НП заинтересовали проявления необычных способностей у людей. Она считала, что мы не можем априори отвергать такие феномены. И ее научная смелость позволила ей пойти на их проверку. Она всегда была неортодоксальна и неконформна. Она не стеснялась описывать свои наблюдения, но ее научные работы содержали только доказанные факты. А вот в беседах с журналистами она могла говорить и о своих ощущениях и мыслях.
НП, естественно, уже не ставит сама, руками, экспериментов, но она ведет ряд тем. Приходит не только в кабинет, но и в лабораторию. Контролирует ход исследования. Но в основном пишет. Пишет и пишет. Это и теоретические, и обобщающие статьи. Это и конкретные работы, например, по мозговой организации творчества. Это книги о мозге. Причем каждая работа – не просто описание определенных фактов, а очень глубокий подтекст места этого явления в науке о мозге. Введение и заключение в каждой статье – это практически самостоятельные теоретические работы Особняком стоят лекции НП на различных конференциях и конгрессах. По общему мнению, каждая лекция была явлением. На 33-м Международном конгрессе физиологических наук, на конгрессах Международного союза психофизиологов в Тессалониках, в Сицилии. Последнюю лекцию она прочитать не успела. Это 14-й конгресс Международного союза психофизиологов, который состоялся в Петербурге в сентябре 2008 года. Но и тут она победила! Лекция была написана незадолго до кончины, и ее успели издать и распространить среди ученых. Эту практически посмертную работу НП перепечатывают и «Московские новости», и «Российская газета». А суть ее, ни много ни мало, – «умные» живут дольше. Обосновывается, что постоянное напряжение мозга в процессе решения сложных задач продлевает нормальное функционирование не только мозга, но и всего организма. И сама НП этому свидетельство – практически перед самой смертью написать этапную работу.
Это очень важный пример. НП, несмотря на возраст и сопутствующие болезни, могла, когда надо, настолько мобилизовываться, что не было ощущения ни возраста, ни болезни. Это происходило при разных обстоятельствах: визитах высокопоставленных лиц в институт, лекциях, необходимости закончить важную работу. Кстати, до последних дней она никогда не читала лекции по бумажке, даже на английском языке.
Но это всегда было четко и без нарушения регламента, как будто бы у нее были внутренние часы. Помню одно из ее выступлений по телевизору. У нее было десять минут экранного времени. Я точно знаю, что написанного текста не было. Она уложилась в 9 минут 50 секунд, причем речь была размеренная и было видно, что нет ни торопливости, ни сокращений.
НП боролась со старостью и недугами. У меня создалось такое впечатление, что ее разговоры о недугах во многом были вежливой причиной, чтобы не делать чего-либо. Хотя болезни, конечно, были.
Сицилия, 1988 год. НП получает награду века по психофизиологии. И естественно, читает лекцию. И много плавает. Вообще плавать она не просто любила, она «жила» в воде. По дороге из Сицилии делаем остановку в Риме. У нас есть день в этом городе. НП все время говорит, как она устала, как она себя плохо чувствует и т. п. Тем не менее утром мы выходим на улицу, и у НП что-то включается. Она обошла половину Рима – и Ватикан, и Форум, и музеи. За ней было не угнаться.
2003 год. У НП тяжелая аритмия. Мысленно она уже готовится к страшному. Стоит вопрос о водителе ритма. Я почти насильно увожу ее в Москву, в Кардиоцентр, и там ее ставят на ноги. Это весна. А осенью она едет в Испанию купаться.
Она очень боялась примет старости. И мужественно их убирала. Одна из примет старости – запустение. До последних дней она делала ремонт в квартире. Квартира всегда в идеальном состоянии. Другая примета – одиночество. Ну уж чего не было, того не было. Каждый день к ней кто-то приходит. И это не просто разговор, а разговор за едой, за чаем, который надо еще и сервировать. Я удивлялся, как она выдерживает такой ритм общения.
Активность. Да не то слово! Бесконечное научное общение с «девочками» – четырьмя аспирантками. С зарубежными учеными. Непрерывная переписка. В восемьдесят два года она освоила компьютер и Интернет, но не игры, а поиск научной информации и почту. Она выписывала «Nature» и другие журналы и регулярно рассылала нам всем интересные сообщения.
Про НП говорили: живой классик. И это не пустые слова. Академик Российской академии наук и нескольких иностранных академий, лауреат самых престижных наград и премий. Она творила науку все это время у нас на глазах и практически до последнего своего дня продолжала активно работать. И генерировать идеи, увлекая ими своих молодых коллег. Они смотрели на нее с горящими глазами и работали, засиживаясь допоздна, проверяя эти гипотезы. В самом деле, что может быть заманчивей изучения самой высшей «человеческой» деятельности – творчества! Такую сложнейшую задачу поставила НП и наметила подходы ее решения. Для реализации этого плана потребуется как минимум пятилетка.
