический заряд движущийся в пустоте равномерно относительно инерционной системы отсчета, не излучает. Иная картина возникает в том случае, когда заряд под действием внешних сил движется с ускорением. Поле обладающее энергией, а значит массой или инертностью, образно говоря, отрывается от заряда и излучается в пространстве со скоростью света. Излучение происходит до тех пор, пока на заряд действует сила, сообщающая ему ускорение.
А.с. 511 484: Способ охлаждения рабочего тела путем расширения до получения двухфазного потока с отдачей внешней работы, отличающийся тем, что с целью повышения экономичности рабочее тело перед расширением ионизируют, например, в поле коронного разряда в отдачу внешней работы осуществляют путем торможения заряженных частиц в электрическом поле.
6.11.2. Эффект Вавилова-Черенкова. Если заряженная частица являющаяся источником электрического поля, движется в среде со скоростью, большей, чем скорость света в этой среде, то частица будет опрежать собственное электрическое поле. Такое опережение вызывает появление напрвленного электромагнитного излучения, причем излучение будет распространяться лишь в определнном телесном угле, определенном скоростью частиц и показателем преломления среды. Чем больше плотность среды, тем более низкая энергия (скорость) заряженых частиц требуется для генерации излучения. Техника обнаружения этого свечения разработана до предела - аппаратура позволяет обнаруживать отдельные частицы (поштучный счет с помощью счетчиков Черенкова). Кроме этого Черенковские счетчики используются для быстрого счета и непосредственного определения скорости заряженных частиц, селекции скоростей и направления частиц, определения заряда и т.п. На использовании эффекта Вавилова-Черенкова возможно создание милиметровых и более коротких радиоволн; черенковское излучение позволяет создать стандартный источник света, необходимый при биологических и астрономических исследованиях.
А.с. 182 249: Устройство для измерения эффективной массы частиц, рападающихся на гамма-кванты и электроны, отличающееся тем, что сцелью увеличения точности измерения и ускорения набора эксперементальных данных, оно содержит двухканальную систему совместно работающих искровых камер и черенковских спектромеров полного поглощения, установленных так, что в направлении вылета каждой из двух частиц распада, стоит блок из искровых камер и черенковского гамма-спектрометра, а оси блоков расположены симметрично относительно направления первичной частицы и составляют собой угол равный минимальному углу двухчастичного распада.
А.с. 431 887: Способ исследования прожигаемости гематоофтальмического барьера путем введения в кровяное русло вещества, содержащего радиоактивный изотоп и одновременно регистрации интенсивности бетаизлучений над поверхностью роговицы глаза, отличающийся тем, что с целью повышения точности исследования дополнительно регистрируют изменения интенсивности черенковского излучения.
6.11.3. Другой пример - так называемое бетатронное (или синхронное)излучение. В этих приборах заряженные частицы движутся по круговым орбитам. При энергиях порядка десятков Мэв электроны излучают видимый свет, при еще больших энергиях рентгеновский луч.
Наиболее важным для приложения является излучение заряда, совершающего гармоническое движение. На этом эффекте основана работа всевозможных излучателей и антенн.
Л И Т Е Р А Т У Р А
Г.Е.Зильберман. Электричество и магнетизм.М."Наука" 1970. К 6.1. А.с. 410 316; пат. США 3556998,3562757. К 6.2. А.с. 240 505 К 6.4. А.с. 498 770 К 6.4. Физический энцеклопедический словарь, т.5 стр.449. К 6.5. Таблицы физических величин.М.,"Атомиздат",1976,
стр.304-308. К 6.7. А.с. 490 661,490 662,492 155 К 6.8. А.с. 491 174,515 684,514 632,465 345 К 6.10 А.Л.Дорофеев, Визревые токи,М."Энергия",1977
А.с. 422 982 К 6.11.2. Дж.Делли. Черенковское излучение и его применение;
М.,"ИЛ".1960.
Б.М.Болотовский, Свечение Вавилова-Черенкова.
М."Наука" 1964.
7. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА.
ДИЭЛЕКТРИКИ.
