Страница:
…Запускаем ракету. Какова ее скорость через секунду после старта? – Десять метров в секунду, товарищ полковник!.. – А где она? – А кто ее знает! Квантовая механика, товарищ полковник. Теперь уже непонятно…
И прав ведь товарищ полковник в своем справедливом возмущении! Действительно, что это за блажь такая? Не может Родина стрелять вслепую. А как же баллистика? Есть же такая наука – баллистика! И этой науке все равно, какой массы пуля – хоть 9 граммов, хоть тонна, хоть с электрон размером… Подставь в формулы, получишь результат – где пуля и что с ней в данный момент происходит. Увы! В микромире баллистика работать перестает. Как же тогда рассчитывать прицел?
А по вероятности. Есть так называемая волновая функция – она описывает «размазанную в пространстве вероятность» того, что в данной точке может оказаться электрон, вздумай мы его здесь поискать… Это ключевое выражение – «вздумай мы его поискать»! Если бы мы поискать электрон не вздумали, он был бы… где? Вот в ответе на этот вопрос и разошлись Бор с Эйнштейном. Эйнштейн считал, что электрон где-то, в каком-то определенном месте да был бы. Просто мы пока не можем точно рассчитать это место. Поэтому и предсказываем вероятностно. Бор полагал по-другому. Он считал, что, пока мы не интересуемся, где находится электрон, он в определенном месте и не находится. Он действительно размазан в пространстве! И размазанность эта намного превышает диаметр самого электрона. Это как если бы пуля, вылетев из ствола, превращалась в летящее облачко тумана. Электрон как бы летит по всем траекториям сразу. Но! Но если мы проведем замер, то обнаружим частицу на вполне определенной траектории, в конкретной точке. То есть если под «туманную пулю» мы подставим мишень, то в момент удара по мишени пуля тут же локализуется, превращается в обычную твердую пулю, которая делает в мишени маленькую дырку.
Первая мысль от подобного поведения элементарных частиц именно эйнштейновская – на самом деле электрон летит по вполне конкретной траектории, как пуля, просто мы ее не знаем, а можем лишь примерно, вероятностно определить – таков наш пока несовершенный математический аппарат. Второе впечатление от дурного поведения элементарных частиц – головокружительное, и более всего кружится голова от дикости происходящего, когда знакомишься со знаменитым двущелевым экспериментом.
Сейчас я его вкратце опишу. Волны, как вам известно, умеют складываться – и морские, и звуковые, и электромагнитные. Если встречаются две волны в противофазе, они гасят друг друга. А если в одной фазе – усиливают: растет амплитуда волны. Представьте себе набегающую на берег широким фронтом волну. Мы ставим на ее пути плотину с двумя щелями, расположенными неподалеку друг от друга. Через плотину волна не проходит, а через щели – проходит, разбегаясь от щелей двумя конусами в сторону берега. Волновые конусы возле берега встречаются, перекрываясь. И в тех местах, где амплитуды волн получаются синфазными, они складываются, и о берег бьют удвоенные волны. А там, где волны гасят друг друга, берег спокоен.
Такой же эксперимент, проведенный со световой волной, дает на экране (который здесь заменяет берег) так называемую интерференционную картину, то есть картинку сложения волн. Где световые волны складываются – там на экране яркие полосы света, а там, где вычитаются – темные полосы тени. Световая зебра.
Такой же эксперимент проводили не только с волнами, но и с частицами – электронами. Если бы электроны были большими, как, например, шарики от подшипников, никакой интерференции не получилось бы: шарики не волны, там нечему складываться – барабанили бы просто в мишень, образуя два пятна попаданий – от каждой щели по одному.
Но в микромире, как вам опять-таки известно, все частицы обладают свойствами волн. И наоборот – волны обладают свойствами частиц. И если двухщелевой эксперимент проводить с электронами, на экране образуется интерференционная картина – электроны ведут себя как волны. Получается зебра.
Когда я учился в школе, я думал, что интерференция электронов получается оттого, что электронов много – одни пролетают через левую щель, другие через правую, а за щелью как-то там складываются, взаимодействуют, и на экране получается интерференционная картина. Так многие думают. Но это не так. В эксперименте ученые запускали в установку по одному электрону. И наблюдали интерференционную картину! Что это значит? Это значит, что один электрон пролетал одновременно через две щели! И за экраном интерферировал – складывался сам с собой.
Неожиданный вывод, согласитесь. Сознание, которое привыкло относиться к электрону, как к малюсенькому шарику, противится такому поведению шарика. Один шарик не может пролететь сразу через две щели, как одна пуля не может лететь по двум траекториям сразу. Пуля не может, а электрон летит!
Слушайте, а если возле щели поставить какой-нибудь детектор, который определял бы, через какую щель «на самом деле» проскочил этот проныра? Отличная идея! Ставим детектор. Можно поставить два детектора – у каждой щели по одному, можно один – без разницы, ведь если детектор у нас стоит только у одной щели и он не фиксирует пролет электрона, значит, электрон пролетел через другую щель.
Ставим! Фиксируем! Да, электрон пролетает только через одну щель! Либо через правую, либо через левую! Ура! Но вот какой ужас – при этом интерференционная картинка пропадает! То есть как только мы начинаем знать, где пролетел электрон, как только он начинает вести себя в соответствии с нашими ожиданиями (как маленький шарик), так сразу волновая картина на экране пропадает!
Хитрые люди могут спросить: а как мы детектируем электрон – как узнаем, что он пролетел именно через эту щель? Ну, например, ставят фотонный детектор, и по рассеянию света делают вывод. «Ага! – воскликнет читатель, сторонник определенности, – Так вы забомбардировали несчастный электрон фотонами, а после удивляетесь, что он полностью изменил свое поведение! И еще сознание свое приплели зачем-то!»