И сейчас, когда ее уже нет с нами, в ее работе и даже в ее жизни рано ставить точку. Задачи, которые она в последние несколько лет ставила перед собой и своими учениками, еще не решены. Но они решаются. Мы еще долго будем идти по оставленному ею абрису.
Ю. Д. Кропотов. ЗАБЫТЫЕ ОТКРЫТИЯ
Феномен детекции ошибок
НП, естественно, уже не ставит сама, руками, экспериментов, но она ведет ряд тем. Приходит не только в кабинет, но и в лабораторию. Контролирует ход исследования. Но в основном пишет. Пишет и пишет. Это и теоретические, и обобщающие статьи. Это и конкретные работы, например, по мозговой организации творчества. Это книги о мозге. Причем каждая работа – не просто описание определенных фактов, а очень глубокий подтекст места этого явления в науке о мозге. Введение и заключение в каждой статье – это практически самостоятельные теоретические работы Особняком стоят лекции НП на различных конференциях и конгрессах. По общему мнению, каждая лекция была явлением. На 33-м Международном конгрессе физиологических наук, на конгрессах Международного союза психофизиологов в Тессалониках, в Сицилии. Последнюю лекцию она прочитать не успела. Это 14-й конгресс Международного союза психофизиологов, который состоялся в Петербурге в сентябре 2008 года. Но и тут она победила! Лекция была написана незадолго до кончины, и ее успели издать и распространить среди ученых. Эту практически посмертную работу НП перепечатывают и «Московские новости», и «Российская газета». А суть ее, ни много ни мало, – «умные» живут дольше. Обосновывается, что постоянное напряжение мозга в процессе решения сложных задач продлевает нормальное функционирование не только мозга, но и всего организма. И сама НП этому свидетельство – практически перед самой смертью написать этапную работу.
Это очень важный пример. НП, несмотря на возраст и сопутствующие болезни, могла, когда надо, настолько мобилизовываться, что не было ощущения ни возраста, ни болезни. Это происходило при разных обстоятельствах: визитах высокопоставленных лиц в институт, лекциях, необходимости закончить важную работу. Кстати, до последних дней она никогда не читала лекции по бумажке, даже на английском языке.
Но это всегда было четко и без нарушения регламента, как будто бы у нее были внутренние часы. Помню одно из ее выступлений по телевизору. У нее было десять минут экранного времени. Я точно знаю, что написанного текста не было. Она уложилась в 9 минут 50 секунд, причем речь была размеренная и было видно, что нет ни торопливости, ни сокращений.
НП боролась со старостью и недугами. У меня создалось такое впечатление, что ее разговоры о недугах во многом были вежливой причиной, чтобы не делать чего-либо. Хотя болезни, конечно, были.
Сицилия, 1988 год. НП получает награду века по психофизиологии. И естественно, читает лекцию. И много плавает. Вообще плавать она не просто любила, она «жила» в воде. По дороге из Сицилии делаем остановку в Риме. У нас есть день в этом городе. НП все время говорит, как она устала, как она себя плохо чувствует и т. п. Тем не менее утром мы выходим на улицу, и у НП что-то включается. Она обошла половину Рима – и Ватикан, и Форум, и музеи. За ней было не угнаться.
2003 год. У НП тяжелая аритмия. Мысленно она уже готовится к страшному. Стоит вопрос о водителе ритма. Я почти насильно увожу ее в Москву, в Кардиоцентр, и там ее ставят на ноги. Это весна. А осенью она едет в Испанию купаться.
Она очень боялась примет старости. И мужественно их убирала. Одна из примет старости – запустение. До последних дней она делала ремонт в квартире. Квартира всегда в идеальном состоянии. Другая примета – одиночество. Ну уж чего не было, того не было. Каждый день к ней кто-то приходит. И это не просто разговор, а разговор за едой, за чаем, который надо еще и сервировать. Я удивлялся, как она выдерживает такой ритм общения.
Активность. Да не то слово! Бесконечное научное общение с «девочками» – четырьмя аспирантками. С зарубежными учеными. Непрерывная переписка. В восемьдесят два года она освоила компьютер и Интернет, но не игры, а поиск научной информации и почту. Она выписывала «Nature» и другие журналы и регулярно рассылала нам всем интересные сообщения.
Про НП говорили: живой классик. И это не пустые слова. Академик Российской академии наук и нескольких иностранных академий, лауреат самых престижных наград и премий. Она творила науку все это время у нас на глазах и практически до последнего своего дня продолжала активно работать. И генерировать идеи, увлекая ими своих молодых коллег. Они смотрели на нее с горящими глазами и работали, засиживаясь допоздна, проверяя эти гипотезы. В самом деле, что может быть заманчивей изучения самой высшей «человеческой» деятельности – творчества! Такую сложнейшую задачу поставила НП и наметила подходы ее решения. Для реализации этого плана потребуется как минимум пятилетка.