7.1.1. Диэлектриками являются неионизованные газы, а также жидкости и твердые тела, характеризующиеся полностью заполненной электронами валентной зоной и полностью электронной на уровне зоны проводимости не происходит , то такие вещества ведут себя как изоляторы. При наличии такого возбуждения (в случае малой энергетичесой щели между зонами) вещества являются полупроводниками. Диэлектрики и полупровдники экспоненциально уменьшают его по свое обьемное сопротивление при повышении температуры.
А.с. 515 075: Способ определения обрыва жилы кабеля с изоляцией, сопротивление которой зависит от температуры зависит от температуры, например, жаростойкого кабеля с магнезиальной изоляцией, при котором воздействуют сигналом, выявляющим повреждения, на последовательные участки кабеля а о месте повреждения кабеля в момент подачи сигнала на дефектное место, отличающее тем что, с целью упрощения отыскания места об, на кабель воздействуют тепловым сигналом, например теплом от газо -воздушной горелки , а о месте повреждения судят по изменению сопротивления изоляции кабеля.
Широко используются изобретателями и обычные изменения сопротивления обьектов за счет изменения размеров или состава обьекта.
А.с. 462 067: Способ измерения линейных размеров изделия из электропроводного материала, заключающегося в том, что на поверхность изделия направляют струю жидкости, по параметрам которой судят о размерае, отличающийся тем, что с целью расширения диапазона измерений, подают электропроводящую жидкость и измеряют электрическое сопротивление струи.
А.с. 511 233: Способ определения качества пишущего инструмента, например, шариковой авторучки путем нанесения ею на опорную поверхность пишущей жидкости и измерения электрического сопротпоследней, отличающийся тем, что с цель повышения точности измерения, в качестве опорной поверхности используют токопроводящую подложку, а измерение сопротивлений осуществляют в цепи подложкаседло шарика.
А.с. 520 539: Способ измерения удельного электрического сопротивления образцов, заключающийся в измернии пропускаемого через образец тока, отличающийся тем, что с целью повышения точности и упрощения процесса измерения, образец последовательно помещают в сосуды с растворами с известными удельными сопротивлениями, измеряют ток проходящий через эти растворы до и после погружения в них образца и об удельном сопротивлении образца судят по величине удельного сопротивления того раствора, при погружении образца в который, ток, проходящий через этот раствор, не менялся.
6.6. При низких температурах поведение сопротивления металлов весьма сложно. У некоторых металлов и сплавов обнаруживается явление с в е р х п р о в о д и м о с т и. Сверхпроводящее состояние устойчиво, если температура, магнитное поле и плотность тока не превышает некоторых критических пределов. В 1976 г. достигнуты следующие максимальные значения этих параметров: критическая температура 23,4К, критическое поле 600 кЗ, плотность тока 11 в 11-ой степени а см2.
А.с. 240 844: Устройство для получения сверхсильных магнитных полей, представляющее собой охлажденный солиноид из несверхпроводящего материала, отличающийся тем, что с целью повышения напряженности магнитного поля, снижения себестоимости и потребления электроэнергии, снаружи солиноида расположен в кристалле с рабочим обьемом вне криостата сверхпроводящий соленоид.
6.6.1. Если один из параметров поддерживать вблизи критического значения, то сверхпроводящая система может быть использована для очень точного определения небольших изменений измеряемой величины, например, вблизи критической температуры - 10 см./градус.
А.с. 525 886: Способ измерения скорости течения жидкости заключающийся в пропускании через чувствительный элемент электрического сигнала, подведения к нему тепла от дополнительного источника и определении скорости течения жидкости по изменению величины сигнала с чувствительного элемента, отличающийся тем, что с целью повышения точности измерния скорости течения криогенных жидкостей, ее определяют по величине теплового потока от дополнительного источника тепла в момент перехода чувствительного элемента из сверхпроводящего состояния в нормальное.
6.7. Электрическое и магнитные поля тесно связаны между собой. В природе существует электромагнитное поле - чисто электрические и чисто магнитные поля являются лишь его частными случаями. Изменяющиеся электрические и магнитные поля индуктируют друг друга.(под изменением поля надо понимать не только изменение его интенсивности, но и движение поля как целого).
