Разогреваясь от радиоактивного распада расщепляющихся элементов, содержащее их мантийное вещество разуплотняется и всплывает, приводя в движение астеносферу, остывает и вновь погружается в недра Земли (это называется мантийной конвекцией). Текущая астеносфера тянет с собой блоки базальтовой коры. В местах, где они расходятся, вещество астеносферы поступает наружу, формируя срединно-океанические хребты с рифтами (центральными впадинами) и наращивая отступающие базальтовые плиты (поэтому ближе к хребтам они всегда моложе). Происходит раздвижение (спрединг) океанического дна. Противоположные края плит вслед за конвективными течениями погружаются в астеносферу и тают в мантии – при этом плита ныряет под встречную (субдукция). В мантии тонут лишь тяжелые, базальтовые части плит, а гранитные (континентальные) из-за меньшего удельного веса остаются на поверхности планеты и даже наращиваются легкими изверженными породами в местах субдукции (островными дугами вроде Курильских островов).
   По своему происхождению все материки являются пакетами спрессованных островных дуг, наслоившихся друг на друга в течение 4,4 млрд лет плитовой тектоники на Земле. Континенты вместе с плитами медленно блуждают по поверхности планеты (континентальный дрейф). По ходу движения они сминаются в гигантские складки (горы вроде Анд). Сталкиваясь между собой, материки тоже сминаются, образуя горы (вроде Урала). Они могут спаиваться в более крупные континентальные образования, способные объединить даже все гранитные массивы в единый материк (Пангею, Мегагею и т. п.), который впоследствии раскалывается под действием мантийной конвекции и разъезжается осколками в разные стороны.
   По существующим представлениям [589; 590; 418], данный процесс носит циклический характер. Примерно раз в 500 млн лет материковые массивы, перемещающиеся на своих базальтовых плитах, сближаются над нисходящими токами мантийной конвекции, сталкиваются и спаиваются горными поясами в единый суперконтинент. Его окружает безбрежный океан, базальтовое дно которого все время обновляется вследствие субдукции и спрединга. Сверхматерик душит нисходящий ток конвекции под собой и существует около 100 млн лет. За этот интервал происходит перестройка конвекции в мантии, и под суперконтинентом начинает скапливаться тепло, образуя восходящий ток конвекции. Как следствие, над восходящим током конвекции в сверхматерике закладываются рифты (тепловые трещины), и спустя 40 млн лет (140 от начала цикла) единый континентальный массив раскалывается. Родившиеся из его осколков материки начинают дрейфовать в разные стороны. Между ними возникают новые, молодые океаны (вроде Атлантического) с новым океаническим дном базальтовой породы (220 млн лет от начала цикла). Спустя еще 100 млн лет (320 от начала цикла) континенты максимально удаляются друг от друга.
   Однако тяжелая базальтовая океаническая кора не может более 200 млн лет удерживаться на плаву над астеносферой (океанической коры старше 200 млн лет в современных океанах не известно, в том числе в «вечном» Тихом океане [204]). Максимальный возраст присущ базальтовой коре вдоль тыльных границ расходящихся материков. От старости она проваливается в мантию, тянет континенты на себя, и они приходят в попятное движение, поскольку конвекция уже перестроилась под влиянием обрушившейся океанической коры (420 млн лет от начала цикла). Материки начинают сближаться и в конце концов сталкиваются, образуя новый суперконтинент спустя 500 млн лет от начала цикла (цифры здесь ориентировочны). Затем все возобновляется, и часто на месте спаек материков (хотя и не всегда) зарождаются новые рифты, раскалывающие суперконтинент… Таким образом в суперконтинентальном цикле по 200 млн лет уходит на рождение и субдукцию дна молодых океанов, плюс около 100 млн лет на жизнь сверхматерика (что тоже ориентировочно).