И сейчас, когда ее уже нет с нами, в ее работе и даже в ее жизни рано ставить точку. Задачи, которые она в последние несколько лет ставила перед собой и своими учениками, еще не решены. Но они решаются. Мы еще долго будем идти по оставленному ею абрису.
Ю. Д. Кропотов. ЗАБЫТЫЕ ОТКРЫТИЯ
В 1978 году я впервые выехал за рубеж. Как было положено в те годы, меня командировали в одну из стран социалистического лагеря. Мне повезло, что это была Чехословакия – страна, славившаяся своими традициями в области нейрофизиологии. Мне повезло вдвойне, потому что встретил меня знаменитый ученый – Ян Буреш. Для него я был желторотым птенцом, школяром, и он, со свойственной ему тщательностью, учил меня уму-разуму. В частности, он говорил, что наука – это кропотливый процесс, подобный строительству дома. Каждому ученому суждено внести кирпичик в строящееся здание науки. Он должен примерить этим кирпичик, потом подогнать, чтобы этот кирпичик как можно лучше устроился в нужном месте, потом, если потребуется, вытащить этот кирпичик и снова положить, но уже на лучшем цементном растворе. Такой казалась исследовательская работа знаменитому ученому.
Надо сказать, что почти все ученые, с которыми я впоследствии встречался, соответствовали этому определению. За исключением единиц. Теперь я понимаю, что в науке наряду с каменщиками, усердными строителями храма науки, есть архитекторы, которые «придумывают», как этот храм должен выглядеть. К числу таких избранных принадлежала Наталья Петровна Бехтерева. Она не достраивала уже начатые здания, а создавала новые. Она начинала строительство с чистого листа, с чернового наброска. Имя новому зданию науки, архитектором которого она была, – «Нейрофизиологии сознания и мышления».
Сейчас, в начале XXI века, становится модным заниматься проблемами сознания. Нобелевские лауреаты Джералд Эдельман и Френсис Крик опубликовали книги по этим проблемам. А в те далекие шестидесятые – семидесятые ХХ века методический уровень развития науки не позволял даже помышлять о раскрытии мозговых механизмов сознания и мышления. Занятия этими проблемами могли серьезно испортить репутацию ученого. Оглядываясь назад, поражает, пожалуй, не столько то, что Наталья Петровна решила заняться сознанием и мышлением, сколько то, как ей удалось повести за собой такую большую группу энтузиастов.
За несколько десятилетий, начиная шестидесятыми и кончая девяностыми годами, Наталья Петровна и ее сотрудники сделали открытия, которые не только стали революционными вехами в области науки о сознании и мышлении, но и на несколько лет опередили развитие науки. Причем так надолго, что некоторые из этих открытий были сделаны заново зарубежными учеными спустя 30–40 лет после того, как Наталья Петровна представила первые научные обоснования этих открытий.
К сожалению, очень часто зарубежные ученые не упоминали о первооткрывателе. Я говорю об этом с горечью, хотя и понимаю объективные причины тому. Прежде всего, следует констатировать, что большинство книг Натальи Петровны были написаны на русском языке. И хотя некоторые из них были переведены на английский язык, в переводе они утратили образный стиль автора, и могли казаться непонятными для читателей. Во-вторых, рейтинг российских журналов в те годы был очень низкий, что, естественно, не способствовало популяризации исследований советских ученых. В-третьих, Наталья Петровна имела дело с уникальным материалом: она занималась исследованием физиологических параметров мозга у больных, которым по лечебно-диагностическим показаниям имплантировались электроды в головной мозг человека. Это были больные, которым обычные методы лечения не помогали и для которых единственным выходом были стереотаксические операции. По понятным причинам количество таких больных было ограничено, и статистика была небольшой. Важно также отметить, что во всем мире можно было сосчитать по пальцам лаборатории, в которых занимались сходными проблемами и использовали похожие методы.
И все-таки, несмотря на все эти трудности, сейчас мы с уверенностью можем сказать, что Наталье Петровне удалось открыть многие явления мозга впервые. К таким явлениям прежде всего относятся феномен детекции ошибок и открытие когнитивных свойств подкорковых структур мозга. Я остановлюсь только на этих двух открытиях, поскольку сам был непосредственным участником этих неординарных и порой драматических событий.
Надо сказать, что почти все ученые, с которыми я впоследствии встречался, соответствовали этому определению. За исключением единиц. Теперь я понимаю, что в науке наряду с каменщиками, усердными строителями храма науки, есть архитекторы, которые «придумывают», как этот храм должен выглядеть. К числу таких избранных принадлежала Наталья Петровна Бехтерева. Она не достраивала уже начатые здания, а создавала новые. Она начинала строительство с чистого листа, с чернового наброска. Имя новому зданию науки, архитектором которого она была, – «Нейрофизиологии сознания и мышления».
