Действительно, если сделать ответвления от трех точек кольцевого якоря генератора и соединить их с тремя кольцами, по которым скользят щетки, то при вращении якоря между полюсами на каждой щетке будет индуцироваться один и тот же по величине ток, но со сдвигом во времени, которое необходимо для того, чтобы виток переместился по дуге, соответствующей углу 120 градусов. Иначе говоря, токи в цепи будут сдвинуты относительно друг друга по фазе также на 120 градусов. Но этой системе трехфазного тока оказалось присуще еще одно чрезвычайно любопытное свойство, какого не имела ни одна другая система многофазных токов — в любой произвольно взятый момент времени сумма токов, текущих в одну сторону, равна здесь величине третьего тока, который течет в противоположную сторону, а сумма всех трех токов в любой момент времени равна нулю.
   Например, в момент времени t1 ток i2 проходит через положительный максимум, а значения токов i1 и i3, имеющих отрицательное значение, достигают половины максимума и сумма их равна току i2. Это означает, что в любой момент времени один из проводов системы передает в одном направлении такое же количество тока, какое два других вместе передают в противоположном направлении. Следовательно, предоставляется возможность пользоваться каждым из трех проводов в качестве отводящего проводника для двух других, соединенных параллельно, и вместо шести проводов обойтись всего тремя!
   Чтобы пояснить этот чрезвычайно важный момент, обратимся к воображаемой схеме. Представим себе, что через круг, вращающийся вокруг своего центра, проходят три соединенных между собой проводника, в которых протекают три переменных тока, сдвинутых по фазе на 120 градусов. При своем вращении каждый проводник находится то на положительной, то на отрицательной части круга, причем при переходе из одной части в другую ток меняет свое направление. Эта система вполне обеспечивает нормальное протекание (циркуляцию) токов. В самом деле, в некоторый момент времени проводники I и II оказываются соединенными параллельно, а III отводит от них ток. Некоторое время спустя II переходит на ту же сторону, где находится III; теперь уже II и III работают параллельно, а I как общий отводящий ток провод. Далее III переходит на ту сторону, где еще находится I; теперь II отводит то количество, что III и I подводят вместе. Затем I переходит на ту сторону, где еще находится II, и т.д.
   В приведенном примере ничего не говорилось об источниках тока. Как мы помним, этим источником является трехфазный генератор. Изобразим обмотки генератора в виде трех катушек. Для того чтобы протекание тока происходило описанным нами способом, эти катушки могут быть включены в цепь двояким образом. Мы можем, к примеру, разместить их на трех сторонах треугольника, допустим левого; таким образом, вместо трех его сторон мы получим три катушки I, II и III, в которых индуцируются токи со смещением фаз на 1/3 периода. Мы можем также переместить точки приложения электродвижущих сил и на концы параллельных проводников. Если мы поместим здесь наши катушки, то получим другое соединение. Треугольники, служащие теперь лишь проводящими соединениями для трех левых концов катушек, могут быть стянуты в одну точку. Эти соединения, из которых первое называется «треугольником», а второе — «звездой», широко применяются как в двигателях, так и в генераторах.
   Свой первый трехфазный асинхронный двигатель Доливо-Добровольский построил зимой 1889 года. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами. Учитывая ошибки Теслы, Доливо-Добровольский рассредоточил обмотки в пазах по всей окружности статора, что делало более благоприятным распределение магнитного поля. Ротор был цилиндрическим с обмотками «в виде беличьей клетки». Воздушный зазор между ротором и статором составлял всего 1 мм, что по тем временам было смелым решением, так как обычно зазор делали больше. Стержни «беличьей клетки» не имели никакой изоляции. В качестве источника трехфазного тока был использован стандартный генератор постоянного тока, перестроенный в трехфазный генератор так, как это было описано выше.