   Около 250 млн лет назад образовался суперконтинент Пангея (потом он распался, так что современное человечество обитает на его осколках-материках). Однако ему предшествовали и другие сверхматерики, отмеченные 565 ± 5–549/543 млн лет назад (эдиакарская фауна экваториального суперконтинента [203; 258; 293; 381]), а также 1–1,1; 1,5–1,7; 2–2,1; 2,5–2,7 млрд лет назад – последняя дата отвечает рубежу протерозойского (2,5–0,544 млрд лет назад) и архейского (3,8–2,5 млрд лет назад) эонов. Отметим, что перемещающиеся по поверхности планеты континентальные породы существовали уже в раннем гадее 4,404 ± 0,008 млрд лет назад [805]; а также [204; 223; 395]; cp. [419]. Следовательно, в столь отдаленное время (всего спустя ок. 145 млн лет после образования Земли) имели место материковый дрейф и тектоника плит; ср. [459; 460; 478]. Старейшие орогены (горообразования) датированы св. 3,0; 2,8–2,6; 2,0–1,9; 1,90–1,88; 1,88–1,84; 1,78–1,72; 1,67–1,63 млрд лет назад [418; 459]. Часть этих орогенов связана с образованием сверхматериков, часть – с эпизодом расхождения континентов. Заметим, что суперконтинентальный цикл существенен для истории земного климата.
   В периоды суперконтинентального цикла Земля переживает по две пары эпизодов с крайними гидростатическими состояниями минимальных и максимальных уровней Мирового океана. В эпоху существования сверхматерика и в эпоху предельного расхождения континентов (как в настоящее время) на планете имеются наибольшие площади глубоководного океанического дна. В результате суша вздымается, уровень Мирового океана падает, а на Земле образуются максимальные по площади материковые поверхности. Последние же, в отличие от поверхности вод, обладают высоким альбедо (т. е. отражательной способностью) и мешают нагреванию планеты Солнцем. Если при этом суша попадает в околополярные области, на ней развиваются покровные оледенения [683; 70, с. 17–18].
   Напротив, после раскола суперконтинента, когда начинается дрейф материков друг от друга, и после развития встречных движений континентов, когда они сближаются, океаны между ними мелки, уровень Мирового океана повышается, суша на окраинах материков затопляется, а планетарное альбедо снижается, позволяя Солнцу разогревать Землю. Наступает теплый и влажный климатический период – межледниковье. Иными словами, за время суперконтинентального цикла Земля закономерно переживает два оледенения и два межледниковья. Оледенения случались со средней периодичностью в 150 млн лет [42, с. 24, табл. 1; с. 30–35].
   В эпоху оледенения на Земле устанавливается умеренный сухой климат, и такая обстановка не способствует высокой биопродуктивности земной экосреды. Растительность в среднем становится скудной и разреженной в пространстве. Напротив, в эпохи межледниковья климат становится теплым и влажным, что благоприятствует высокой биопродуктивности экосреды; растительность, как правило, богата и скучена в пространстве.
   Когда при оледенениях растительность скудна, разрежена, и вообще пищевые ресурсы бедны и рассеяны, животным приходится собирать корм с больших пространств. В такие периоды всем организмам эволюционно выгодно быть подвижными, высокомобильными, хотя это сопряжено с большими потерями энергии на передвижение. В противоположность этому, при межледниковьях растительность изобильна и скучена, как и все пищевые ресурсы, так что животным не надо искать пищу по обширным территориям. В такие эпохи животным и всем организмам вообще ни к чему быть высокомобильными, поскольку эволюционно не выгодно тратить энергию на лишние передвижения.
   Проще говоря, наиболее успешные живые организмы при оледенениях становятся высокоподвижными, а при межледниковьях – наоборот. Подобная закономерность представляется схематичной, однако ее можно проиллюстрировать. Допустим, на Земле стоит ледниковый период, в нем господствуют подвижные животные, а на вершине пищевой пирамиды царят высокомобильные хищники, которые, не считаясь с энергозатратами, без устали патрулируют свою экологическую нишу. Пища там скудна и ее необходимо потреблять без остановки, чтобы она не досталась конкурентам. При этом в тени господствующих высокомобильных существ обычно прозябают малоподвижные организмы, на которых никто не обращает внимания.
   Но вот оледенение заканчивается, становится тепло и влажно. Растения множатся и скучиваются в пространстве (как ныне свойственно им в тропиках и субтропиках). Наступает эпоха обильных кормовых угодий, и больше не требуется обшаривать значительные территории в поисках еды. Однако подвижные господа прежней, холодной эпохи в силу закона Долло о необратимости эволюции уже не в силах изменить свою физическую и нейрофизиологическую организацию и продолжают взад-вперед сновать по эконише, без толку тратя энергию на суету. Пока эти трудяги прочесывают один край биома, на другом краю «расправляют крылья» недавние аутсайдеры ледниковых времен – малоподвижные организмы. Они не торопясь и экономя энергию потребляют обильную пищу, так что, когда из рейда по экосистеме возвращаются высокомобильные существа, им питаться уже нечем. Пока они удивляются превратностям судьбы, ситуация повторяется в других уголках экосреды. Господа эпохи оледенения приходят в упадок, а воцаряются их малоподвижные конкуренты.
