В последующие годы выработалось несколько основных видов гидротурбин. Не вдаваясь здесь в подробности, отметим, что все турбины XIX века можно условно разделить на два основных типа: реактивные и струйные. Реактивная турбина, как уже говорилось, представляла собой усовершенствованное колесо Сегнера. Она имела турбинное колесо, насаженное на вал, с особым образом искривленными лопатками. Это колесо заключало внутри себя или было окружено направляющим аппаратом. Последний представлял из себя неподвижное колесо с направляющими лопатками. Вода устремлялась вниз через направляющий аппарат и турбинное колесо, причем лопатки первого направляли воду на лопатки второго. При выливании вода давила на лопатки и вращала колесо. От вала вращение передавалось дальше к какому-нибудь устройству (например, электрогенератору). Реактивные турбины оказались очень удобны там, где напор воды невелик, но есть возможность создать перепад в 10-15 м. Они получили в XX веке очень широкое распространение.
   Другим распространенным типом турбин были струйные. Их принципиальное устройство заключалось в том, что струя воды под сильным напором ударяла в лопатки колеса и этим заставляла его вращаться. Сходство струйной турбины с нижнебойным колесом очень велико. Прообразы таких турбин появились еще в средние века, как это можно заключить из некоторых изображений того времени.
   В 1884 году американский инженер Пельтон значительно усовершенствовал струйную турбину, создав новую конструкцию рабочего колеса. В этом колесе гладкие лопатки прежней струйной турбины были заменены особенными им изобретенными, имеющими вид двух соединенных вместе ложек. Таким образом, лопатки получились не плоскими, а вогнутыми, с острым ребром посередине. При таком устройстве лопаток работа воды почти целиком шла на вращение колеса и только очень малая ее часть терялась бесполезно.
   Вода к турбине Пельтона поступала по трубе, идущей от запруды или водопада. Там, где воды было много, труба делалась толстой, а где воды оказывалось меньше, она была тоньше. На конце трубы имелся наконечник, или сопло, из которого вода вырывалась сильной струей. Струя попадала в ложкообразные лопатки колеса, острое ребро лопатки резало ее пополам, вода толкала лопатки вперед, и турбинное колесо начинало вращаться. Отработанная вода стекала вниз в отводную трубу. Колесо с лопатками и соплом прикрывалось сверху кожухом из чугуна или железа. При сильном напоре колесо Пельтона вращалось с огромной скоростью, делая до 1000 оборотов в минуту. Оно было удобно там, где имелась возможность создать сильный напор воды. КПД турбины Пельтона был очень высок и приближался к 85%, поэтому она и получила широчайшее распространение.
   После того как в 80-е годы XIX века была разработана система передачи электрического тока на большие расстояния и появилась возможность сосредоточить производство электроэнергии на «фабриках электричества» — электростанциях, началась новая эпоха в истории турбостроения. В соединении с электрогенератором турбина стала тем могущественным инструментом, с помощью которого человек поставил себе на службу огромную силу, скрытую в реках и водопадах.

54. ПУЛЕМЕТ

   В истории военной техники можно насчитать несколько эпохальных изобретений, к числу которых, несомненно, относится и пулемет. Точно так же, как первая пушка открыла эпоху огнестрельного оружия, а первая винтовка — эпоху нарезного, создание пулемета ознаменовало собой начало эпохи скорострельного автоматического оружия.
   Мысль о таком оружии, которое позволяло бы в кратчайший промежуток времени выпустить наибольшее количество пуль, появилась очень давно. Уже в начале XVI века существовали укрепленные поперечно на бревне ряды заряженных стволов, через затравки которых была просыпана пороховая дорожка. При воспламенении пороха получался залп из всех стволов. Об использовании подобных установок (ребодеконов) в Испании сообщается около 1512 года. Потом возникла мысль укреплять отдельные стволы на вращающемся граненом вале. Это оружие называлось «органом», или картечницей. Орган мог иметь на себе до нескольких десятков стволов, каждый из которых снабжался своим кремневым замком и спусковым механизмом. Действовало такое приспособление очень просто: когда все стволы были заряжены и замки взведены, вал приводили во вращение посредством рукоятки, укрепленной на его оси. При этом замки, проходя мимо неподвижного шпенька (небольшого стержня), укрепленного на оси орудия, спускались и производили выстрел. Частота огня зависела от частоты вращения. Впрочем, подобное оружие не имело широкого распространения. Оно стало более удобным только после того, как появились патроны в металлической гильзе.