   Впечатление, произведенное первым запуском двигателя на руководство АЭГ, было огромным. Для многих стало очевидно, что долгий тернистый путь создания промышленного электродвигателя наконец пройден до конца. По своим техническим показателям двигатели Доливо-Добровольского превосходили все существовавшие тогда электромоторы — обладая очень высоким КПД, они безотказно работали в любых режимах, были надежны и просты в обращении. Поэтому они сразу получили широкое распространение по всему миру. С этого времени началось быстрое внедрение электродвигателей во все сферы производства и повсеместная электрификация промышленности.

59. ТРАНСФОРМАТОР

   О физической сути явления трансформации токов уже сообщалось в главе, посвященной телефону. Нужно, однако, сказать еще несколько слов об изобретении этого замечательного устройства, позволившем разрешить множество больших и малых проблем электротехники. Вполне логично утверждать, что первый трансформатор появился одновременно с открытием явления электромагнитной индукции. Один из опытов Фарадея заключался в том, что он пускал ток от батареи через обмотки катушки. При этом возникал ток в обмотках второй катушки, которая находилась поблизости, но никак не была связана с первой. Моментальное прохождение тока регистрировалось гальванометром. Сам Фарадей, впрочем, никогда не использовал этот эффект для преобразования напряжения.
   В 1848 году Румкорф первым обратил внимание физиков на удивительные способности трансформатора создавать токи очень высокого напряжения. Но прошло еще несколько лет, прежде чем ему удалось создать работающую модель этого прибора. В результате, в 1852 году появилась знаменитая индукционная катушка Румкорфа, которая сыграла огромную роль в истории техники. При изготовлении этого первого трансформатора изобретателю пришлось преодолеть значительные трудности. Для того чтобы увеличить число витков в обмотке вторичной катушки, Румкорф должен был применять очень тонкую проволоку и при этом тщательно следить, чтобы высокое напряжение не пробило ее изоляции. Купив несколько километров тонкой, как волос, проволоки, он тщательно заизолировал ее, а затем аккуратно навил на катушку виток к витку. С помощью своей катушки Румкорф мог получать колебания тока очень высокого напряжения. Постоянный ток не поддается трансформации. Для того чтобы превратить постоянный ток батареи в переменный, Румкорф последовательно с первичной катушкой включил прерыватель, который периодически замыкал и размыкал ток первичной цепи (обычно с частотой от нескольких десятков до нескольких сотен раз в секунду). При замыкании первичного тока от батареи во вторичной обмотке наводилось напряжение, которое было выше первичного в таком же отношении, в каком находилось количество витков во вторичной и первичной обмотках. При размыкании тока первичной обмотки во вторичной наводилось еще более высокое напряжение. Величина его была тем больше, чем быстрее шло размыкание тока. В качестве прерывателя применялась пружинная пластинка, которая притягивалась сердечником катушки и размыкала цепь. Частота прерываний зависела от массы и упругости пружины, от количества витков в первичной обмотке и от напряжения батареи.
   На протяжении нескольких десятилетий трансформаторы почти не использовались в технике и имели исключительно научное применение. Только в конце 70-х годов индукционные катушки стали широко использоваться в телефонных аппаратах и при устройстве электрического освещения. Дело в том, что после распространения свечи Яблочкова в Европе электротехники столкнулись с так называемой проблемой «дробления» электрической энергии. Она состояла в следующем. Как правило, от одной генераторной установки должно было питаться множество лампочек. Между тем при последовательном соединении многих свечей режим работы сети становился неустойчивым. Потухание только одной свечи было равносильно разрыву сети, после чего гасли и остальные свечи. Если свечи включались в цепь параллельно, то обычно загоралась только та из них, сопротивление которой было наименьшим (потому что ток, как известно, идет всегда по линии наименьшего сопротивления). Когда эта свеча полностью выгорала, загоралась следующая, сопротивление которой было наименьшим, и так далее. Столкнувшись с этой проблемой, Яблочков предложил использовать для «дробления» энергии индукционные катушки.
   При этом соединении в цепь последовательно включались первичные обмотки катушек, а во вторичную обмотку, в зависимости от ее параметров, могли включаться одна, две, три или более свечей. Катушки работали при этом в режиме трансформатора, давая на выходе необходимое напряжение. При потухании лампы цепь не прерывалась, так что отдельные свечи продолжали гореть.