   Когда оледенение возвращается вновь, картина воспроизводится с противоположным знаком. Пища вновь скудна и редка. Ее недостает малоподвижным господам межледниковья, а осваивать большие пространства они не в силах. Уцелевшие остатки высокоподвижной фауны, коротающие теплые времена на задворках экосреды (как млекопитающие мезозоя; см. разд. 2.3), поднимают голову, обнаруживают, что снова стали актуальны, и приступают к подвижному патрулированию биоты. Недавние малоподвижные господа теплолюбивой жизни частью не выдерживают нового направления конкуренции и вымирают, а частью уходят в тень – до будущих теплых времен. Многочисленные палеонтологические примеры сказанному мы приводим ниже (см. разд. 2.3).
   Таким образом, можно увидеть определенную тенденцию земной эволюции, которая направляется экологией, та, в свою очередь, климатом, а он – дрейфом материков, т. е. циклическим геологическим фактором. Продемонстрируем на фактах, что подобная эволюционная тенденция действительно реализовалась в истории земной жизни.

2.3. Эволюция

Археозой (4,55-2,5 млрд лет назад)

   Согласно концепции абиогенеза (о химической эволюции жизни из неорганического материала), процесс начался в глубоководных гипертермальных источниках 4,2–4,0 млрд лет назад, а 4,0–3,7 млрд лет назад достиг поверхностных вод [525]. Жидкая вода возникла на Земле 4,3 млрд лет назад [575]. Следы ископаемых организмов появляются в палеонтологической летописи в позднем гадее св. 3,85 млрд лет назад [422], а также [156; 225; 282; 465; 574; 580; 600; 677; 678; 788]. Отметим, что по молекулярно-генетическим данным возраст первых организмов оценивается приблизительно в 1,8 млрд лет [578], что вдвое уступает палеонтологическому возрасту; по-видимому, 1,8 млрд лет назад – это возраст эволюционного расхождения тех организмов, чьи прямые потомки дожили до наших дней, поскольку молекулярно-генетический возраст, например, нескольких родственных видов живых существ определяется до момента разветвления эволюционных путей их предков.
   Под влиянием мобилизующих колебаний продуктивности среды древние микроорганизмы развили пищевую автономность (автотрофность), чтобы не зависеть от внешних ресурсов в неурожайные (ледниковые) периоды. Около 3,8–3,5 (или 3,5; 3,465; 3,416) млрд лет назад цианобактерии освоили фотосинтез, т. е. способность синтезировать углеводы, аминокислоты, белки, пигменты и другие соединения под действием солнечного света [232; 788; 677; 678; 753]; а также [399; 465; 600]. Побочным продуктом фотосинтеза является свободный кислород. Однако поначалу он практически весь уходил на окисление железа, так что 2,8 млрд лет назад свободного кислорода в атмосфере почти не было [465, с. 2112]. Лишь 2,32 млрд лет назад наметился его атмосферный рост [181].
   Чтобы добиться еще большей независимости от пищевых ресурсов среды, микроорганизмы путем симбиотического включения в свои тельца других одноклеточных существ обзавелись св. 2,8 млрд лет назад митохондриями [470], служащими внутренними источниками энергии для клеток, что подобно аккумуляторам повышало их мобильность. Митохондрии поначалу были самостоятельными микроорганизмами, а впоследствии поселились в тельцах других микроорганизмов и стали служить им «энергетическими подстанциями».
   Примерно тогда же, св. 2,7 млрд лет назад, прокариоты (организмы без клеточного ядра) путем аналогичного симбиоза поселили в своих тельцах другие микроорганизмы, которые стали играть для них роль клеточных ядер. В результате прокариоты стали эукариотами, организмами с клеточными ядрами [213; 294; 322; 465; 718]. Этим способом содержащийся в клеточном ядре геном приобрел как бы скафандр в виде материнской клетки, что повысило его независимость от условий среды и ее перепадов, а следовательно подняло его мобильность. Поэтому хронологическая близость возникновения митохондрий и клеточных ядер может отвечать климатическому пессимуму, возможно связанному с оледенением, ознаменовавшим расхождение материков 2,85 млрд лет назад. Отметим, что в силу той же логики появление белковой оболочки (вириона) у РНК-вирусов тоже могло быть откликом на климатический или другой пессимум в их истории, однако палеонтология вирусов не развита.