Да, доля истины в этих рассуждениях есть. Если мы детектируем с помощью фотонов пулю (то есть попросту смотрим на ее полет, ловя глазами отраженные фотоны), то никак, конечно, на пулю мы этим не влияем. Во-первых, фотоны от пули и так отражаются, потому что Солнце светит, а во-вторых, что пуле фотон? Меньше, чем слону дробина! А вот электрончик – маленький, ему от фотонов больно. В микромире, чтобы получить информацию, мы воздействуем на объект сравнимыми с ним штуковинами. И, естественно, вносим при этом сильную помеху. Подставьте под пулю не фотоны, а сравнимую с ней вещь – деревянную щитовую мишень, например, и увидите, как повлияет это «измерение» на траекторию и скорость пули.
Но вот ведь какая штука… Если даже мы поставили всего один детектор на одну щель, и электрон не детектировался, то есть пролетел через другую щель, где его фотонами не бомбардировали, все равно интерференционная картина пропадает!.. Откуда электрон узнал, что его «секут» на второй щели? Квантовая механика объясняет это чудо так: та компонента (часть) волновой функции, которая подверглась бомбардировке фотонами, изменила поведение электрона – превратив его из туманного облачка в шарик, пролетевший в другую щель.
Бр-р-р… Что это еще за компонента такая? А это просто кусок формулы! Поведение электрона описывается формулой, как сумма возможных состояний. Упрощенно это можно записать так:
Состояние электрона = электрон пролетел через первую щель + электрон пролетел через вторую щель.
Или короче: Е = Ф1 + Ф2
где Е – функция электрона,
Ф1 – состояние электрона, соответствующее пролету через первую щель,
Ф2 – состояние электрона, соответствующее пролету через вторую щель.
То есть полностью поведение электрона описывается как сумма всех его возможных состояний. Это и есть знаменитая волновая функция.
При измерении, то есть при воздействии или на «сам» электрон или на некую «виртуальную» его часть, то есть попросту на одно из формальных слагаемых в формуле, электрон локализуется в пространстве. То есть обретает в нем конкретное место взамен размазанного.
Еще раз, это важно: детектируя электрон, мы можем облучать фотонами не только его самого, пролетающего через щель, но и тот кусок формулы, которая «пролетает» (описывает пролет) через другую щель – эффект будет один! То есть, либо «живой» электрон пролетает через щель, и мы это прямо фиксируем детектором (интерференционная картина при этом пропадает), либо электрон пролетает через другую щель, где нет фотонного детектора, и мы облучаем фотонами ту часть электрона, которая не пролетает через эту щель (интерференционная картина при этом тоже пропадает).
Мистика какая-то, правда?
Вывод: воздействие локализует частицу. Она перестает описываться волновой функцией. И становится конкретной штукой в конкретном месте. Это называется редукцией волновой функции. Еще раз: редукция волновой функции – это когда мы путем воздействия на частицу превращаем ее из размазанного, вероятностного состояния в определенное. То есть измерение не выясняет истину, а присваивает частице эту истину.
Вот против чего так яростно выступал Эйнштейн. Ему вообще все это активно не нравилось. Неопределенность не нравилась… И он придумал, как эту неопределенность перехитрить.
Ладно, рассуждали Эйнштейн, Подольский и Розен – три героя, решившие перехитрить принцип неопределенности, – пусть мы не можем измерить у частицы импульс и координату одновременно. Но узнать можем! Это делается так.
Нужно «спутать» две частицы, чтобы их свойства были взаимосвязаны. Аналогия далекая, но тем не менее… Это, примерно, как в бильярде – бьем шаром по шару, шары разлетаются… Суммарный импульс шаров до соударения равен суммарному импульсу после соударения – простая механика, закон сохранения импульса, в школе проходят. То есть измерив импульс у одного шара, мы можем вычислить импульс другого, не измеряя его скорости.
Сталкиваем две частицы, они разлетаются, поделив импульс. Далее мы измеряем координату у первой частицы и импульс у второй. И таким образом узнаем и координату первой частицы (которую измерили непосредственно), и ее импульс (который просто вычислили, измерив импульс у второй частицы). Такова была схема мысленного эксперимента, предложенная троицей ЭПР.
Это было сильным ударом, от которого великий Бор покачнулся. Спор их в тот день закончился вничью. Бор назвал натяжкой рассуждения Эйнштейна. Эйнштейн полагал, что импульс, как объективная характеристика, уже имеется у частицы. И путем вычисления мы его узнаем. Бор же считал, что, пока мы импульс не измерили, приписывать частице конкретное значение импульса нельзя: импульс присваивается измерением, стало быть, мы не обманули неопределенность.
Много позже, а именно в 1960-е годы физик Джон Белл из швейцарского ЦЕРНа, размышляя над ЭПР-парадоксом, формализовал эту придуманную схему, написав некое математическое неравенство, которое позже назвали неравенством Белла. Из формулы вытекало, что если в эксперименте справедливость неравенства подтвердится, значит, прав Эйнштейн. Если не подтвердится – Бор.
Такой эксперимент удалось поставить только в 1982 году. Поставил его Ален Аспек. Результат эксперимента с двумя поляризованными фотонами неопровержимо показал: прав был Бор. Никакой «объективной физической реальности», о которой грезил Эйнштейн, в микромире не существует.
Глава 3.
Глава 4.
И прав ведь товарищ полковник в своем справедливом возмущении! Действительно, что это за блажь такая? Не может Родина стрелять вслепую. А как же баллистика? Есть же такая наука – баллистика! И этой науке все равно, какой массы пуля – хоть 9 граммов, хоть тонна, хоть с электрон размером… Подставь в формулы, получишь результат – где пуля и что с ней в данный момент происходит. Увы! В микромире баллистика работать перестает. Как же тогда рассчитывать прицел?