Сейчас, в начале XXI века, становится модным заниматься проблемами сознания. Нобелевские лауреаты Джералд Эдельман и Френсис Крик опубликовали книги по этим проблемам. А в те далекие шестидесятые – семидесятые ХХ века методический уровень развития науки не позволял даже помышлять о раскрытии мозговых механизмов сознания и мышления. Занятия этими проблемами могли серьезно испортить репутацию ученого. Оглядываясь назад, поражает, пожалуй, не столько то, что Наталья Петровна решила заняться сознанием и мышлением, сколько то, как ей удалось повести за собой такую большую группу энтузиастов.
За несколько десятилетий, начиная шестидесятыми и кончая девяностыми годами, Наталья Петровна и ее сотрудники сделали открытия, которые не только стали революционными вехами в области науки о сознании и мышлении, но и на несколько лет опередили развитие науки. Причем так надолго, что некоторые из этих открытий были сделаны заново зарубежными учеными спустя 30–40 лет после того, как Наталья Петровна представила первые научные обоснования этих открытий.
К сожалению, очень часто зарубежные ученые не упоминали о первооткрывателе. Я говорю об этом с горечью, хотя и понимаю объективные причины тому. Прежде всего, следует констатировать, что большинство книг Натальи Петровны были написаны на русском языке. И хотя некоторые из них были переведены на английский язык, в переводе они утратили образный стиль автора, и могли казаться непонятными для читателей. Во-вторых, рейтинг российских журналов в те годы был очень низкий, что, естественно, не способствовало популяризации исследований советских ученых. В-третьих, Наталья Петровна имела дело с уникальным материалом: она занималась исследованием физиологических параметров мозга у больных, которым по лечебно-диагностическим показаниям имплантировались электроды в головной мозг человека. Это были больные, которым обычные методы лечения не помогали и для которых единственным выходом были стереотаксические операции. По понятным причинам количество таких больных было ограничено, и статистика была небольшой. Важно также отметить, что во всем мире можно было сосчитать по пальцам лаборатории, в которых занимались сходными проблемами и использовали похожие методы.
И все-таки, несмотря на все эти трудности, сейчас мы с уверенностью можем сказать, что Наталье Петровне удалось открыть многие явления мозга впервые. К таким явлениям прежде всего относятся феномен детекции ошибок и открытие когнитивных свойств подкорковых структур мозга. Я остановлюсь только на этих двух открытиях, поскольку сам был непосредственным участником этих неординарных и порой драматических событий.
Феномен детекции ошибок
Все мы знакомы с такими явлениями, когда не выключенный дома утюг вдруг всплывает в нашей памяти и не дает нам покоя, когда, совершив поступок, мы вдруг с сожалением осознаем, что это был неверный шаг, и мучаемся, с горечью осознавая ошибку… Во всех этих случаях в мозгу активируется особая группа нейронов – так называемые детекторы ошибок. Говоря об этом явлении, впервые открытым Натальей Петровной, интересно проследить историческое развитие этого открытия. Дело в том, что Наталья Петровна занималась этой проблемой на протяжении всей своей жизни. И на разных этапах ею использовались именно те показатели мозга, которые были доступны ученым в те исторические времена.
В конце шестидесятых годов в качестве физиологического параметра жизнедеятельности мозга выступала доступная и легкая в анализе методика регистрации концентрации кислорода в головном мозгу. Методику реализовал в рамках комплексного подхода Валентин Борисович Гречин, ученик Натальи Петровны. Заключалась она в том, что на золотые (поляризующиеся) электроды, вживленные в ходе стереотаксической операции в мозг больного, подавалось небольшое отрицательное напряжение –0.63 вольта. При этом на границе электрод – среда мозга начинали протекать сложные окислительно-восстановительные процессы, при которых ток, проходящий через электрод, оказывался пропорционален концентрации кислорода в окружающей среде. Анализируя флюктуации напряжения кислорода в мозгу с помощью этой полярографической методики, Валентин Борисович обнаружил, что концентрация кислорода в ткани мозга не является постоянной величиной, а претерпевает медленные (с периодом от 6 до 60 секунд) колебания.
Удивительно, но тогда никто не обратил внимания на это открытие. И только спустя почти сорок лет ученые сумели повторить и, главное, оценить эти наблюдения. Но сделаны они были уже на другом методическом уровне, с использованием нового метода, появившегося в конце восьмидесятых годов, – метода позитронно-эмиссионной томографии (ПЭТ).