Протерозой (2,5-0,544 млрд лет назад)

   После распада позднеархейского суперконтинента Мегагеи, образовавшегося и расколовшегося 2,7–2,5 млрд лет назад, имели место три Гуронских ледниковых периода (Рамсей-Лейк, Брюс и Гоуганда) в интервале 2,5–2,2 млрд лет назад. Они, вероятно, связаны с эпизодом сильного расхождения материков (см. разд. 2.2). Падение продуктивности среды при III палеопротерозойском низкоширотном оледенении (III Гуронском) 2,222 ± 0,013 млрд лет назад [181; 313; 465] подстегнуло тягу жизни к самостоятельности вообще и автотрофности в частности. Поэтому жизнь ок. 2,2 млрд лет назад овладела способностью фиксировать азот [593], что ослабило ее зависимость от стационарных природных источников этого элемента, необходимого для поддержания существования живых организмов. Здесь мы имеем дело с одним из ранних фактов повышения мобильности организмов под влиянием оледенения, точнее под воздействием вызванной им убыли продуктивности среды.
   Другим способом повысить мобильность организмов выступила многоклеточность. Современные бактерии способны образовывать колонии с высокоупорядоченным строением, в которых бактерии дифференцируются на клетки различных типов. Колонии некоторых миксобактерий (например Chondromyces crocatus) формируются в виде многоклеточного плодового тела со скоплениями одноклеточных спор на концах ответвлений. Это едва ли не прообраз многоклеточных растений, переживший свое время. Другие миксобактерии (например Myxococcus xanthus) образуют сферичные колонии из миллионов клеток. Такие колонии способны двигаться, захватывать и переваривать жертвы. Подобные хищные сферы в чем-то напоминают многоклеточных животных [115]. Многоклеточность последнего типа нацелена на подвижный сбор разреженной пищи, т. е. на ледниковые условия.
   В соответствии с такими представлениями о назначении многоклеточности первые макроскопические многоклеточные водоросли появились в палеонтологической летописи 2,110 ± 0,052 млрд лет назад ([399; 698]) в Даспортскую ледниковую эпоху (2,2–1,95 млрд лет назад), вызванную образованием следующего сверхматерика (2,1–2,0 млрд лет назад). Наступившие вслед за Даспортским оледенением условия климатического оптимума расширили экологические ниши. Это произошло потому, что мягкие условия способствовали подъему биопродуктивности среды, а ее богатство сопровождалось ростом разнообразия природных условий и, соответственно, раздвижением экониш, что в свою очередь благоприятствовало умножению и экспансии жизни.
   Судя по всему, простейшие организмы 1,2 млрд лет назад освоили новые для себя наземные водоемы [423]. Одновременно произошла крупная радиация (всплеск разнообразия) многоклеточных организмов, выразившаяся в разделении предков растений, грибов и животных [294; 322]; cp. [312; 780]. По молекулярно-генетическим данным, процесс продолжился отделением от животных губок, затем гребневиков, медуз и морских анемон, далее – плоских червей [312], а потом – дивергенцией (разделением) хордовых животных (к которым принадлежат и люди) и моллюсков (1,225 млрд лет назад), разделением хордовых и кольчатых червей (1,204 млрд лет назад), расхождением хордовых и членистоногих (1,173 млрд лет назад) и дивергенцией хордовых и иглокожих (1,001 млрд лет назад) [824]; cp. [294; 322; 470]. Дальнейший путь развития животных отмечен так называемой преэдиакарской биотой 980–900 млн лет назад [259, с. 220, рис. 1], которая связана с теплым эпизодом, благоприятным для умножения экониш и расцвета фауны.