А по вероятности. Есть так называемая волновая функция – она описывает «размазанную в пространстве вероятность» того, что в данной точке может оказаться электрон, вздумай мы его здесь поискать… Это ключевое выражение – «вздумай мы его поискать»! Если бы мы поискать электрон не вздумали, он был бы… где? Вот в ответе на этот вопрос и разошлись Бор с Эйнштейном. Эйнштейн считал, что электрон где-то, в каком-то определенном месте да был бы. Просто мы пока не можем точно рассчитать это место. Поэтому и предсказываем вероятностно. Бор полагал по-другому. Он считал, что, пока мы не интересуемся, где находится электрон, он в определенном месте и не находится. Он действительно размазан в пространстве! И размазанность эта намного превышает диаметр самого электрона. Это как если бы пуля, вылетев из ствола, превращалась в летящее облачко тумана. Электрон как бы летит по всем траекториям сразу. Но! Но если мы проведем замер, то обнаружим частицу на вполне определенной траектории, в конкретной точке. То есть если под «туманную пулю» мы подставим мишень, то в момент удара по мишени пуля тут же локализуется, превращается в обычную твердую пулю, которая делает в мишени маленькую дырку.
Первая мысль от подобного поведения элементарных частиц именно эйнштейновская – на самом деле электрон летит по вполне конкретной траектории, как пуля, просто мы ее не знаем, а можем лишь примерно, вероятностно определить – таков наш пока несовершенный математический аппарат. Второе впечатление от дурного поведения элементарных частиц – головокружительное, и более всего кружится голова от дикости происходящего, когда знакомишься со знаменитым двущелевым экспериментом.
Сейчас я его вкратце опишу. Волны, как вам известно, умеют складываться – и морские, и звуковые, и электромагнитные. Если встречаются две волны в противофазе, они гасят друг друга. А если в одной фазе – усиливают: растет амплитуда волны. Представьте себе набегающую на берег широким фронтом волну. Мы ставим на ее пути плотину с двумя щелями, расположенными неподалеку друг от друга. Через плотину волна не проходит, а через щели – проходит, разбегаясь от щелей двумя конусами в сторону берега. Волновые конусы возле берега встречаются, перекрываясь. И в тех местах, где амплитуды волн получаются синфазными, они складываются, и о берег бьют удвоенные волны. А там, где волны гасят друг друга, берег спокоен.
Такой же эксперимент, проведенный со световой волной, дает на экране (который здесь заменяет берег) так называемую интерференционную картину, то есть картинку сложения волн. Где световые волны складываются – там на экране яркие полосы света, а там, где вычитаются – темные полосы тени. Световая зебра.
Такой же эксперимент проводили не только с волнами, но и с частицами – электронами. Если бы электроны были большими, как, например, шарики от подшипников, никакой интерференции не получилось бы: шарики не волны, там нечему складываться – барабанили бы просто в мишень, образуя два пятна попаданий – от каждой щели по одному.
Но в микромире, как вам опять-таки известно, все частицы обладают свойствами волн. И наоборот – волны обладают свойствами частиц. И если двухщелевой эксперимент проводить с электронами, на экране образуется интерференционная картина – электроны ведут себя как волны. Получается зебра.
Когда я учился в школе, я думал, что интерференция электронов получается оттого, что электронов много – одни пролетают через левую щель, другие через правую, а за щелью как-то там складываются, взаимодействуют, и на экране получается интерференционная картина. Так многие думают. Но это не так. В эксперименте ученые запускали в установку по одному электрону. И наблюдали интерференционную картину! Что это значит? Это значит, что один электрон пролетал одновременно через две щели! И за экраном интерферировал – складывался сам с собой.
Неожиданный вывод, согласитесь. Сознание, которое привыкло относиться к электрону, как к малюсенькому шарику, противится такому поведению шарика. Один шарик не может пролететь сразу через две щели, как одна пуля не может лететь по двум траекториям сразу. Пуля не может, а электрон летит!
Слушайте, а если возле щели поставить какой-нибудь детектор, который определял бы, через какую щель «на самом деле» проскочил этот проныра? Отличная идея! Ставим детектор. Можно поставить два детектора – у каждой щели по одному, можно один – без разницы, ведь если детектор у нас стоит только у одной щели и он не фиксирует пролет электрона, значит, электрон пролетел через другую щель.
Ставим! Фиксируем! Да, электрон пролетает только через одну щель! Либо через правую, либо через левую! Ура! Но вот какой ужас – при этом интерференционная картинка пропадает! То есть как только мы начинаем знать, где пролетел электрон, как только он начинает вести себя в соответствии с нашими ожиданиями (как маленький шарик), так сразу волновая картина на экране пропадает!
Хитрые люди могут спросить: а как мы детектируем электрон – как узнаем, что он пролетел именно через эту щель? Ну, например, ставят фотонный детектор, и по рассеянию света делают вывод. «Ага! – воскликнет читатель, сторонник определенности, – Так вы забомбардировали несчастный электрон фотонами, а после удивляетесь, что он полностью изменил свое поведение! И еще сознание свое приплели зачем-то!»
Да, доля истины в этих рассуждениях есть. Если мы детектируем с помощью фотонов пулю (то есть попросту смотрим на ее полет, ловя глазами отраженные фотоны), то никак, конечно, на пулю мы этим не влияем. Во-первых, фотоны от пули и так отражаются, потому что Солнце светит, а во-вторых, что пуле фотон? Меньше, чем слону дробина! А вот электрончик – маленький, ему от фотонов больно. В микромире, чтобы получить информацию, мы воздействуем на объект сравнимыми с ним штуковинами. И, естественно, вносим при этом сильную помеху. Подставьте под пулю не фотоны, а сравнимую с ней вещь – деревянную щитовую мишень, например, и увидите, как повлияет это «измерение» на траекторию и скорость пули.
Но вот ведь какая штука… Если даже мы поставили всего один детектор на одну щель, и электрон не детектировался, то есть пролетел через другую щель, где его фотонами не бомбардировали, все равно интерференционная картина пропадает!.. Откуда электрон узнал, что его «секут» на второй щели? Квантовая механика объясняет это чудо так: та компонента (часть) волновой функции, которая подверглась бомбардировке фотонами, изменила поведение электрона – превратив его из туманного облачка в шарик, пролетевший в другую щель.