Патент США 3 825 910: Способ передачи магнитных доменов при помощи самовозбуждаемых управляемых полей. Устройство передачи магнитных доменов использует самовозбуждающее управляющее поле для перемещения магнитного домена в тонком магнитном слое из ферромагнитного материала. Слой управления перемещением доменов сформирован из тонкопроводящего материала. При подаче на управляющий слой электрического поля по соседству с магнитным слоем и в управляющем слое возникает равномерно распределенный электрический ток. Магнитный домен, расположеный в магнитном слое, изменяет плотность тока в управляющем слое и вырабатывает вблизи себя область токового возмущения. Ток возмущения, взаимодействуя с магнитным полем домена, обеспечивает выработку результирующего индуцированного управляющего магнитного поля. Скорость и направление распространения магнитного домена управляются путем изменения прикладываемого электрического поля или путем изенения тока возмущения в управляющем слое.
Взаимное индуктирование электрического и магнитного полей происходит в пространстве с огромной скоростью /со скоростью света/ и представляет собой распространение электромагнитных волн. Такими электромагнитными волнами являются радиоволны, свет - инфракрасный, видимый, ультрафиолетовый, а также рентгеновские и гамма-лучи. Поэтому многие эффекты, описанные в этом разделе, имеют аналоги и в оптике, и, наоборот, "оптические" эффекты широко применяются в радиотехнике, особенно в диапозоне СВЧ (например, эффект Фарадея).
Магнитное поле может быть создано постоянными магнитными, переменными электрическим полем и движущимися электрическими зарядами, в частности теми, которые движутся в проводнике, создавая электрический ток.
А.с. 553 707: Способ защиты человека от поражения электрическим током в сетях с напряжением до 1000 В. путем отключения сети при поступлении на исполнительные органы аварийного сигнала, вырабатываемого размещенными на теле человека датчиком на основе тока, протекающего через тело человека при его соприкосновении с токоведущими частями, отличающийся тем, что с целью повышения эффективности для формирования аварийного сигнала используют электромагнитные колебания, излучаемые телом человека, которые фиксирует антенны служащие указанным датчиком.
А.с. 516 484: Способ автоматического регулирования положения электрода при сварке путем контроля физических возмущений в зоне сварки, отличающийся тем, что с целью повышения точности и обеспечения возможности регулирования при электрошлаковой сварке, вокруг контролируемого участка зоны сварки создают магнитопроводящий контур и о положении электрода при сварке судят по распределению магнитной индукции, наводимой сварочным током внутри этого контура.
6.7.1. Основной характеристикой электрического поля является напряженность, определяемая через силу, действующую на заряд. Основной характеристикой магнитного поля является вектор магнитной индукции, также определяемый через силу, действующую на заряд в магнитном поле.
На неподвижные заряды магнитное поле вобще не действует. Движущийся заряд магнит не притягивает и не отталки, а действует на него в направл, перпендикулярном к полю и к скорости заряда. Сила, действующая на заряд в этом случае, называется силой Лоренца.
А.с. 491 517: Способ изменения подьемной силы крыла с постоянным углом атаки, например, судно на автоматически управляемых подводных крыльях. С целью повышения быстродействия и надежности системы управления подводными крыльями, снижения уровня гидродинамических шумов по крылу пропускают магнитный поток, возбуждаемый электромагнитным полем, через морскую воду электрический ток, направленный поперек магнитного потока.
Патент США 3 138 129: Гидродинамический электромагнитный движитель. Движетельная система для удлиненного гидродинамического плавсредства содержат цилиндрическую оболочку из ферромагнитного материала; несколько параллельных магнитных полюсов, расположенных по переферии оболочки на одинаковом расстоянии один от другого; электромагнитные катушки надетые на удлиненные электроды, число которых равно числу полюсов. На судне установлен источник переменного тока. Управляющее устройство соединяет источник переменного тока с электродами и катушками электромагнита для попеременного создания северного и южного полюсов в катушках и получения пересекающихся электрического и магнитного полей в нужных фазах, для создания однонаправленного движения заряженных частиц вокруг плавсредства. Управляющее устройство включает приспособление для раздельного возбуждения электродов при управлении плавсредством.