Хочу дать несколько пояснений для тех, кто не знаком с этой уникальной методикой конца ХХ века. ПЭТ основывается на использовании физических свойств изотопов – радиоактивных форм простых атомов (таких, как водород, кислород, фтор), которые, распадаясь, испускают позитроны. Радиоактивные атомы получаются с помощью специального физического устройства, называемого циклотроном. Радиоактивные атомы объединяются в более сложные молекулы, такие как кислород, вода или глюкоза, с помощью другого сложного устройства, так называемой «горячей камеры» – химической лаборатории. При проведении ПЭТ-исследования радиоактивные вещества вводятся в кровь пациентов и по сосудам достигают мозга. Здесь эти вещества поглощаются клетками определенных областей мозга, и поглощенное радиоактивное вещество испускает позитроны. Позитроны, сталкиваясь с электронами, аннигилируют с излучением двух гамма-квантов на каждое столкновение. Эти гамма-кванты регистрируются специальными датчиками, расположенными вокруг головы испытуемого, причем число столкновений прямо пропорционально активности нейронов, находящихся в соответствующем участке мозга. Иными словами, чем более активны нейроны в некоторой области мозга, тем больше радиоизотопов эта область поглощает и, следовательно, тем больший уровень гамма-излучения будет зарегистрирован из этой области. Для того чтобы восстановить распределение плотности радиоактивного вещества в трехмерном пространстве, используются специальные математические методы реконструкции, подобные тем, которые применяются в магниторезонансной томографии (МРТ). В России ПЭТ был впервые установлен в Институте мозга человека в 1990 году по инициативе Натальи Петровны Бехтеревой.
Так вот, используя это дорогостоящее оборудование, удалось подтвердить данные, полученные в отделе нейрофизиологии человека более 40 лет назад. Оказалось, что, действительно, концентрация кислорода в мозгу, измеренная с помощью ПЭТ, флуктуирует в диапазоне частот меньше 0.1 Гц, причем уровень кислорода в таких областях коры, как задняя и передняя зоны поясной извилины, претерпевает синхронные колебания, объединяющие эти области мозга в единую систему, часто называемую «дефолтной» (default) сетью мозга.
Исследования ПЭТ в психологических тестах также показали, что концентрация кислорода воспроизводимо изменяется при функциональных пробах – в точности так же, как это было показано в исследованиях ученика Натальи Петровны – В. Б. Гречина – в шестидесятых годах. Тогда Валентин Борисович регистрировал напряжение кислорода с помощью усилителей производства экспериментальных мастерских Института экспериментальной медицины Академии медицинских наук СССР, сама запись осуществлялась на чернильном самописце, а для доказательства воспроизводимости реакций мозга человека приходилось на кальке накладывать друг на друга записи, произведенные в нескольких пробах. Сейчас для этого используются сложные математические процессы реконструкции изображения, компьютерные методы усреднения и современные методы статистического анализа. Однако сущность открытого явления от этого не меняется.
Возвращаясь на сорок лет назад, хочу отметить, что уже в те годы в отделе нейрофизиологии человека использовались многообразные функциональные пробы, примерно такие же, какие сейчас используются в исследованиях ПЭТ. Одна из них – проба Бине на оперативную память. Больному предъявляли несколько цифр, которые он должен был повторить через несколько десятков секунд. Рассматривая вместе с В. Б. Гречиным вызванные реакции концентрации кислорода в ткани мозга в ответ на выполнение тестов на краткосрочную память, Наталья Петровна заметила, что некоторые области мозга реагировали изменениями метаболизма только при ошибочном выполнении тестов. С легкой руки Натальи Петровны эти области мозга были названы детекторами ошибок (Бехтерева, Гречин, 1968). Валентин Борисович провел серию изящных исследований по воздействию фармакологических агентов на детекторы ошибок и готовился к написанию докторской диссертации. Ранняя смерть в возрасте сорока лет не позволила ему довершить этот труд своей жизни. К сожалению, многие из этих работ так и остались неопубликованными.
Через несколько лет Наталья Петровна вернулась к этой теме. Тогда в качестве показателя жизнедеятельности мозга была выбрана импульсная активность нейронов, а в качестве теста – предъявление стимулов на пороге опознания. Надо сказать, что в семидесятых – восьмидесятых годах ученые возлагали большие надежды на возможность прижизненной регистрации импульсной активности нейронов мозга. Язык нейронов – это спайк (иногда его называют импульсом или потенциалом действия), который передает информацию от нейрона к другим клеткам мозга. С помощью специальных усилителей можно было регистрировать эту активность нейронов не только в экспериментах на животных, но и в исследованиях на больных с вживленными электродами. Это была уникальная возможность подсмотреть, как работают клетки мозга при функциональных нагрузках. В те годы мной был разработан психологический тест, который позволил исследовать механизмы осознанного восприятия.
Тест состоял из предъявления зрительных стимулов на пороге опознания. Экспозицию предъявления стимулов выбирали настолько короткой, что примерно в половине случаев больному не удавалось опознать стимулы. Сравнивая активность нейронов при опознании и неопознании стимулов, можно было судить о нейронных коррелятах осознанного восприятия.
Оказалось, что в некоторых случаях больные совершали ошибки, то есть называли стимулы неправильно. Нас заинтересовал вопрос: что же отличает эти случаи ошибок от случаев правильного опознания?