Бр-р-р… Что это еще за компонента такая? А это просто кусок формулы! Поведение электрона описывается формулой, как сумма возможных состояний. Упрощенно это можно записать так:
Состояние электрона = электрон пролетел через первую щель + электрон пролетел через вторую щель.
Или короче: Е = Ф1 + Ф2
где Е – функция электрона,
Ф1 – состояние электрона, соответствующее пролету через первую щель,
Ф2 – состояние электрона, соответствующее пролету через вторую щель.
То есть полностью поведение электрона описывается как сумма всех его возможных состояний. Это и есть знаменитая волновая функция.
При измерении, то есть при воздействии или на «сам» электрон или на некую «виртуальную» его часть, то есть попросту на одно из формальных слагаемых в формуле, электрон локализуется в пространстве. То есть обретает в нем конкретное место взамен размазанного.
Еще раз, это важно: детектируя электрон, мы можем облучать фотонами не только его самого, пролетающего через щель, но и тот кусок формулы, которая «пролетает» (описывает пролет) через другую щель – эффект будет один! То есть, либо «живой» электрон пролетает через щель, и мы это прямо фиксируем детектором (интерференционная картина при этом пропадает), либо электрон пролетает через другую щель, где нет фотонного детектора, и мы облучаем фотонами ту часть электрона, которая не пролетает через эту щель (интерференционная картина при этом тоже пропадает).
Мистика какая-то, правда?
Вывод: воздействие локализует частицу. Она перестает описываться волновой функцией. И становится конкретной штукой в конкретном месте. Это называется редукцией волновой функции. Еще раз: редукция волновой функции – это когда мы путем воздействия на частицу превращаем ее из размазанного, вероятностного состояния в определенное. То есть измерение не выясняет истину, а присваивает частице эту истину.
Вот против чего так яростно выступал Эйнштейн. Ему вообще все это активно не нравилось. Неопределенность не нравилась… И он придумал, как эту неопределенность перехитрить.
Ладно, рассуждали Эйнштейн, Подольский и Розен – три героя, решившие перехитрить принцип неопределенности, – пусть мы не можем измерить у частицы импульс и координату одновременно. Но узнать можем! Это делается так.
Нужно «спутать» две частицы, чтобы их свойства были взаимосвязаны. Аналогия далекая, но тем не менее… Это, примерно, как в бильярде – бьем шаром по шару, шары разлетаются… Суммарный импульс шаров до соударения равен суммарному импульсу после соударения – простая механика, закон сохранения импульса, в школе проходят. То есть измерив импульс у одного шара, мы можем вычислить импульс другого, не измеряя его скорости.
Сталкиваем две частицы, они разлетаются, поделив импульс. Далее мы измеряем координату у первой частицы и импульс у второй. И таким образом узнаем и координату первой частицы (которую измерили непосредственно), и ее импульс (который просто вычислили, измерив импульс у второй частицы). Такова была схема мысленного эксперимента, предложенная троицей ЭПР.
Это было сильным ударом, от которого великий Бор покачнулся. Спор их в тот день закончился вничью. Бор назвал натяжкой рассуждения Эйнштейна. Эйнштейн полагал, что импульс, как объективная характеристика, уже имеется у частицы. И путем вычисления мы его узнаем. Бор же считал, что, пока мы импульс не измерили, приписывать частице конкретное значение импульса нельзя: импульс присваивается измерением, стало быть, мы не обманули неопределенность.
Много позже, а именно в 1960-е годы физик Джон Белл из швейцарского ЦЕРНа, размышляя над ЭПР-парадоксом, формализовал эту придуманную схему, написав некое математическое неравенство, которое позже назвали неравенством Белла. Из формулы вытекало, что если в эксперименте справедливость неравенства подтвердится, значит, прав Эйнштейн. Если не подтвердится – Бор.
Такой эксперимент удалось поставить только в 1982 году. Поставил его Ален Аспек. Результат эксперимента с двумя поляризованными фотонами неопровержимо показал: прав был Бор. Никакой «объективной физической реальности», о которой грезил Эйнштейн, в микромире не существует.
Глава 3.
Призрачно все в этом мире бушующем…
Действительно, как-то призрачно все стало. Неопределенно как-то. Четкий мир вдруг расплылся в неких виртуальностях. Реальность растворилась в дрожащих тенях… Написав эти строки, я по ассоциации вспомнил историю № 21 из шкатулки – про загадочного Назарова. Чтобы вы не листали книжку, просто приведу этот кусочек еще раз.
«… Гораздо более странная история приключилась со мной в селе Красные Всходы… Там проводила свой психотренинг одна известная московская психологиня. Так сказать, в отрыве от мегаполиса. Клиенты жили в тишине, гуляли по лесу и познавали себя на занятиях.
Так вот, после очередного дня занятий лежал я в избе, которую мы сняли буквально за копейки, и смотрел на потолок, на котором прыгали отсветы икеевских фонариков. Такие купленные в магазине IKEA жестяные фонарики со стеклышками и дверцей – внутрь вставляется маленькая круглая свечечка, похожая на парафиновую таблетку в жестяной облатке…
Короче, лежал я, смотрел на потолок и думал. Думал не просто поток мыслей, как обычно, а вполне конкретно: что есть жизнь? Точнее, есть ли вообще что-нибудь на белом свете или это все иллюзия.
И вдруг с потолка мне ответил голос. Мужской баритон. Мне никогда раньше не отвечали голоса с потолка, поэтому я просто поразился… Нет, я не пил. Я, как ты знаешь, не пью, не курю и наркоту не принимаю…
Голос сказал:
– Ты знаешь, а на свете ничего нет.
Я был поражен не только самим голосом, но и его ответом! «Как же так? – спросил я его мысленно, – а вот же все вокруг! То, что вокруг меня – все это есть! Почему же «ничего не существует?..»
Голос ответил.
– А это все тени. Вот ты видишь пляшущие тени на стене. Но ты же не думаешь, что они есть на самом деле! Это просто тени.
И тогда я спросил.
– А я? Я есть?