   С развитием техники переменных токов трансформаторы получили важное значение. В 1882 году Голяр и Гиббс взяли патент на трансформатор, который использовался уже не только для «дробления» энергии, но и для преобразования напряжения.
   На деревянной подставке укреплялось некоторое число вертикальных индукционных катушек, первичные обмотки которых были соединены последовательно. Вторичные обмотки делились на секции, и каждая секция имела пару выводов для присоединения приемников тока, которые действовали независимо друг от друга. Сопротивление в первичной цепи (а, следовательно, и силу тока) можно было регулировать, перемещая внутри катушек сердечники. Сердечники первичной и вторичной обмоток не были соединены между собой, поэтому эти трансформаторы имели разомкнутую магнитную систему. Однако вскоре было замечено, что если вторичную и первичную катушки насадить на единый сердечник, то трансформатор будет работать гораздо лучше — потери энергии сократятся, а КПД повысится. Первый такой трансформатор с замкнутой магнитной системой был создан в 1884 году английскими изобретателями братьями Джонсом и Эдуардом Гопкинсон.
   Сердечник этого трансформатора был набран из стальных полос или проволок, разделенных изоляционным материалом, что снижало потери энергии на вихревые токи. На этот сердечник, чередуясь, помещали катушки высшего и низшего напряжения.
   В 1885 году венгерский электротехник Дери доказал, что трансформаторы должны включаться в цепь параллельно, и взял патент на этот способ соединения. Только после этого начался промышленный выпуск трансформаторов однофазного переменного тока. Поскольку мощные трансформаторы испытывали при своей работе значительный перегрев, была разработана система их масляного охлаждения (внутрь трансформатора стали помещать керамический сосуд с маслом).
   Трансформаторы оказались чрезвычайно полезны и при трехфазной системе. Вообще, система трехфазного тока не получила бы в первые же годы своего существования такого широкого применения, если бы она не решала проблемы передачи энергии на большие расстояния. Но такая передача, как будет показано ниже, выгодна только при высоком напряжении, которое, в случае переменного тока, получается при помощи трансформатора. Трехфазная система не представляла принципиальных затруднений для трансформирования энергии, но требовала трех однофазных трансформаторов вместо одного при однофазной системе. Такое увеличение числа довольно дорогих аппаратов не могло не вызвать стремления найти более удовлетворительное решение.
   В 1889 г. Доливо-Добровольский изобрел трехфазный трансформатор с радиальным расположением сердечников. В этом случае обмотки высшего и низшего напряжений каждой фазы располагались на соответствующих радиальных сердечниках, а магнитный поток заключался на наружной оболочке (внешнем ярме). Затем Доливо-Добровольский нашел, что проще разместить стержни с обмотками параллельно, а торцы стержней (сердечников) соединить одинаковым ярмом. Тогда вся система получалась более компактной. Этот тип трансформатора получил название «призматического».
   Наконец, в октябре 1891 года Доливо-Добровольский взял патент на трехфазный трансформатор с параллельными стержнями, расположенными в одной плоскости. Его конструкция оказалась настолько удачной, что без принципиальных изменений сохранилась до наших дней.

60. ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ НА БОЛЬШИЕ РАССТОЯНИЯ

   В последней трети XIX века во многих крупных промышленных центрах Европы и Америки стала очень остро ощущаться энергетическая проблема. Жилые дома, транспорт, фабрики и мастерские требовали все больше топлива, подвозить которое приходилось издалека, вследствие чего цена на него постоянно росла. В этой связи то здесь, то там стали обращаться к гидроэнергии рек, гораздо более дешевой и доступной. Вместе с тем повсеместно возрастал интерес к электрической энергии. Уже давно было отмечено, что этот вид энергии чрезвычайно удобен: электричество легко генерируется и так же легко преобразуется в другие виды энергии, без труда передается на расстояние, подводится и дробится.