К нашему удивлению, в базальных ганглиях были обнаружены нейроны, которые реагировали перед тем, как человек совершал ошибку и неправильно называл стимул. Важно отметить, что во многих случаях больные, у которых регистрировалась импульсная активность нейронов, даже не осознавали свои ошибки, то есть мозг «детектировал» ошибку лучше, чем это делал сам человек. Однако наиболее неожиданным и интригующим был факт обнаружения этих нейронов не в корковых образованиях (как это можно было бы ожидать, исходя из представлений о лидирующей роли коры в мыслительных процессах), а в подкорковых структурах мозга, в частности, в базальных ганглиях.
Это было вдвойне странным, поскольку в те годы было принято считать, что основная функция базальных ганглиев заключалась в контроле движений. Возникал вопрос: если это действительно так, то почему нейроны базальных ганглиев реагируют на ошибочное действие, которое еще не осуществлено и которое впоследствии даже не будет осознано человеком? Тогда это так и осталось загадкой. Сейчас мы знаем, что базальные ганглии участвуют не только в обеспечении движений, а вовлечены в сенсорные и когнитивные функции, причем одна из функций базальных ганглий – селекция действий. Под действиями в данном контексте я подразумеваю не только просто движения, но и сенсорно-когнитивные действия, например, принятие решения о смысловой значимости стимула.
Работы по детекции ошибок того периода были представлены в двух публикациях: одна из них появилась в Докладах Академии наук СССР, другая – в международном журнале «International Journal of Psychophysiology». Интересно, что последняя работа была признана одной из лучших за 1985 год. На публикации этих работ завершился очередной период исследований детекции ошибок.
Только спустя почти двадцать лет в зарубежных исследованиях с регистрацией когнитивных вызванных потенциалов и функциональной магниторезонансной томографии были получены данные, указывающие на существование системы детекции ошибок в могу человека. В этих исследованиях, в частности, было показано, что после совершения человеком ошибки определенная область коры головного мозга, называемая передней поясной извилиной, начинает подавать сигналы об ошибке. Следует, однако, заметить, что эти данные, полученные одновременно в нескольких лабораториях мира, в определенной степени отличались от работ Натальи Петровны, не повторяя, а дополняя полученные ею данные. Действительно, корреляты ошибок в этих работах были обнаружены после совершения ошибок. Рассматривая все эти данные с единой точки зрения, можно предположить, что в мозгу существуют как нейроны-детерминаторы ошибок, которые активны перед совершением ошибки, так и собственно нейроны-детекторы ошибок, которые активируются, когда человек, сравнивая планируемое действие с реальным, осознает, что совершил ошибку.
Начиная с 2004 года мы в нашей лаборатории совместно с другими центрами в Европе решили создать нормативную базу данных для параметров ЭЭГ и вызванных когнитивных потенциалов мозга. Это был новый виток спирали, начатый Натальей Петровной в шестидесятых годах. Дело в том, что Наталья Петровна начинала свою научную карьеру как электроэнцефалографист, то есть как специалист в области ЭЭГ. В шестидесятые годы в связи с появлением надежных усилителей потенциалов ЭЭГ стала рутинной методикой, позволяющей оценить функциональное состояние мозга человека. Практически во всех неврологических клиниках стали устанавливать электроэнцефалографы. Однако единственной надежной методикой анализа ЭЭГ в те годы был визуальный осмотр записи электроэнцефалограммы на бумаге. Электроэнцефалографисты проводили долгие часы, рассматривая многометровые «простыни» – бумажные записи ЭЭГ. Человеческий глаз – надежный прибор, он позволял выявить такие патологические паттерны, как дельта волны, спайки, спайки-медленные волны и другие. Однако он не позволял компрессировать эти данные в виде спектров, функций когерентности и уж не как не мог уловить в шумообразных флюктуациях воспроизводимые потенциалы, связанные с событиями. Поэтому использование ЭЭГ в те годы ограничивалось в основном областью эпилепсии, при которой в ЭЭГ больных можно было обнаружить биологические маркеры эпилепсии, такие как комплексы спайк-медленная волна. До сих пор в некоторых учебниках можно найти такое однобокое представление об ЭЭГ.
В конце шестидесятых годов в качестве физиологического параметра жизнедеятельности мозга выступала доступная и легкая в анализе методика регистрации концентрации кислорода в головном мозгу. Методику реализовал в рамках комплексного подхода Валентин Борисович Гречин, ученик Натальи Петровны. Заключалась она в том, что на золотые (поляризующиеся) электроды, вживленные в ходе стереотаксической операции в мозг больного, подавалось небольшое отрицательное напряжение –0.63 вольта. При этом на границе электрод – среда мозга начинали протекать сложные окислительно-восстановительные процессы, при которых ток, проходящий через электрод, оказывался пропорционален концентрации кислорода в окружающей среде. Анализируя флюктуации напряжения кислорода в мозгу с помощью этой полярографической методики, Валентин Борисович обнаружил, что концентрация кислорода в ткани мозга не является постоянной величиной, а претерпевает медленные (с периодом от 6 до 60 секунд) колебания.