   В 1860— 1862 годах американец Гатлинг создал несколько образцов довольно совершенных картечниц, которые были непосредственными предшественницами пулемета. В 1861 году такая картечница была принята на вооружение армии США, а потом и многих других армий.
   Вокруг центрального вала АБ были прикреплены шесть или десять ружейных стволов, образующих с ним как бы цилиндр; стволы были набраны в особой железной раме ВГДЕ, имевшей цапфы Ж и З для помещения рамы на колесный лафет. Вал АБ и окружающие его стволы были пропущены сквозь отверстия двух железных дисков К и Л. Передний конец вала Б был вставлен в переднюю стенку рамы, а задний конец А проходил через пустотелый чугунный цилиндр М и соединялся с зубчатыми колесами НН. Через посредство рукояти ОО вал АБ со стволами приводился во вращательное движение. Для заряжания картечницы на валу АБ непосредственно за обрезами стволов имелся приемный цилиндр П с желобами, расположенными на боковой поверхности на продолжении каждого ствола: в них помещались патроны. Над приемным цилиндром была прикреплена к раме на шарнире крышка Р с воронкой С, через которую можно было всыпать патроны из особой железной пачки. Скрытый в цилиндре М механизм был устроен таким образом, что если один человек вращал посредством рукояти ОО систему стволов, а другой высыпал патроны в воронку С, то производились последовательное заряжание и стрельба из каждого ствола одного за другим; патронные гильзы при этом последовательно выбрасывались из ствола и падали вниз.
   Осуществлялось это следующим образом. К приемному цилиндру П прилегал надетый на том же зубчатом валу замочный цилиндр АБ с желобами, которые были продолжением желобов первого цилиндра. Оба цилиндра и стволы составляли одно целое и приводились в общее вращение рукояткой О. В каждом желобе замочного цилиндра помещался затвор, представляющий собой трубку ВГ. Внутри трубки располагался ударник с головкою Д и ударной шпилькой Е; ударник мог продольно двигаться в затворе, причем для головки Д была разделана вдоль верхней стенки затвора щель; вокруг ударника была обвита пружина, сжимавшаяся между головкой ударника и выступом в затворе Ж. В передней части затвора был укреплен посредством шпильки экстрактор (устройство для извлечения стреляной гильзы) З с зацепом И и зубцом К. При вращении всей этой системы выступы затворов Л скользили по наклонному нарезу МММ на внутренней поверхности неподвижной оболочки, покрывавшей механизм. Вследствие этого затворы постепенно выдвигались в желоба приемного цилиндра, подталкивая патроны в стволы. В каждый момент вращения только один ствол был заперт затвором, то есть подготовлен к выстрелу. Головки ударников Д скользили по выступу НН, расположенному на внутренней поверхности неподвижной оболочки, причем по мере выдвижения затвора вперед спиральные пружины сжимались. В тот момент, когда затвор запирал ствол, головка ударника освобождалась от выступа НН и ударная пружина воспламеняла капсюль патрона. При дальнейшем вращении каждый затвор вследствие обратного наклона нареза МММ отодвигался назад, причем экстрактор вытягивал пустую гильзу, которая падала вниз. При весе около 250 кг картечница могла делать до 600 выстрелов в минуту. Она была довольно капризным оружием, и управляться с ней было очень непросто. К тому же вращение рукоятки оказалось весьма утомительным занятием. Картечница использовалась в некоторых войнах (гражданской войне в США, франко-прусской и русско-турецкой), но нигде не смогла зарекомендовать себя с хорошей стороны. В истории техники она интересна тем, что некоторые ее механизмы были использованы потом изобретателями пулеметов. Однако назвать картечницу автоматическим оружием в современном смысле этого слова еще нельзя.