   Первые электрические станции обычно представляли собой электрогенератор, присоединенный к паровой машине или турбине, и предназначались для снабжения электроэнергией отдельных объектов (например, цеха или дома, в крайнем случае, квартала). С середины 80-х годов стали строиться центральные городские электростанции, дававшие ток прежде всего для освещения. (Первая такая электростанция была построена в 1882 году в Нью-Йорке под руководством Эдисона.) Ток на них вырабатывался мощными паровыми машинами. Но уже к началу 90-х годов стало ясно, что таким образом энергетическую проблему не разрешить, поскольку мощность центральных станций, расположенных в центральной части города, не могла быть очень большой. Использовали они те же уголь и нефть, то есть не снимали проблемы доставки топлива.
   Дешевле и практичнее было возводить электростанции в местах с дешевыми топливными и гидроресурсами. Но, как правило, местности, где можно было в большом количестве получать дешевую электроэнергию, были удалены от промышленных центров и больших городов на десятки и сотни километров. Таким образом, возникла другая проблема — передачи электроэнергии на большие расстояния.
   Первые опыты в этой области относятся к самому началу 70-х годов XIX века, когда пользовались в основном постоянным током. Они показали, что как только длина соединительного провода между генератором тока и потреблявшим этот ток двигателем превышала несколько сотен метров, ощущалось значительное снижение мощности в двигателе из-за больших потерь энергии в кабеле. Это явление легко объяснить, если вспомнить о тепловом действии тока. Проходя по кабелю, ток нагревает его. Эти потери тем больше, чем больше сопротивление провода и сила проходящего по нему тока. (Количество выделяющейся теплоты Q легко вычислить. Формула имеет вид: Q=R•I2, где I — сила проходящего тока, R — сопротивление кабеля. Очевидно, что сопротивление провода тем больше, чем больше его длина и чем меньше его сечение. Если в этой формуле принять I=P/U, где P — мощность линии, а U — напряжение тока, то формула примет вид Q=R•P2/U2. Отсюда видно, что потери на тепло будут тем меньше, чем больше напряжение тока.) Имелось только два пути для снижения потерь в линии электропередачи: либо увеличить сечение передающего провода, либо повысить напряжение тока. Однако увеличение сечения провода сильно удорожало его, ведь в качестве проводника тогда использовалась достаточно дорогая медь. Гораздо более выигрыша сулил второй путь.
   В 1882 году под руководством известного французского электротехника Депре была построена первая линия электропередачи постоянного тока от Мисбаха до Мюнхена, протяженностью в 57 км. Энергия от генератора передавалась на электродвигатель, приводивший в действие насос. При этом потери в проводе достигали 75%. В 1885 году Депре провел еще один эксперимент, осуществив электропередачу между Крейлем и Парижем на расстояние в 56 км. При этом использовалось высокое напряжение, достигавшее 6 тысяч вольт. Потери снизились до 55%. Было очевидно, что, повышая напряжение, можно значительно повысить КПД линии, но для этого надо было строить генераторы постоянного тока высокого напряжения, что было связано с большими техническими сложностями. Даже при этом сравнительно небольшом напряжении Депре приходилось постоянно чинить свой генератор, в обмотках которого то и дело происходил пробой. С другой стороны, ток высокого напряжения нельзя было использовать, поскольку на практике (и прежде всего для нужд освещения) требовалось совсем небольшое напряжения, порядка 100 вольт. Для того чтобы понизить напряжение постоянного тока, приходилось строить сложную преобразовательную систему: ток высокого напряжения приводил в действие двигатель, а тот, в свою очередь, вращал генератор, дававший ток более низкого напряжения. При этом потери еще более возрастали, и сама идея передачи электроэнергии становилась экономически невыгодной.