6.7.2. При движении зарядов в магнитнм поле не вдоль линии этого поля из -за силы Лоренца траектория их движения будет представлять собой спираль. Чем сильнее поле, тем меньше радиус этой спирали. Период обращения заряда не зависит от скорости движения, а только от отношения величины заряда к массе заряженной частицы.
А.с. 542 363: Устройство для измерения заряда аэрозоли, содержащее измерительный электрод, блок питания, выпрямитель и операционный усилитель, отличающееся тем, что с целью повышения эффективности, оно снабжено магнитом, создающим поперечное к напрвлению движения аэрозоли поле, а измерительный электрод выполнен плоским и установлен так, что его плоскость параллельна силовым линиям магнитного поля и направления движения аэрозоли.
В случае перпендикулярности силовых линий магнитного поля плоскости движения заряженной частицы она начинает двигаться по кругу, причем радиус этого круга зависит от напряженности магнитного поля.
А.с. 516 905: Датчик расхода, содержащий корпус, крыльчатку, преобразователь угловой скорости крыльчатки в электрический сигнал, отличающийся тем, что с целью расширения облсти применения и диапазона измерения, а также упрощение конструкции датчика расхода, преобразователь угловой скорости крыльчатки выполнен ввиде магнетрона, анод которого выполнен с вырезами, расположенными в плоскости, параллельно оси вращения крыльчатки, в теле крыльчатки укреплены магниты с одноименными полюсами в одном торце, а на корпусе датчика расхода установлен подпорный магнит, причем магниты в теле крыльчатки и подпорный магнит обращены к магнетрону разноименными полюсами.
6.8. Когда по проводнику, помещенному в магнитное поле, идет электрический ток, электроны движутся относительно положительных ионов, составляющих кристаллическую решетку. Поэтому и в системе отсчета, связанной с решеткой (т.е. в системе отсчета, в которой проводник неподвижен, сила Лоренца действует только на электроны). Через взаимодействие электронов с ионами эта сила передается решетке.
А.с. 269 645: Способ возбуждения акустических колебаний в токопроводящей жидкофазной среде, отличающийся тем, что с целью повышения эффекивности процесса излучения, на среду накладывают постоянное магнитное поле и одновременно пропускают через нее переменный электрический ток.
А.с. 444 653: Способ уплотнения бетонной смеси, заключающийся во взаимодействии на уложеную в форму смесь, колебаниями, отличающийся тем, что с целью повышения эффективности процесса, в форме вызывают импульсные деформации создаваемые взаимодействием кратковременных мощных электромагнитных полей, одно из которых генерируется индуктором, а другое создается импульсным токов.
А.с. 286 318: Способ контроля и дефектоскопии однотипных изделий, имеющих открытые деффекты, например ввиде пустот или инородных включений, отличающийся тем, что с целью упрощения процесса контроля изделие помещают в ванну с электропроводной жидкостью, пропускают через нее электрический ток, а затем воздействуют на жидкость магнитным полем для изменения ее кажущейся плотности до достижения безразличного положения в ней исправных изделий, и наличия деффектов определяют по изменению положения изделия относительно дна ванны.
Возможен и обратный эффект: колебания решетки передаются электронам, а их движение в магнитном поле приводит к возникновению тока.
А.с. 549 732: Способ неразрешающего контроля магнитных материалов, заключающийся в том, что контролируемые магнитные материалы помещают в магнитное поле и подвергают воздействию механических напряжений в пределах области упругой деформации, а о механических свойствах материала судят по изменению индукции в них, отличающийся тем, что с целью повышения точности и производительности контроля, используют постоянное магнитное поле, механические напряжения создают с помощью ультразвуковых колебаний, а о механических свойствах материалов судят по величине переменной составляющей индукции в них.
6.8.1. Взаимодействие двух проводников, по которым текут электрические токи, осуществляется через магнитное поле. Каждый ток создает магнитное поле, которое действует на другой проводник. Таким образом, взаимодействуют отнюдь не поля между собой, а поле и ток.