– И тебя нет, – ответил голос.
– Но… но когда я умру – что же тогда исчезнет, если меня нет? Помолчав, голос ответил:
– Когда ты умрешь, твои внутренние тени сольются с внешними…»
Квантовое мельтешение. Мельтешение теней… Такие вот ассоциации. Кстати, после того случая я высказал Назарову следующие соображения… Я сказал ему, что голосу, отвечающему с потолка, удивляться не надо: когда хороший психолог или психотерапевт несколько дней подряд раскачивает и растормаживает вам психику, и не такое может случиться. Мой друг Леша Торгашев, которого опытный психолог пытала несколько часов подряд, в конце беседы почувствовал, как он сам говорит, «исчезновение Я». Личность его настолько растворилась в каком-то черном внутреннем космосе, настолько пропала, что Леша даже стал задыхаться – он просто физически не мог дышать! Еле-еле справился.
Мозговые программы у людей под чутким руководством психотерапевтов настолько сбоят и перестраиваются, психика работает в столь необычном режиме, что люди видят (как Татьяна Сырченко из истории № 34 про царевну Хатшепсут) длинные сноподобные галлюцинации. Вот и Назаров внутри своей головы сам себе ответил на свой же вопрос. Приятным мужским баритоном.
– Удивительно другое! Почему же ты, Назаров, не спросил у того голоса, который тебе так загадочно-красиво рассказал про внешние и внутренние тени – а чьи же это тени? и на чем они?
– Да, действительно, – сокрушенно протянул Назаров. – Жалко-то как, что не спросил! Эх, не догадался!.. Действительно – чьи? И на чем они пляшут, если в мире ничего нет?
«… Гораздо более странная история приключилась со мной в селе Красные Всходы… Там проводила свой психотренинг одна известная московская психологиня. Так сказать, в отрыве от мегаполиса. Клиенты жили в тишине, гуляли по лесу и познавали себя на занятиях.
Так вот, после очередного дня занятий лежал я в избе, которую мы сняли буквально за копейки, и смотрел на потолок, на котором прыгали отсветы икеевских фонариков. Такие купленные в магазине IKEA жестяные фонарики со стеклышками и дверцей – внутрь вставляется маленькая круглая свечечка, похожая на парафиновую таблетку в жестяной облатке…
Короче, лежал я, смотрел на потолок и думал. Думал не просто поток мыслей, как обычно, а вполне конкретно: что есть жизнь? Точнее, есть ли вообще что-нибудь на белом свете или это все иллюзия.
И вдруг с потолка мне ответил голос. Мужской баритон. Мне никогда раньше не отвечали голоса с потолка, поэтому я просто поразился… Нет, я не пил. Я, как ты знаешь, не пью, не курю и наркоту не принимаю…
Голос сказал:
– Ты знаешь, а на свете ничего нет.
Я был поражен не только самим голосом, но и его ответом! «Как же так? – спросил я его мысленно, – а вот же все вокруг! То, что вокруг меня – все это есть! Почему же «ничего не существует?..»
Голос ответил.
– А это все тени. Вот ты видишь пляшущие тени на стене. Но ты же не думаешь, что они есть на самом деле! Это просто тени.
И тогда я спросил.
– А я? Я есть?
– И тебя нет, – ответил голос.
– Но… но когда я умру – что же тогда исчезнет, если меня нет? Помолчав, голос ответил:
– Когда ты умрешь, твои внутренние тени сольются с внешними…»
Квантовое мельтешение. Мельтешение теней… Такие вот ассоциации. Кстати, после того случая я высказал Назарову следующие соображения… Я сказал ему, что голосу, отвечающему с потолка, удивляться не надо: когда хороший психолог или психотерапевт несколько дней подряд раскачивает и растормаживает вам психику, и не такое может случиться. Мой друг Леша Торгашев, которого опытный психолог пытала несколько часов подряд, в конце беседы почувствовал, как он сам говорит, «исчезновение Я». Личность его настолько растворилась в каком-то черном внутреннем космосе, настолько пропала, что Леша даже стал задыхаться – он просто физически не мог дышать! Еле-еле справился.
Мозговые программы у людей под чутким руководством психотерапевтов настолько сбоят и перестраиваются, психика работает в столь необычном режиме, что люди видят (как Татьяна Сырченко из истории № 34 про царевну Хатшепсут) длинные сноподобные галлюцинации. Вот и Назаров внутри своей головы сам себе ответил на свой же вопрос. Приятным мужским баритоном.
– Удивительно другое! Почему же ты, Назаров, не спросил у того голоса, который тебе так загадочно-красиво рассказал про внешние и внутренние тени – а чьи же это тени? и на чем они?
– Да, действительно, – сокрушенно протянул Назаров. – Жалко-то как, что не спросил! Эх, не догадался!.. Действительно – чьи? И на чем они пляшут, если в мире ничего нет?
Глава 4.
Жил да был черный кот
Слушайте, вам не удивительно, что одновременно существуют квантовая физика и классическая? Физика призрачного мира и физика реального мира?.. Где они стыкуются, такие противоречащие друг другу? Где место перехода из мира призраков в мир реальный? У физиков нет ответа на этот вопрос. Более того, когда спрашиваешь: «Если макромир состоит из микрочастиц, то классическая физика, как частный случай должна вытекать из квантовой, так?», слышишь в ответ:
– Нет, не так. Они существуют параллельно. И существование квантовой физики, которая должна быть «главнее» классической, почему-то подразумевает существование классической физики с ее классическими интерпретациями…
Вообще говоря, квантовая физика «добивает» до нашего, «большого» мира. Выше я приводил пример с летящими в соответствии с законами баллистики снарядами, каковым законам не подчиняются микрочастицы. Микрочастицы подчиняются только вероятностному распределению. Но и реальные снаряды ведут себя аналогично! По баллистике все снаряды должны падать в одну точку. А в реальности они падают в эллипс рассеивания. И в какую именно точку эллипса упадет снаряд, предсказать принципиально невозможно. То есть возможно, но только с некоторой долей вероятности. В этом смысле реальные объекты ведут себя как квантовые.