   Переменный ток в отношении передачи казался более удобным хотя бы уже потому, что его можно было легко трансформировать, то есть в очень широких пределах повышать, а затем понижать его напряжение. В 1884 году на Туринской выставке Голяр осуществил электропередачу на расстояние в 40 км, подняв с помощью своего трансформатора напряжение в линии до 2 тысяч вольт. Этот опыт дал неплохие результаты, но и он не привел к широкому развитию электрификации, поскольку, как уже говорилось, двигатели однофазного переменного тока по всем параметрам уступали двигателям постоянного тока и не имели распространения. Таким образом, и однофазный переменный ток было невыгодно передавать на большие расстояния. В следующие годы были разработаны две системы многофазных токов — двухфазная Теслы и трехфазная Доливо-Добровольского. Каждая из них претендовала на господствующее положение в электротехнике. По какому же пути должна была пойти электрификация? Точного ответа на этот вопрос поначалу не знал никто. Во всех странах шло оживленное обсуждение достоинств и недостатков каждой из систем токов. Все они имели своих горячих сторонников и ожесточенных противников. Некоторая ясность в этом вопросе была достигнута только в следующем десятилетии, когда был сделан значительный прорыв в деле электрификации. Огромную роль в этом сыграла Франкфуртская международная выставка 1891 года.
   В конце 80-х годов встал вопрос о сооружении центральной электростанции во Франкфурте-на-Майне. Многие германские и иностранные фирмы предлагали городским властям различные варианты проектов, предусматривающие применение либо постоянного, либо переменного тока. Обер-бургомистр Франкфурта находился в явно затруднительном положении: он не мог сделать выбор там, где это было не под силу даже многим специалистам. Для выяснения спорного вопроса и решено было устроить во Франкфурте давно планировавшуюся международную электротехническую выставку. Ее главной целью должна была стать демонстрация передачи и распределения электрической энергии в различных системах и применениях. Любая фирма могла продемонстрировать на этой выставке свои успехи, а международная комиссия из наиболее авторитетных ученых должна была подвергнуть все экспонаты тщательному изучению и дать ответ на вопрос о выборе рода тока. К началу выставки различные фирмы должны были построить свои линии передачи электроэнергии, причем одни собирались демонстрировать передачу постоянного тока, другие — переменного (как однофазного, так и многофазного). Фирме АЭГ было предложено осуществить передачу электроэнергии из местечка Лауфен во Франкфурт на расстояние 170 км. По тем временам это было огромное расстояние, и очень многие считали саму идею фантастической. Однако Доливо-Добровольский был настолько уверен в системе и возможностях трехфазного тока, что убедил директора Ротенау согласиться на эксперимент.
   Когда появились первые сообщения о проекте электропередачи Лауфен — Франкфурт, электротехники во всем мире разделились на два лагеря. Одни с энтузиазмом приветствовали это смелое решение, другие отнеслись к нему как к шумной, но беспочвенной рекламе. Подсчитывали возможные потери энергии. Некоторые считали, что они составят 95%, но даже самые большие оптимисты не верили, что КПД такой линии превысит 15%. Наиболее известные авторитеты в области электротехники, в том числе знаменитый Депре, высказывали сомнения в экономической целесообразности этой затеи. Однако Доливо-Добровольский сумел убедить руководство компании в необходимости взяться за предложенную работу.
   Поскольку до открытия выставки оставалось совсем мало времени, строительство ЛЭП проходило в большой спешке. За полгода Доливо-Добровольский должен был спроектировать и построить небывалый по мощности асинхронный двигатель на 100 л.с. и четыре трансформатора на 150 киловатт, при том что максимальная мощность однофазных трансформаторов составляла тогда только 30 киловатт. Не могло быть и речи об опытных конструкциях: на это просто не хватало времени. Даже построенный двигатель и трансформаторы не могли быть испытаны на заводе, так как в Берлине не было трехфазного генератора соответствующей мощности (генератор для Лауфеновской станции строили в Эрликсоне). Следовательно, все элементы электропередачи предстояло включить непосредственно на выставке в присутствии многих ученых, представителей конкурирующих фирм и бесчисленных корреспондентов. Малейшая ошибка была бы непростительной. Кроме того, на плечи Доливо-Добровольского легла вся ответственность за проектирование и монтажные работы при сооружении ЛЭП. Собственно, ответственность была даже больше — ведь решался вопрос не только о карьере Доливо-Добровольского и престиже АЭГ, но и о том, по какому пути пойдет развитие электротехники. Доливо-Добровольский прекрасно понимал всю важность стоявшей перед ним задачи и писал позже: «Если я не хотел навлечь на мой трехфазный ток несмываемого позора и подвергнуть его недоверию, которое вряд ли удалось бы потом быстро рассеять, я обязан был принять на себя эту задачу и разрешить ее. В противном случае опыты Лауфен-Франкфурт и многое, что потом должно было развиться на их основе, пошли бы по пути применения однофазного тока».