   Вслед за распадом еще одного сверхматерика возраста 1,1–1,0 млрд лет назад наступали ледниковые периоды Гнейсе, 900–850 млн лет назад, и Стёрт, 760–740 млн лет назад, отвечавшие состоянию разреженности материков. Очередной суперконтинент сформировался 675–600 млн лет назад, что повлекло за собой низкоширотное оледенение Марино-Варангер ок. 680–606 ± 3,7/ – 2,9, 602 ± млн лет назад [313; 381; 465; 807]. Низкоширотность (тропичность) оледенений Гурон III и Варангер, определенная палеомагнитным методом (когда по намагниченности ископаемых пород рассчитывают положение магнитных полюсов в древности), объясняется дрейфом магнитного полюса Земли относительно географического полюса. В протерозое этот дрейф превосходил современный и заметно искажал регистрацию палеоширот по намагниченности ископаемых пород.
   Выгодность мобильности в ледниковых условиях оживила подвижных многоклеточных животных, представленных норами червей 620 млн лет назад [464; 682]. Последовавшее потепление эдиакарского периода (ок. 600–544 млн лет назад [312; 381]) создало множество экониш и вызвало дивергенцию бесчелюстных рыбообразных животных (круглоротых вроде миног и миксин) и челюстноротых (предков рыб) 599 млн лет назад [824; 479]. В результате развернулась богатая эдиакарская фауна возрастом в 565 ± 5–549/543 млн лет назад [203; 258; 381], отмеченная в финале своего расцвета молекулярно-генетической дивергенцией позвоночных животных (наших предков) 546 ± 18 млн лет назад [479; 838].

Палеозой (544-251 млн лет назад)

   Развившееся хищничество одело мягкотелых эдиакарцев в твердые наружные покровы [258], поэтому кембрийский период (544–510/505 млн лет назад) ознаменовался широким распространением животных с защитным наружным скелетом, а также хордовых животных, чей внутренний скелет позволял создавать в воде локомоторную волну (толкающую животное вперед [124]) и повышал спасительную подвижность. Хищники производят эффект снижения биопродуктивности среды, поскольку мешают консументам (в данном случае – нехищным потребителям) беззаботно кормиться. Поэтому усвоение последними упомянутой спасительной подвижности типологически близко реакции на падение биопродуктивности среды вследствие похолодания. Следом за жертвами в локомоции усовершенствовались и хищники, примером которых может служить подвижный нижнекембрийский Anomalocaris (45 см), напоминавший плоскую сигару с боковыми плавниками и парой хватательных придатков возле рта. Организмы, отставшие от описанной тенденции, пришли к массовому вымиранию в раннем кембрии [184; 674, с. 431–437].
   Целым «пакетом» в нижнем кембрии отмечены такие животные, как членистоногие [85, с. 41; 211; 239]; ракообразные [712]; иглокожие [700]; полухордовые (век атдабан, ок. 525 млн лет назад) [237; 701; 703; 727]; оболочники [699]; хордовые (век ботом) [237]; черепноподобные (530 млн лет назад) [238; 308]; миногообразные и миксинообразные (ок. 530 млн лет назад) [702; 838]; в верхнем кембрии – конодонты (родня позвоночных; 515 млн лет назад) [669; 210; 325; 437] и другие позвоночные (514 млн лет назад) [479]. Так выглядел древнейший эволюционный взрыв в истории Земли, обусловленный теплом и высокой биопродуктивностью эдиакарского и кембрийского периодов.
   В следующем, ордовикском, периоде (510/505–438 млн лет назад) материки максимально отдалились друг от друга, что вызвало в позднем ордовике (458–438 млн лет назад) оледенение, условия которого обострили спрос на мобильность животных. Из числа головоногих моллюсков, появившихся в нижнем кембрии (например, наутилоидеи, потомки которых из рода Nautilus, живые ископаемые, и поныне здравствуют на юго-западе Тихого океана), особый расцвет в ордовике испытали представители подкласса эндоцератит [38, с. 356–359; 83, с. 173–204]. Их тело помещалось в длинно– и короткоконических раковинах прямых очертаний, игравших роль гидродинамических обтекателей. В раковине имелось образование – сифон, выполнявший гидростатические функции (он имелся и у других раковинных головоногих моллюсков и работал, как плавательный пузырь рыб, т. е. помогал своему обладателю менять общий удельный вес тела). Гидродинамическая раковина вместе с гидростатическим сифоном (он наполнял соответствующие камеры раковины азотом, аргоном и жидкостью, как у современного наутилуса, и тем самым регулировал удельный вес тела и его частей) делали эндоцератит идеальными пловцами, т. е. высокомобильными животными, типологически напоминающими по устройству подводные лодки на реактивной тяге.