Удивительно, но тогда никто не обратил внимания на это открытие. И только спустя почти сорок лет ученые сумели повторить и, главное, оценить эти наблюдения. Но сделаны они были уже на другом методическом уровне, с использованием нового метода, появившегося в конце восьмидесятых годов, – метода позитронно-эмиссионной томографии (ПЭТ).
Хочу дать несколько пояснений для тех, кто не знаком с этой уникальной методикой конца ХХ века. ПЭТ основывается на использовании физических свойств изотопов – радиоактивных форм простых атомов (таких, как водород, кислород, фтор), которые, распадаясь, испускают позитроны. Радиоактивные атомы получаются с помощью специального физического устройства, называемого циклотроном. Радиоактивные атомы объединяются в более сложные молекулы, такие как кислород, вода или глюкоза, с помощью другого сложного устройства, так называемой «горячей камеры» – химической лаборатории. При проведении ПЭТ-исследования радиоактивные вещества вводятся в кровь пациентов и по сосудам достигают мозга. Здесь эти вещества поглощаются клетками определенных областей мозга, и поглощенное радиоактивное вещество испускает позитроны. Позитроны, сталкиваясь с электронами, аннигилируют с излучением двух гамма-квантов на каждое столкновение. Эти гамма-кванты регистрируются специальными датчиками, расположенными вокруг головы испытуемого, причем число столкновений прямо пропорционально активности нейронов, находящихся в соответствующем участке мозга. Иными словами, чем более активны нейроны в некоторой области мозга, тем больше радиоизотопов эта область поглощает и, следовательно, тем больший уровень гамма-излучения будет зарегистрирован из этой области. Для того чтобы восстановить распределение плотности радиоактивного вещества в трехмерном пространстве, используются специальные математические методы реконструкции, подобные тем, которые применяются в магниторезонансной томографии (МРТ). В России ПЭТ был впервые установлен в Институте мозга человека в 1990 году по инициативе Натальи Петровны Бехтеревой.
Так вот, используя это дорогостоящее оборудование, удалось подтвердить данные, полученные в отделе нейрофизиологии человека более 40 лет назад. Оказалось, что, действительно, концентрация кислорода в мозгу, измеренная с помощью ПЭТ, флуктуирует в диапазоне частот меньше 0.1 Гц, причем уровень кислорода в таких областях коры, как задняя и передняя зоны поясной извилины, претерпевает синхронные колебания, объединяющие эти области мозга в единую систему, часто называемую «дефолтной» (default) сетью мозга.
Исследования ПЭТ в психологических тестах также показали, что концентрация кислорода воспроизводимо изменяется при функциональных пробах – в точности так же, как это было показано в исследованиях ученика Натальи Петровны – В. Б. Гречина – в шестидесятых годах. Тогда Валентин Борисович регистрировал напряжение кислорода с помощью усилителей производства экспериментальных мастерских Института экспериментальной медицины Академии медицинских наук СССР, сама запись осуществлялась на чернильном самописце, а для доказательства воспроизводимости реакций мозга человека приходилось на кальке накладывать друг на друга записи, произведенные в нескольких пробах. Сейчас для этого используются сложные математические процессы реконструкции изображения, компьютерные методы усреднения и современные методы статистического анализа. Однако сущность открытого явления от этого не меняется.
Возвращаясь на сорок лет назад, хочу отметить, что уже в те годы в отделе нейрофизиологии человека использовались многообразные функциональные пробы, примерно такие же, какие сейчас используются в исследованиях ПЭТ. Одна из них – проба Бине на оперативную память. Больному предъявляли несколько цифр, которые он должен был повторить через несколько десятков секунд. Рассматривая вместе с В. Б. Гречиным вызванные реакции концентрации кислорода в ткани мозга в ответ на выполнение тестов на краткосрочную память, Наталья Петровна заметила, что некоторые области мозга реагировали изменениями метаболизма только при ошибочном выполнении тестов. С легкой руки Натальи Петровны эти области мозга были названы детекторами ошибок (Бехтерева, Гречин, 1968). Валентин Борисович провел серию изящных исследований по воздействию фармакологических агентов на детекторы ошибок и готовился к написанию докторской диссертации. Ранняя смерть в возрасте сорока лет не позволила ему довершить этот труд своей жизни. К сожалению, многие из этих работ так и остались неопубликованными.
Через несколько лет Наталья Петровна вернулась к этой теме. Тогда в качестве показателя жизнедеятельности мозга была выбрана импульсная активность нейронов, а в качестве теста – предъявление стимулов на пороге опознания. Надо сказать, что в семидесятых – восьмидесятых годах ученые возлагали большие надежды на возможность прижизненной регистрации импульсной активности нейронов мозга. Язык нейронов – это спайк (иногда его называют импульсом или потенциалом действия), который передает информацию от нейрона к другим клеткам мозга. С помощью специальных усилителей можно было регистрировать эту активность нейронов не только в экспериментах на животных, но и в исследованиях на больных с вживленными электродами. Это была уникальная возможность подсмотреть, как работают клетки мозга при функциональных нагрузках. В те годы мной был разработан психологический тест, который позволил исследовать механизмы осознанного восприятия.