   В Лауфене была в короткий срок построена небольшая гидроэлектростанция. Турбина мощностью 300 л.с. вращала генератор трехфазного тока, спроектированный и построенный, как уже говорилось, на заводе в Эрликсоне. От генератора три медных провода большого сечения вели к распределительному щиту. Здесь были установлены амперметры, вольтметры, свинцовые предохранители и тепловые реле. От распределительного щита три кабеля шли к трем трехфазным трансформаторам «призматического» типа. Обмотки всех трансформаторов соединялись в звезду. Предполагалось вести электропередачу при напряжении в 15 тысяч вольт, но все расчеты делались на работу в 25 тысяч вольт. Для достижения такого высокого напряжения планировалось включить по два трансформатора на каждом конце линии, так чтобы их обмотки низшего напряжения были соединены параллельно, а обмотки высшего — последовательно.
   От трансформаторов в Лауфене начиналась трехпроводная линия, подвешенная на 3182 деревянных опорах высотой 8 и 10 м со средним пролетом 60 м. Никаких выключателей на линии не было. Для того чтобы в случае необходимости можно было быстро отключить ток, предусматривались два оригинальных приспособления. Рядом с Лауфенской гидроэлектростанцией были установлены две опоры на расстоянии 2, 5 м одна от другой. Здесь в разрыв каждого провода линии включалась плавкая вставка, состоявшая из двух медных проволок диаметром 0, 15 мм. Во Франкфурте и вблизи железнодорожных станций (часть линии шла вдоль железнодорожного полотна) были установлены так называемые угловые замыкатели. Каждый из них представлял собой металлический брус, подвешенный с помощью шнура на Г-образной опоре. Достаточно было дернуть за шнур, и брус опускался на все три провода, создавая искусственное короткое замыкание, что вызывало перегорание плавких вставок в Лауфене и обесточивание всей линии. Во Франкфурте провода подходили к понижающим трансформаторам (они находились на выставке в специальном павильоне), которые снижали напряжение на выходе до 116 вольт. К одному из этих трансформаторов было подключено 1000 ламп накаливания по 16 свечей (55 ватт) каждая, к другому — большой трехфазный двигатель Доливо-Добровольского, размещавшийся в другом павильоне.
   Линейное напряжение генератора в Лауфене составляло 95 вольт. Повышающий трансформатор имел коэффициент трансформации равный 154. Следовательно, рабочее напряжение в ЛЭП составляло 14650 вольт (95•154). Для того времени это было очень высокое напряжение. Правительства земель, через которые проходила ЛЭП, были встревожены ее сооружением. У некоторых возникало чувство страха даже перед деревянными столбами, на которых были укреплены таблички с черепами. Особые опасения вызывала возможность обрыва провода и падения его на рельсы железной дороги. Выставочному комитету и сооружавшим линиям фирмам пришлось провести огромную разъяснительную работу, чтобы убедить правительственных чиновников в том, что все возможные опасности предусмотрены и что линия надежно защищена. Администрация Бадена все же не разрешала соединять участок уже готовой линии на баденской границе. Для того чтобы устранить последние препятствия и рассеять сомнения местных властей, Доливо-Добровольский провел опасный, но весьма убедительный эксперимент. Когда линия была впервые включена под напряжение, один из проводов на границе Бадена и Гессена был искусственно оборван и с яркой вспышкой упал на рельсы железной дороги. Доливо-Добровольский сейчас же подошел и поднял провод голыми руками: настолько он был уверен, что сработает сконструированная им защита. Этот «метод» доказательства оказался очень наглядным и устранил последнюю преграду перед испытаниями линии.