Аналогичным образом взаимодействуют и движущиеся электрические заряды. Причем для магнитных взаимодействий третий закон Ньютона не выполняется (сила, действующая на один заряд со стороны другого, не равна силе действующей на второй заряд со стороны первого).
6.9. При движении (изменении) магнитного поля в замкнутом проводнике возникает ЭДС индукции. В соответствии с правилом Ленца направление индукционного тока таково, что его собственное поле препятствует изменению магнитного потока, вызывающего индукцию. Внешние силы, двигающие магнит, встречают сопротивление со стороны проводящего контура. Собственное поле контура таково, что при приближении магнита рамка и магнит отталкиваются, а при удалении притягиваются. Во всех случаях внешние силы должны будут выполнять работу, которая превратится в конечном счете в работу тока.
Патент США 3 787 770: Способ обнаружения снаряда вылетающего из ствола орудия, и прибор для его осуществления. Магнит располагают вблизи дула орудия для того, чтобы вылетающий из ствола снаряд пересекал некоторые магнитные силовые линии магнита. При отделении снаряда от орудия и прохождении снаряда над постоянным магнитом, в считывающей катушке, намотанной на магните, наводятся импульсы напряжения, которые после прохождения через усилитель подводятся к осцилографу или хронографу для обеспечения отсчета.
А.с. 279 117: Термостат содержащий теплоизолированную камеру, магнит и нагреватель, отличающийся тем, что с целью упрощения конструкции и повышения надежности, в нем нагреватель выполнен из ферромагнитного материала, устаномлен на валу электродвигателя и расположен в поле магнита.
Это явление наблюдается и в том случае, когда перемещения проводника не происходит, а магнитное поле меняется во времени. Если контур проводящий ЭДС индукции вызывает в нем индукционный ток, если непроводящий (например, условно проведенный в воздухе), то возникает лишь ЭДС.
6.9.1. Рассмотрим два контура, расположенные рядом. Переменный ток протекающий в одном из них, создает переменное магнитное поле, которое вызывает появление ЭДС индукции в другом контуре. Такое явление называется взаимной индукцией.
6.9.2. Переменный магнитный поток может вызываться переменным током самого контура. В этом случае в контуре также появляется ЭДС - она называется ЭДС самоиндукции.
6.10. Если в изменяющемся магнитном поле перпендикулярно к его силовым линиям поместить металлическую (не ферромагнитную) пластинку, в ней начнут протекать круговые индукционные токи.
А.с. 513 237: Способ магнитошумовой размерометрии ферромагнитных изделий, заключающийся в том, что преобразовывают магнитные шумы в электрические сигналы индуктивным преобразователем, а затем проводят амплитудно-частотный анализ спектра сигналов, по результатам которого судят о контролируемом размере, отличающийся тем, что с цель повышения точности контроля толщины электропроводных неферромагнитных покрытий на ферромагнитной основе выделяют ту часть спектра сигналов, компоненты которой изменились вследствие токовихревого взаимодействия с магнитными шумами.
6.10.1. Ток в пластинке может достигать больших величин, даже при небольшой напряженности поля, так как сопротивление массивного проводника мало. Индукционные токи в массивных проводниках называют токами Фуко или вихревыми точками.
А.с. 235 778: Устройство для оттаивания снеговой шубы испарителя, например, домашних холодильников, содержащее понижающий трансформатор, первичная обмотка которого включена в электрическую цепь переменного тока, отличающийся тем, что с целью ускорения процесса оттаиванияпевичная обмотка укреплена на стенке испарителя с тем, чтобы последний служил вторичной обмоткой трансформатора для наведения в нем вихревых токов.
6.10.2. Вихревые токи в пластинке создают магнитное поле. Это поле действует в соответствии с правилом Лоренца навстречу полю возбуждения. Это значит, что пластинка будет выталкиваться из поля.
А.с. 434 703: Способ ориентации немагнитных токопроводящих ассиметричных деталей в переменном магнитном поле, образованном в межполюсномпространстве электромагнита, отличающийся тем, что с целью уменьшения затрачиваемой мощности и повышения надежности ориентации, деталь в зону ориентации подают смещенной относительно плоскости симметрии магнитного поля так, что в одном из положений электродинамические силы, действующие на деталь уравновешиваются, а в других - неравновесие этих сил усугубляется.
Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка "увязает", если включить постоянный ток, питающий электромагнит, и останавливается. Вся ее энергия превращается в тепло выделяемое токоми Фуко. В неподвижной пластине токи, разумеется, отсутствуют. Тормоз, основной на этом эффекте не имеет трения покоя.
А.с. 497 069: Способ торможения проката на холодильниках сортовых прокатных станков, отличающийся тем, что с целью увеличения производительности холодильников торможение проката поисходит бегущим полем, создаваемым электромагнитами, встроенными в приемный желоб холодильника.
6.10.3. Чем лучше проводник пропускает ток, тем ближе по величине к первоначальному встречное магнитное поле. В идеальный проводник (сверхпроводник) электромагнитная волна вобще не проникает, вихревые токи текут в бесконечно малой по величине "кожице" металла.
Выталкивание магнитного поля из сверхпроводника называется эффектом Мейснера.
Этот эффект используется для создания магнитных экранов, позволяющих получить магнитный вакуум до 10 в минус восьмой степени эрстед. Им обьясняется интересное явление - парение постоянного магнита над чашей из сверхпроводящего материала.
6.10.4. В стационарном электростатическом или магнитном поле подвеска тела не может быть стабильной, если относительная диэлектрическая проницаемость или магнитная проницаемость тела больше или равна единице. Диэлектрическая проницаемость всех тел больше. Но магниная проницаемость диамагнитных материалов и сверхпроводников меньше единицы. Это дает возможность осуществлять с этими веществами стабильную повеску. Любое перемещение подвешенного тела приводит к появлению вихревых токов, энергии которых достаточно, чтобы удержать подвешенное тело.
Триумф индукционных токов - беличья клетка ротора асинхронного двигателя работают индукционные насосы для перекачивания жидких металлов в металлургии и ядерной энергетике.
6.10.5. На величину вихревого тока влияют удельная электрическая проводимость и магнитная проницаемость материала, толщина образца и частота тока.
При прохождении по проводнику тока высокой частоты наблюдается поверхностный эффект (скин-эффект) - ток идет только по поверхностному слою проводника. При частоте 10 в седьмой степени Гц для хорошего неферромагнитного проводника толщина слоя приблизительно 0,01 см. На этом основан метод поверхностной закалки.
А.с. 281 997: Способ испарения материалов в вакууме путем высокочастотного нагрева, отличающийся тем, что с целью осуществления процесса из кольцевого источника, испарению подвергают материал в форме диска при частоте магнитного поля, обеспечивающей появление скин-эффекта на его боковой поверхности.
Существование скин-эффекта означает, что электромагнитная волна, попадающая на поверхность проводника (металла, электролита или плазмы) быстро затухает в глубине проводника, проникая лишь на глубину скин-слоя.
А.с. 451 888: Способ очистки трубопроводов преимущественно от отложений гидратов путем их нагрева, отличающийся тем, что с целью повышения эффективности нагрев осуществляется сверхвысокочастотными электромагнитными волнами, которые направляют в трубопровод.
6.11. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ.
6.11.1. Электрический заряд движущийся в пустоте равномерно относительно инерционной системы отсчета, не излучает. Иная картина возникает в том случае, когда заряд под действием внешних сил движется с ускорением. Поле обладающее энергией, а значит массой или инертностью, образно говоря, отрывается от заряда и излучается в пространстве со скоростью света. Излучение происходит до тех пор, пока на заряд действует сила, сообщающая ему ускорение.
А.с. 511 484: Способ охлаждения рабочего тела путем расширения до получения двухфазного потока с отдачей внешней работы, отличающийся тем, что с целью повышения экономичности рабочее тело перед расширением ионизируют, например, в поле коронного разряда в отдачу внешней работы осуществляют путем торможения заряженных частиц в электрическом поле.