В квантовом мире запрещено копирование – из законов (из формул) квантовой механики вытекает невозможность копирования квантовых состояний частиц. В реальном, большом мире абсолютно точное копирование тоже невозможно: даже генетические копии (близнецы) чуть-чуть отличаются друг от друга.
Наш большой мир порой бывает поразительно похож на квантовый: общество, например, состоит из «квантов» – принципиально неделимых и непредсказуемых макрообъектов – людей. Но все-таки наш мир описывается законами классической физики.
Чтобы было чуть понятнее, о чем речь, поясню. Вот летит частица. Например, электрон. Он же – волна. Он же – размазанная в пространстве вероятность собственного нахождения в какой-либо точке. Пока электрон летит свободно, как птица, он находится везде. Как только мы его измерили (то есть электрон с чем-то провзаимодействовал), он локализовался. То есть из квантового превратился к классический объект. «Стянулся» из облачка в одну точку.
Вот что об этом пишет Дэвис: «Еще одно следствие квантовой физики затрагивает роль наблюдателя – лица, реально выполняющего измерения. Квантовая неопределенность не переносится на производимые нами реальные наблюдения. Это означает, что в каком-то звене цепи, соединяющей исследуемую квантовую систему с экспериментальной установкой, шкалами и измерительными приборами, нашими органами чувств, нашим мозгом и, наконец, нашим сознанием, должно происходить нечто такое, что рассеивает квантовую неопределенность».
Вопрос: где именно рассеялась квантовая неопределенность? Объективисту-реалисту, каковым я являюсь, проще всего сказать: она рассеялась независимо от сознания – на этапе взаимодействия элементарных частиц. Внутри прибора. Наше сознание тут ни причем: мы облучили электрон фотонами и интерференционная картинка исчезла, произошла редукция волновой функции. А видим мы это или нет – какая разница? Даже если экспериментатор погасил свое хитрое сознание (уснул), интерференционная картинка все равно исчезла.
Физик Эрвин Шредингер для иллюстрации редукции волновой функции предложил следующий мысленный эксперимент. Он просто «напрямую усилил» квантовый эффект, раздув его до уровня макромира. Представьте себе полупрозрачное зеркало, то есть такое, через которое фотон пролетает с вероятностью S. За зеркалом – фотоумножитель, который приводит в действие реле, управляющее молоточком. Молоточек падает и разбивает ампулу с синильной кислотой. Ампула находится в черном ящике с крышкой. В ящике сидит черный кот. Вся установка закрыта от нас, мы видим только черный ящик. Пускаем фотон.
Состояние фотона описывается суперпозицией двух его состояний: пролетел через зеркало + не пролетел через зеркало.
Если пролетел – кот мертв.
Если не пролетел – кот жив.
Пока мы не открыли крышку ящика, мы не узнаем, жив ли кот. С точки зрения квантовой механики кот находится в суперпозиции – в «неопределенном» состоянии. В состоянии «ни жив – ни мертв». Или «жив-мертв». То есть Шредингер своей «кошачьей» установкой перенес квантовую неопределенность на макромир.
Но мы-то с вами знаем, что кот не может быть одновременно в двух состояниях! Однако по формулам получается, что может. И только процесс наблюдения (снял крышку, посмотрел) переводит кота в определенное состояние. Так в какой момент произошла редукция волновой функции? В момент, когда сняли крышку? В момент, когда фотон пролетал через зеркало? Или в момент, когда мозг решал: жив кот или мертв?..
И вообще, не является ли редукция волновой функции (схлопывание всех виртуальных состояний в одно реальное) лишь кажущимся феноменом? Американский физик Хью Эверетт предложил такую модель мира, которая в редукции, схлопывании волновой функции не нуждается… Пролетел или не пролетел фотон через зеркало – даже вопрос так не стоит. Если есть суперпозиция из двух возможных вариантов, реализуются оба! И пролетел и не пролетел. В одной Вселенной пролетел, в другой нет. Каждый раз, когда Вселенной нужно решать, как поступить, она раздваивается. Получается два мира. В одном фотон пролетел и, соответственно, кот мертв, в другой – не пролетел и, соответственно, кот жив. А поскольку в микромире каждое мгновение происходят мириады квантовых событий, Вселенные «ветвятся» постоянно, ежемгновенно. Каждая из них отличается от другой «на квант». То есть в мире, в разных вселенных реализуются все возможности.
Красивая теория. Только непроверяемая. Но раз дядя физик говорит, значит, много думал.
Еще дальше Эверетта в эти дебри зашел московский физик Михаил Менский. Вот его рассуждения… Представьте себе горошину. Она может лежать либо в коробочке А1 с вероятностью С1 либо в коробочке А2 с вероятностью С2. Открываем левую коробочку. Есть горошина! Значит, в правой коробочке ее нет! И наоборот.
Если речь идет о горошине, исследователь делает вывод: горошина была в коробке Аг Что это значит? Что раз горошину мы там нашли, значит, она там и была. В квантовой механике, как вы уже убедились, все не так. Там именно измерение присваивает свойство – это и есть редукция волновой функции. То есть если мы измерением нашли горошину-частицу в левой коробочке, этот вовсе не значит, что она там была. Это значит, что мы ее там просто зафиксировали. А где же она была до фиксации? В суперпозиции! Одновременно и в A1 и в А2. То есть ее состояние можно описать суммой: А1 + А2.
Точнее, С1А1 + С2А2 то есть с вероятностью С1 частица находится в коробке А1 плюс с вероятностью С2 она одновременно находится в коробке А2. С точки зрения математики состояние системы описывается вектором в комплексном пространстве, что, впрочем, нам сейчас не очень важно… А после измерения частица-горошина оказывается не в суперпозиции, а в одном из состояний. Суперпозиция исчезла, система выбрала себе конкретное состояние. Произошла редукция волновой функции.