   В настоящем автоматическом оружии, конечно, не могло быть и речи о том, чтобы вручную вращать стволы, да и принцип его действия был совсем другим. Развиваемое при выстреле давление пороховых газов здесь использовалось не только для выбрасывания пули из канала ствола, но и для перезарядки. При этом автоматически выполнялись следующие операции: открывался затвор, выбрасывалась стреляная гильза, взводилась боевая пружина ударника, в патронник ствола вводился новый патрон, после чего затвор вновь закрывался. Над созданием образцов такого оружия работали во второй половине XIX века многие изобретатели в разных странах. Впервые действующий автоматический механизм удалось создать английскому инженеру Генри Бессемеру. В 1854 году он сконструировал первую в истории автоматическую пушку. Силой отдачи после выстрела здесь происходило выбрасывание гильзы, вслед за тем автоматически досылался новый снаряд и взводился механизм для следующего выстрела. Чтобы орудие не перегревалось, Бессемер продумал систему водяного охлаждения. Впрочем, изобретение его было настолько несовершенно, что речь о серийном производстве этой пушки даже не шла.
   Самый первый в истории пулемет был создан американским изобретателем Хайрамом Максимом. В течение нескольких лет он безуспешно работал над изобретением автоматической винтовки. В конце концов ему удалось сконструировать все основные узлы автоматического оружия, но оно получилось таким громоздким, что скорее походило на небольшую пушку. От винтовки пришлось отказаться. Вместо нее Максим собрал в 1883 году первый действующий образец своего знаменитого пулемета. Вскоре после этого он переехал в Англию и основал здесь свою собственную мастерскую, которая позже соединилась с оружейным заводом Норденфельдта.
   Первое испытание пулемета было проведено в Энфильде в 1885 году. В 1887 году Максим предложил английскому военному министерству три различных образца своего пулемета, дававшего около 400 выстрелов в минуту. В последующие годы он стал получать на него все больше и больше заказов. Пулемет был испытан в различных колониальных войнах, которые вела в это время Англия, и великолепно зарекомендовал себя как грозное и очень эффективное оружие. Англия была первым государством, принявшим пулемет на вооружение своей армии. В начале XX века пулемет Максима уже состоял на вооружении всех европейских и американских армий, а также армий Китая и Японии. Вообще, ему было суждено редкое долголетие. Постоянно модернизируясь, эта надежная и безотказная машина простояла на вооружении многих армий (в том числе советской) вплоть до окончания Второй мировой войны.
   Принцип действия «максима» был следующий. Пулемет имел подвижный ствол, соединенный с помощью цапф с двумя продольными пластинами особой рамы, между которыми помещался замок АБ, запиравший ствол, мотыль ВГ и шатун ГД. Все эти три части были соединены между собой шарнирами ВГД, причем последний шарнир проходил через заднюю оконечность пластин рамы и соединялся с шатуном наглухо, то есть таким образом, что если эта ось поворачивалась, то поворачивался и сам шатун. На эту ось с правой стороны снаружи короба насаживалась рукоять ЕЖ, опиравшаяся задним концом Ж на ролик З. К рукояти при помощи цепочки прикреплялся задний конец спиральной пружины К, работавшей на растяжение, передний же ее конец прикреплялся к неподвижному коробу системы. Рукоять находилась с правой наружной стороны короба пулемета.