6.11.2. Эффект Вавилова-Черенкова. Если заряженная частица являющаяся источником электрического поля, движется в среде со скоростью, большей, чем скорость света в этой среде, то частица будет опрежать собственное электрическое поле. Такое опережение вызывает появление напрвленного электромагнитного излучения, причем излучение будет распространяться лишь в определнном телесном угле, определенном скоростью частиц и показателем преломления среды. Чем больше плотность среды, тем более низкая энергия (скорость) заряженых частиц требуется для генерации излучения. Техника обнаружения этого свечения разработана до предела - аппаратура позволяет обнаруживать отдельные частицы (поштучный счет с помощью счетчиков Черенкова). Кроме этого Черенковские счетчики используются для быстрого счета и непосредственного определения скорости заряженных частиц, селекции скоростей и направления частиц, определения заряда и т.п. На использовании эффекта Вавилова-Черенкова возможно создание милиметровых и более коротких радиоволн; черенковское излучение позволяет создать стандартный источник света, необходимый при биологических и астрономических исследованиях.
А.с. 182 249: Устройство для измерения эффективной массы частиц, рападающихся на гамма-кванты и электроны, отличающееся тем, что сцелью увеличения точности измерения и ускорения набора эксперементальных данных, оно содержит двухканальную систему совместно работающих искровых камер и черенковских спектромеров полного поглощения, установленных так, что в направлении вылета каждой из двух частиц распада, стоит блок из искровых камер и черенковского гамма-спектрометра, а оси блоков расположены симметрично относительно направления первичной частицы и составляют собой угол равный минимальному углу двухчастичного распада.
А.с. 431 887: Способ исследования прожигаемости гематоофтальмического барьера путем введения в кровяное русло вещества, содержащего радиоактивный изотоп и одновременно регистрации интенсивности бетаизлучений над поверхностью роговицы глаза, отличающийся тем, что с целью повышения точности исследования дополнительно регистрируют изменения интенсивности черенковского излучения.
6.11.3. Другой пример - так называемое бетатронное (или синхронное)излучение. В этих приборах заряженные частицы движутся по круговым орбитам. При энергиях порядка десятков Мэв электроны излучают видимый свет, при еще больших энергиях рентгеновский луч.
Наиболее важным для приложения является излучение заряда, совершающего гармоническое движение. На этом эффекте основана работа всевозможных излучателей и антенн.
Л И Т Е Р А Т У Р А
Г.Е.Зильберман. Электричество и магнетизм.М."Наука" 1970. К 6.1. А.с. 410 316; пат. США 3556998,3562757. К 6.2. А.с. 240 505 К 6.4. А.с. 498 770 К 6.4. Физический энцеклопедический словарь, т.5 стр.449. К 6.5. Таблицы физических величин.М.,"Атомиздат",1976,
стр.304-308. К 6.7. А.с. 490 661,490 662,492 155 К 6.8. А.с. 491 174,515 684,514 632,465 345 К 6.10 А.Л.Дорофеев, Визревые токи,М."Энергия",1977
А.с. 422 982 К 6.11.2. Дж.Делли. Черенковское излучение и его применение;
М.,"ИЛ".1960.
Б.М.Болотовский, Свечение Вавилова-Черенкова.
М."Наука" 1964.
7. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА.
ДИЭЛЕКТРИКИ.
7.1.1. Диэлектриками являются неионизованные газы, а также жидкости и твердые тела, характеризующиеся полностью заполненной электронами валентной зоной и полностью электронной на уровне зоны проводимости не происходит , то такие вещества ведут себя как изоляторы. При наличии такого возбуждения (в случае малой энергетичесой щели между зонами) вещества являются полупроводниками. Диэлектрики и полупровдники экспоненциально уменьшают его по свое обьемное сопротивление при повышении температуры.
А.с. 515 075: Способ определения обрыва жилы кабеля с изоляцией, сопротивление которой зависит от температуры зависит от температуры, например, жаростойкого кабеля с магнезиальной изоляцией, при котором воздействуют сигналом, выявляющим повреждения, на последовательные участки кабеля а о месте повреждения кабеля в момент подачи сигнала на дефектное место, отличающее тем что, с целью упрощения отыскания места об, на кабель воздействуют тепловым сигналом, например теплом от газо -воздушной горелки , а о месте повреждения судят по изменению сопротивления изоляции кабеля.