Понятие редукции волновой функции физики ввели для того, чтобы привычным образом описать произошедшее, то есть переход от квантового мира к миру классическому. Но ведь и прибор, и наблюдатель тоже состоят из квантов, только из огромного их множества. То есть это квантовая система, только большая. Стало быть, она должна вести себя по законам квантовой механики.
Законы квантовой механики описываются формулами. А с точки зрения формул никакой редукции не происходит – система как была квантовой, так и осталась. То есть суперпозиция должна сохраниться.
Введем в систему наблюдателя со своим прибором. До измерения наблюдатель был в состоянии Ф0, когда он не мог сказать ничего определенного о системе. То есть исходное состояние всей системы такое: Ф0(С1А1 + С2А2).
После измерения состояние наблюдателя изменилось. Если частица обнаружится в коробочке А1, то состояние наблюдателя обозначим Ф1. А если частица в коробке А2, то наблюдатель пришел в состояние Ф2. То есть после измерения у нас получится: Ф1С1А1 + Ф2С2А2.
Итоговая формула такая:
Ф0(С1А1 + С2А2) = Ф1С1А1 + Ф2С2А2.
Слева суперпозиция и справа суперпозиция. И никакой редукции состояния. Стоило нам принять то, что и без того ясно – что прибор и наблюдатель суть квантовые объекты, потому как состоят из элементарных частиц, – так сразу куда-то подевалась вся классичность и определенность нашего мира. И остались сплошные суперпозиции. О чем это говорит?
О том, что, оставаясь в рамках квантовой механики, мы никакой редукции не обнаружим. Редукцию в квантовую механику внесли физики только для того, чтобы объяснить результат эксперимента. То есть редукции как ситуации выбора – или то или это, или в левой коробочке или в правой – быть не должно. Но она есть!
Открыв коробки, мы обнаруживаем горошину-частицу только в одной из них. А это и есть самая настоящая редукция! До открывания коробок частица была сразу в обеих (помните, один электрон тоже умудряется пролететь сразу через две щели – как волна), а после открывания коробок частица оказывается только в одной из них. Редукция! Которой, судя по формулам, быть не должно.
Пока я не заглянул в черный ящик и не узнал, мертв кот или жив, для меня суперпозиция (неопределенность) его состояния сохраняется. Как только я заглянул и узнал – неопределенность (суперпозиция) исчезает. А для моего друга, который находится в соседней комнате, неопределенность все еще остается, потому что я еще не сказал ему, что случилось с котом «на самом деле». Как только я передам ему информацию, для него ситуация тоже станет определенной. Информация разрушает суперпозицию. Пока не осознал – находишься в квантовом мире неопределенностей. Определился внутри себя – прощай, суперпозиция, здравствуй классический мир!
– Нет, не так. Они существуют параллельно. И существование квантовой физики, которая должна быть «главнее» классической, почему-то подразумевает существование классической физики с ее классическими интерпретациями…
Вообще говоря, квантовая физика «добивает» до нашего, «большого» мира. Выше я приводил пример с летящими в соответствии с законами баллистики снарядами, каковым законам не подчиняются микрочастицы. Микрочастицы подчиняются только вероятностному распределению. Но и реальные снаряды ведут себя аналогично! По баллистике все снаряды должны падать в одну точку. А в реальности они падают в эллипс рассеивания. И в какую именно точку эллипса упадет снаряд, предсказать принципиально невозможно. То есть возможно, но только с некоторой долей вероятности. В этом смысле реальные объекты ведут себя как квантовые.
В квантовом мире запрещено копирование – из законов (из формул) квантовой механики вытекает невозможность копирования квантовых состояний частиц. В реальном, большом мире абсолютно точное копирование тоже невозможно: даже генетические копии (близнецы) чуть-чуть отличаются друг от друга.
Наш большой мир порой бывает поразительно похож на квантовый: общество, например, состоит из «квантов» – принципиально неделимых и непредсказуемых макрообъектов – людей. Но все-таки наш мир описывается законами классической физики.
Чтобы было чуть понятнее, о чем речь, поясню. Вот летит частица. Например, электрон. Он же – волна. Он же – размазанная в пространстве вероятность собственного нахождения в какой-либо точке. Пока электрон летит свободно, как птица, он находится везде. Как только мы его измерили (то есть электрон с чем-то провзаимодействовал), он локализовался. То есть из квантового превратился к классический объект. «Стянулся» из облачка в одну точку.
Вот что об этом пишет Дэвис: «Еще одно следствие квантовой физики затрагивает роль наблюдателя – лица, реально выполняющего измерения. Квантовая неопределенность не переносится на производимые нами реальные наблюдения. Это означает, что в каком-то звене цепи, соединяющей исследуемую квантовую систему с экспериментальной установкой, шкалами и измерительными приборами, нашими органами чувств, нашим мозгом и, наконец, нашим сознанием, должно происходить нечто такое, что рассеивает квантовую неопределенность».
Вопрос: где именно рассеялась квантовая неопределенность? Объективисту-реалисту, каковым я являюсь, проще всего сказать: она рассеялась независимо от сознания – на этапе взаимодействия элементарных частиц. Внутри прибора. Наше сознание тут ни причем: мы облучили электрон фотонами и интерференционная картинка исчезла, произошла редукция волновой функции. А видим мы это или нет – какая разница? Даже если экспериментатор погасил свое хитрое сознание (уснул), интерференционная картинка все равно исчезла.
Физик Эрвин Шредингер для иллюстрации редукции волновой функции предложил следующий мысленный эксперимент. Он просто «напрямую усилил» квантовый эффект, раздув его до уровня макромира. Представьте себе полупрозрачное зеркало, то есть такое, через которое фотон пролетает с вероятностью S. За зеркалом – фотоумножитель, который приводит в действие реле, управляющее молоточком. Молоточек падает и разбивает ампулу с синильной кислотой. Ампула находится в черном ящике с крышкой. В ящике сидит черный кот. Вся установка закрыта от нас, мы видим только черный ящик. Пускаем фотон.