   При выстреле пороховые газы стремились отбросить замок назад, но так как он был соединен при помощи мотыля и шатуна с рамой пулемета посредством оси Д (причем средняя ось Г располагалась несколько выше двух крайних осей Д и В, прилегая в то же время сверху к особой стенке), то первоначально эти части (то есть, мотыль, шатун и замок) сохраняли свое прежнее положение, которое они имели перед выстрелом, и отходили назад, двигая за собой раму, а следовательно, и соединенный с нею ствол. Это происходило до тех пор, пока рукоять ЕЖ, сидящая на оси Д, не налезала на ролик З, после чего рукоять начинала вращаться. Это вращение рукояти вызывало вращение оси Д, а следовательно, и шатуна ДГ. Замок при этом получал ускоренное по сравнению с рамой и стволом движение — он открывал ствол и гильза выбрасывалась из патронника. Вслед за тем растянутая пружина возвращала весь механизм в первоначальное положение. Так как подвижные части в этой системе были очень массивны, то в первое время пулемет часто давал «задержку», в результате чего скорострельность его заметно падала. Для улучшения работы пулемета Миллер, техник фирмы «Максим-Норденфельдт», и русский капитан Жуков придумали надульник. Действие его заключалось в том, что пороховые газы, выбрасываемые из ствола за пулей, отражались о переднюю внутреннюю стену надульника и действовали затем на передний обрез дульного среза, увеличивая скорость отбрасывания ствола от рамы.
   Подача патрона в ствол осуществлялась следующим образом. По особым нарезам на передней плоскости замка скользила вверх и вниз личинка ЛМ, назначение которой было выхватывать патроны из ленты, а стреляные гильзы из патронника: при ее поднимании вверх в особые захваты личинки входила шляпка патрона, причем при отодвигании замка назад патрон выхватывался из ленты. Для того чтобы поставить выхваченный патрон на линию оси патронника, личинка должна была опуститься вниз, что происходило под действием ее собственного веса, причем особые боковые рожки личинки скользили по боковым пластинкам ПР неподвижного короба.
   Большей интенсивности опускания помогали пластинчатые пружины СС, нажимавшие сверху на личинку. Обратное поднятие личинки вверх происходило при помощи подъемных рычагов НО, передние края которых при вращении рычагов надавливали на боковые выступы личинки. Вращение рычагов производилось особым плечом ВВ'.
   Рукоять в пулемете действовала как ускоритель: обладая массивностью, она при своем вращении ускоряла поворачивание мотыля и шатуна с отбрасыванием замка в крайнее заднее положение.

55. ГИДРАВЛИЧЕСКИЙ ПРЕСС

   В основе действия гидравлического пресса лежит одно из важнейших свойств воды — ее малая способность к сжатию. Благодаря этому давление, производимое на воду, заключенную в замкнутый сосуд, передается во все стороны с одинаковой силой, так что на каждую единицу поверхности приходится такое же давление, как и давление, производимое извне.
   Сила, с которой оказывается воздействие на поверхность, определяется по формуле F=P•S, где P — давление, а S — площадь, к которой прилагается сила. Представим себе замкнутый сосуд с водой (или любой другой несжимаемой жидкостью), в который вставлены два поршня. Воздействуя на меньший поршень с силой F, мы заставим подниматься больший поршень. Сила, с которой вода будет давить на этот поршень (как это следует из приведенной выше формулы), будет во столько раз больше, во сколько его площадь больше площади меньшего поршня. В этом состоит суть эффекта гидравлического усиления. Например, если на меньший поршень давить с силой 10 кг, то воздействие, оказываемое на поршень в другом колене, диаметр которого вдвое больше, будет в четыре раза больше (так как площадь этого поршня в четыре раза больше), то есть оно будет равняться 40 кг. Соответствующим подбором диаметров того и другого поршня можно достигнуть чрезвычайно большого увеличения силы давления, оказываемой водой на второй поршень, но в такой же мере уменьшиться скорость, с которой он будет подниматься вверх. (В нашем примере для того, чтобы большой поршень поднялся на 1 см, маленький должен опуститься на 4 см.)
   Это замечательное свойство несжимаемой жидкости, получившее широчайшее использование в современной технике, было открыто Паскалем. В своем трактате о равновесии жидкостей, изданном посмертно в 1663 году, он писал: «Если сосуд, полный водою, закрытый со всех сторон, имеет два отверстия, и одно имеет площадь в сто раз больше, чем другое, с плотно вставленными поршнями, то один человек, толкающий маленький поршень, уравновесит силу ста человек, которые будут толкать в сто раз больший, и пересилит 99 из них».