   В связи с похолоданием, поощряющим мобильность, эндоцератиты расцвели, стали владыками морей и породили самых крупных среди известных раковинных беспозвоночных, до 9,5 м длиной [38, с. 356; 83, с. 191]. Казалось бы, такие успешные монстры должны были бы процветать долго, однако с концом позднеордовикского оледенения они неизбежно пришли в упадок. Представители ведущего отряда, эндоцератиды, просуществовали весь ордовик и вымерли – возможно, один род данного отряда (Humeoceras) дожил до середины силура (421 млн лет назад) [38, с. 358]. Парадокс этот вполне объясним, если учесть, что высокомобильные формы вроде эндоцератит были узко приспособлены к скромной экосреде окололедникового времени и лишь в ней были сильны, а с подъемом биопродуктивности среды в силуре перестали ей соответствовать и угасли.
   Прохладный ордовик был периодом радиации жизни [297], в особенности холодолюбивой – точнее, годной к низкой биопродуктивности среды. Холодолюбивые существа активно замещали ушедших в небытие теплолюбивых хозяев кембрия. Давление в пользу мобильных организмов привело на сушу наземную флору. Среди пионеров были наземные грибы (конец нижнего ордовика, ок. 460 млн лет назад), которые, по молекулярно-генетическим данным, возникли еще в конце Варангского оледенения ок. 600 млн лет назад [636], т. е. уже были испытаны суровыми условиями. Бок о бок с ними по суше распространялись наземные растения, отмеченные как в нижнем ордовике (475 млн лет назад), так и в верхнем (458–438 млн лет назад) [346, с. 481; 794]. В морях, судя по молекулярно-генетическим данным, появились подвижные лучеперые рыбы (450±35,5 млн лет назад) [86, с. 323–484; 479], а также акулы [468]. Лучеперые рыбы и акулы составляют свыше 95% современной ихтиофауны, захватившей моря благодаря кайнозойскому похолоданию. Их успех в современных условиях объясняется происхождением из позднеордовикского оледенения (см. далее).
   Акулы, помимо завидной подвижности, во многих случаях развили способность к яйцеживорождению и живорождению с подобием плацентарного вскармливания эмбрионов (как у холодолюбивых млекопитающих). Это является эволюционным признаком мобильности, поскольку потомство выводится не из стационарно отложенной икры, а на ходу, что повышает его шансы на распространение по экосреде. Добавим, что и яйцекладущие акулы по-своему мобильны. Они откладывают яйца (икринки) в твердой оболочке, чем уподобляются, например, рептилиям, у первых представителей которых способность откладывать яйца в твердой скорлупе послужила одной из основ сухопутной подвижности.
   Лучеперые рыбы и акулы не успели продвинуться в ордовике так сильно, как эндоцератиты, а потому благополучно перенесли позднеордовикское вымирание, более суровое к остальной биоте [184; 239; 836]. Объяснение парадоксального уклонения лучеперых рыб и акул от позднеордовикского вымирания благодаря отставанию от эндоцератитов мы приведем ниже (вместе с рядом аналогичных случаев).
   Силурийский (438–408 млн лет назад) и девонский (408–354 млн лет назад) периоды были временем сближения материков и, соответственно, эпохой прибывающего и отступающего потепления. По мере его углубления биопродуктивность среды возрастала, и суша превращалась в притягательную эконишу для консументов, потребителей органики, благо сухопутная флора к тому времени процветала уже не один миллион лет.
   В верхнем ордовике под влиянием отступления оледенения сушу освоили норные животные, в которых подозревают членистоногих многоножек [643]. Затем, в позднем силуре (век пржидоли, 414 млн лет назад), землю завоевали такие членистоногие, как паукообразные и непосредственно зафиксированные многоножки [440]. Позже, в нижнем девоне (век зиген, 401–394 млн лет назад), их состав пополнили насекомые [307; 483], чьи крылья размером до 2 см поначалу служили целям терморегуляции, а с повышением размера до 4 см стали применяться для полета [502]. Поскольку полет увеличивал мобильность насекомых, их крылья должны были служить органами движения в некий холодный период. Однако данных на этот счет пока нет.