Состояние фотона описывается суперпозицией двух его состояний: пролетел через зеркало + не пролетел через зеркало.
Если пролетел – кот мертв.
Если не пролетел – кот жив.
Пока мы не открыли крышку ящика, мы не узнаем, жив ли кот. С точки зрения квантовой механики кот находится в суперпозиции – в «неопределенном» состоянии. В состоянии «ни жив – ни мертв». Или «жив-мертв». То есть Шредингер своей «кошачьей» установкой перенес квантовую неопределенность на макромир.
Но мы-то с вами знаем, что кот не может быть одновременно в двух состояниях! Однако по формулам получается, что может. И только процесс наблюдения (снял крышку, посмотрел) переводит кота в определенное состояние. Так в какой момент произошла редукция волновой функции? В момент, когда сняли крышку? В момент, когда фотон пролетал через зеркало? Или в момент, когда мозг решал: жив кот или мертв?..
И вообще, не является ли редукция волновой функции (схлопывание всех виртуальных состояний в одно реальное) лишь кажущимся феноменом? Американский физик Хью Эверетт предложил такую модель мира, которая в редукции, схлопывании волновой функции не нуждается… Пролетел или не пролетел фотон через зеркало – даже вопрос так не стоит. Если есть суперпозиция из двух возможных вариантов, реализуются оба! И пролетел и не пролетел. В одной Вселенной пролетел, в другой нет. Каждый раз, когда Вселенной нужно решать, как поступить, она раздваивается. Получается два мира. В одном фотон пролетел и, соответственно, кот мертв, в другой – не пролетел и, соответственно, кот жив. А поскольку в микромире каждое мгновение происходят мириады квантовых событий, Вселенные «ветвятся» постоянно, ежемгновенно. Каждая из них отличается от другой «на квант». То есть в мире, в разных вселенных реализуются все возможности.
Красивая теория. Только непроверяемая. Но раз дядя физик говорит, значит, много думал.
Еще дальше Эверетта в эти дебри зашел московский физик Михаил Менский. Вот его рассуждения… Представьте себе горошину. Она может лежать либо в коробочке А1 с вероятностью С1 либо в коробочке А2 с вероятностью С2. Открываем левую коробочку. Есть горошина! Значит, в правой коробочке ее нет! И наоборот.
Если речь идет о горошине, исследователь делает вывод: горошина была в коробке Аг Что это значит? Что раз горошину мы там нашли, значит, она там и была. В квантовой механике, как вы уже убедились, все не так. Там именно измерение присваивает свойство – это и есть редукция волновой функции. То есть если мы измерением нашли горошину-частицу в левой коробочке, этот вовсе не значит, что она там была. Это значит, что мы ее там просто зафиксировали. А где же она была до фиксации? В суперпозиции! Одновременно и в A1 и в А2. То есть ее состояние можно описать суммой: А1 + А2.
Точнее, С1А1 + С2А2 то есть с вероятностью С1 частица находится в коробке А1 плюс с вероятностью С2 она одновременно находится в коробке А2. С точки зрения математики состояние системы описывается вектором в комплексном пространстве, что, впрочем, нам сейчас не очень важно… А после измерения частица-горошина оказывается не в суперпозиции, а в одном из состояний. Суперпозиция исчезла, система выбрала себе конкретное состояние. Произошла редукция волновой функции.
Понятие редукции волновой функции физики ввели для того, чтобы привычным образом описать произошедшее, то есть переход от квантового мира к миру классическому. Но ведь и прибор, и наблюдатель тоже состоят из квантов, только из огромного их множества. То есть это квантовая система, только большая. Стало быть, она должна вести себя по законам квантовой механики.
Законы квантовой механики описываются формулами. А с точки зрения формул никакой редукции не происходит – система как была квантовой, так и осталась. То есть суперпозиция должна сохраниться.
Введем в систему наблюдателя со своим прибором. До измерения наблюдатель был в состоянии Ф0, когда он не мог сказать ничего определенного о системе. То есть исходное состояние всей системы такое: Ф0(С1А1 + С2А2).
После измерения состояние наблюдателя изменилось. Если частица обнаружится в коробочке А1, то состояние наблюдателя обозначим Ф1. А если частица в коробке А2, то наблюдатель пришел в состояние Ф2. То есть после измерения у нас получится: Ф1С1А1 + Ф2С2А2.
Итоговая формула такая:
Ф0(С1А1 + С2А2) = Ф1С1А1 + Ф2С2А2.
Слева суперпозиция и справа суперпозиция. И никакой редукции состояния. Стоило нам принять то, что и без того ясно – что прибор и наблюдатель суть квантовые объекты, потому как состоят из элементарных частиц, – так сразу куда-то подевалась вся классичность и определенность нашего мира. И остались сплошные суперпозиции. О чем это говорит?
О том, что, оставаясь в рамках квантовой механики, мы никакой редукции не обнаружим. Редукцию в квантовую механику внесли физики только для того, чтобы объяснить результат эксперимента. То есть редукции как ситуации выбора – или то или это, или в левой коробочке или в правой – быть не должно. Но она есть!
Открыв коробки, мы обнаруживаем горошину-частицу только в одной из них. А это и есть самая настоящая редукция! До открывания коробок частица была сразу в обеих (помните, один электрон тоже умудряется пролететь сразу через две щели – как волна), а после открывания коробок частица оказывается только в одной из них. Редукция! Которой, судя по формулам, быть не должно.
Пока я не заглянул в черный ящик и не узнал, мертв кот или жив, для меня суперпозиция (неопределенность) его состояния сохраняется. Как только я заглянул и узнал – неопределенность (суперпозиция) исчезает. А для моего друга, который находится в соседней комнате, неопределенность все еще остается, потому что я еще не сказал ему, что случилось с котом «на самом деле». Как только я передам ему информацию, для него ситуация тоже станет определенной. Информация разрушает суперпозицию. Пока не осознал – находишься в квантовом мире неопределенностей. Определился внутри себя – прощай, суперпозиция, здравствуй классический мир!