   После опубликования трактата Паскаля идея гидравлического пресса витала в воздухе, но осуществить ее на практике не удавалось еще более ста лет, потому что не могли добиться необходимой герметичности сосуда: при больших давлениях вода просачивалась между стенками цилиндра и поршня и никакого усиления не получалось. В 90-х годах XVIII века за создание гидравлического пресса взялся известный английский изобретатель Брама. Ему тоже пришлось столкнуться с проблемой уплотнения, но эту задачу Браме помог разрешить его сотрудник и будущий великий изобретатель Генри Модсли, который придумал особый самоуплотняющийся воротничок (манжету). Изобретение Модсли фактически было равно изобретению самого пресса, так как без него он никогда не смог бы работать. Современники хорошо сознавали это. Ученик Модсли Дж. Несмит писал позже, что если бы Модсли не изобрел ничего, кроме этого самоуплотняющегося воротничка, уже и тогда имя его навсегда бы вошло в историю техники. Воротничок представлял собой кольцо, имевшее в разрезе вид обращенной буквы V, его вытягивали из куска толстой юфти, хорошо размоченной в теплой воде, с помощью чугунной формы, состоявшей из кольцеобразного углубления и сплошного кольца, соответствовавшего его внутренней поверхности. Раньше полного высыхания кожу надо было пропитать салом, чтобы она сохранила свою мягкость. При заполнении цилиндра водой под высоким давлением края кожаного воротничка раздвигались, плотно прижимаясь к поверхности цилиндра и закрывая собой зазор. При больших диаметрах поршня такой воротничок оказывался слишком гибким и поэтому легко отставал. В этом случае внутрь него помещали кольцо, подобное тому, что служило для вытягивания. В 1797 году Брама построил первый в истории гидравлический пресс.
   Здесь EE изображают стойки, D — крышку, а C — платформу пресса, составляющую одно целое с его поршнем, тогда как внешний цилиндр отливался вместе с основанием для стоек. В представленном рядом разрезе цилиндра виден воротничок Модсли, изображенный также отдельно в увеличенном виде под буквой Q. Цилиндр пресса соединялся гибкой трубкой с отдельно стоящим нагнетательным насосом. Его сплошной поршень приводился в начальное движение с помощью рычага GH, шатуна H' и направляющего стержня K. Насос обычно укреплялся на чугунном ящике, служившим резервуаром для жидкости (воды, глицерина или масла), в этот же резервуар вытекала обратно жидкость, когда давление достигало установленной величины и предохранительный клапан V поднимал свой груз P или когда отворяли винтовой затвор, чтобы выпустить жидкость и дать возможность поршню вновь опуститься вниз.
   Пресс Брамы послужил образцом для множества других гидравлических приспособлений, изобретенных позже. Вскоре был создан домкрат — устройство для поднятия тяжестей. В 20-е годы XIX века пресс стал широко использоваться для штамповки изделий из мягкого металла. Однако прошло еще несколько десятилетий, прежде чем были созданы мощные ковочные прессы, пригодные для штамповки стальных и железных деталей.
   Настоятельная потребность в таких прессах появилась во второй половине XIX века, когда заметно увеличились размеры обрабатываемых заготовок. Их проковка требовала все более мощных паровых молотов. Между тем для увеличения силы удара парового молота приходилось либо увеличивать вес падающей части, либо высоту ее падения. Но и то и другое имело свои пределы. Быстрый процесс машиностроения, необходимость оковки все более и более крупных предметов довели наконец вес бабы (бьющей части молота) до колоссальных размеров — порядка 120 тонн. При падении таких огромных масс, конечно, невозможно было добиться необходимой точности. Кроме того, сила удара, вызывающая резкую деформацию предмета, действовала благодаря инерции лишь на поверхностный слой отковки. С технологической точки зрения медленное, но сильное давление было гораздо более целесообразно, поскольку металл получал время раздаться, и это способствовало более правильной деформации. Наконец, сильные удары молота настолько сотрясали почву, что это сделалось опасным для окружающих построек и сооружений.
   Впервые ковочный пресс был разработан в 1860 году директором мастерских государственных железных дорог в Вене Дж. Газвеллом. Мастерские были расположены в черте города вблизи жилых построек, так что разместить в них мощный паровой молот не представлялось возможным. Тогда Газвелл и решил заменить молот прессом. Созданный им пресс обслуживался паровой машиной двойного действия с горизонтальным цилиндром, приводившей в действие два насоса. Мощность пресса составляла 700 тонн, и он с успехом применялся при штамповке паровозных деталей: поршней, хомутов, кривошипов и тому подобного. Выставленный в 1862 году на всемирной выставке в Лондоне, он привлек к себе живейший интерес. С этого времени во всех странах стали создаваться все более мощные прессы. Английский инженер Витворт (один из учеников Генри Модсли и сам выдающийся изобретатель), увлеченный примером Газвелла, поставил перед собой сложную задачу — создать такой пресс, который бы можно было использовать для получения изделий непосредственно из железных и стальных слитков. В 1875 году он получил патент на свой первый ковочный пресс.
   Пресс Витворта состоял из четырех колонн, укрепленных в фундаментной плите. На верхней части колонн была расположена неподвижная поперечная балка (траверса) с двумя гидравлическими подъемными цилиндрами — с их помощью вверх и вниз перемещалась подвижная траверса, на которой внизу был установлен штамп. Устройство пресса основывалось на комбинированном использовании силовых насосов и гидравлических аккумуляторов. (Гидравлический аккумулятор — устройство, позволяющее накапливать гидравлическую энергию; он состоит из цилиндра и поршня, к которому крепится груз; сначала вода, поступающая в цилиндр, приподнимает груз, затем, в нужный момент, груз отпускается, и вода, выходя из цилиндра под его давлением, совершает необходимую работу.) В прессе Витворта между четырьмя колоннами на некоторой высоте над наковальней K помещался массив P; внутрь него был вставлен большой цилиндр C, поршень которого E и был кующей частью пресса. Этот поршень соединялся с поршнями двух малых цилиндров a и a1, также вставленных в массив, так что при работе все три поршня поднимались и опускались одновременно. Пространство C над поршнем большого цилиндра соединялось с коробкой D, куда вгонялась насосами вода. У малых цилиндров пространство над поршнем соединялось с трубкой грузового аккумулятора AB, груз которого был уравновешен с весом всех трех поршней E, a и a1.
   Сама работа ковки производилась следующим образом: открывался клапан d в нагнетательной коробке, воду насосов направляли в пространство над поршнем большого цилиндра, отчего все три поршня опускались. При этом большой поршень производил сжатие металла, а малые поршни давили на воду под ними и этим давлением поднимали уравновешивающий груз аккумулятора. Когда клапан нагнетательного насоса закрывали, давление на большой поршень прекращалось, и тогда поднятый груз аккумулятора начинал опускаться, передавая давление на воду, которая поднимала все три поршня. Таким образом, груз и три уравновешенных с ним поршня представляли собой как бы две чаши весов. Насосы приводились в действие паровой машиной. Для наблюдения за силой сжатия с кующим поршнем была соединена стрелка F, что давало возможность вести ковку с исключительной точностью.
   Впервые гидравлический пресс Витворта был применен для ковки отливок в 1884 году. До этого времени ковка орудийных стволов на заводе Витворта, как и многие другие кузнечные операции, велась на паровых молотах. Однако преимущество гидравлических прессов перед паровыми молотами оказалось бесспорным. Так, например, для ковки ствола орудия из слитка массой 36, 5 т требовалось 3 недели и 33 промежуточных нагрева; с применением же гидравлического пресса, дававшим усилие в 4000 т, ковка слитка массой 37, 5 т занимала всего 4 дня и требовала 15 промежуточных нагреваний. Замена молота прессом удешевляла операцию ковки крупногабаритных деталей примерно в семь раз. Поэтому в короткое время прессы Витворта получили широкое распространение. Вскоре применение гидравлических ковочных прессов привело к серьезным техническим преобразованиям на крупных металлургических и машиностроительных заводах. Тяжелые паровые молоты были повсеместно демонтированы и заменены прессами. К началу 90-х годов XIX века уже имелись прессы мощностью в 1000 т.