Тест состоял из предъявления зрительных стимулов на пороге опознания. Экспозицию предъявления стимулов выбирали настолько короткой, что примерно в половине случаев больному не удавалось опознать стимулы. Сравнивая активность нейронов при опознании и неопознании стимулов, можно было судить о нейронных коррелятах осознанного восприятия.
Оказалось, что в некоторых случаях больные совершали ошибки, то есть называли стимулы неправильно. Нас заинтересовал вопрос: что же отличает эти случаи ошибок от случаев правильного опознания?
К нашему удивлению, в базальных ганглиях были обнаружены нейроны, которые реагировали перед тем, как человек совершал ошибку и неправильно называл стимул. Важно отметить, что во многих случаях больные, у которых регистрировалась импульсная активность нейронов, даже не осознавали свои ошибки, то есть мозг «детектировал» ошибку лучше, чем это делал сам человек. Однако наиболее неожиданным и интригующим был факт обнаружения этих нейронов не в корковых образованиях (как это можно было бы ожидать, исходя из представлений о лидирующей роли коры в мыслительных процессах), а в подкорковых структурах мозга, в частности, в базальных ганглиях.
Это было вдвойне странным, поскольку в те годы было принято считать, что основная функция базальных ганглиев заключалась в контроле движений. Возникал вопрос: если это действительно так, то почему нейроны базальных ганглиев реагируют на ошибочное действие, которое еще не осуществлено и которое впоследствии даже не будет осознано человеком? Тогда это так и осталось загадкой. Сейчас мы знаем, что базальные ганглии участвуют не только в обеспечении движений, а вовлечены в сенсорные и когнитивные функции, причем одна из функций базальных ганглий – селекция действий. Под действиями в данном контексте я подразумеваю не только просто движения, но и сенсорно-когнитивные действия, например, принятие решения о смысловой значимости стимула.
Работы по детекции ошибок того периода были представлены в двух публикациях: одна из них появилась в Докладах Академии наук СССР, другая – в международном журнале «International Journal of Psychophysiology». Интересно, что последняя работа была признана одной из лучших за 1985 год. На публикации этих работ завершился очередной период исследований детекции ошибок.
Только спустя почти двадцать лет в зарубежных исследованиях с регистрацией когнитивных вызванных потенциалов и функциональной магниторезонансной томографии были получены данные, указывающие на существование системы детекции ошибок в могу человека. В этих исследованиях, в частности, было показано, что после совершения человеком ошибки определенная область коры головного мозга, называемая передней поясной извилиной, начинает подавать сигналы об ошибке. Следует, однако, заметить, что эти данные, полученные одновременно в нескольких лабораториях мира, в определенной степени отличались от работ Натальи Петровны, не повторяя, а дополняя полученные ею данные. Действительно, корреляты ошибок в этих работах были обнаружены после совершения ошибок. Рассматривая все эти данные с единой точки зрения, можно предположить, что в мозгу существуют как нейроны-детерминаторы ошибок, которые активны перед совершением ошибки, так и собственно нейроны-детекторы ошибок, которые активируются, когда человек, сравнивая планируемое действие с реальным, осознает, что совершил ошибку.
Начиная с 2004 года мы в нашей лаборатории совместно с другими центрами в Европе решили создать нормативную базу данных для параметров ЭЭГ и вызванных когнитивных потенциалов мозга. Это был новый виток спирали, начатый Натальей Петровной в шестидесятых годах. Дело в том, что Наталья Петровна начинала свою научную карьеру как электроэнцефалографист, то есть как специалист в области ЭЭГ. В шестидесятые годы в связи с появлением надежных усилителей потенциалов ЭЭГ стала рутинной методикой, позволяющей оценить функциональное состояние мозга человека. Практически во всех неврологических клиниках стали устанавливать электроэнцефалографы. Однако единственной надежной методикой анализа ЭЭГ в те годы был визуальный осмотр записи электроэнцефалограммы на бумаге. Электроэнцефалографисты проводили долгие часы, рассматривая многометровые «простыни» – бумажные записи ЭЭГ. Человеческий глаз – надежный прибор, он позволял выявить такие патологические паттерны, как дельта волны, спайки, спайки-медленные волны и другие. Однако он не позволял компрессировать эти данные в виде спектров, функций когерентности и уж не как не мог уловить в шумообразных флюктуациях воспроизводимые потенциалы, связанные с событиями. Поэтому использование ЭЭГ в те годы ограничивалось в основном областью эпилепсии, при которой в ЭЭГ больных можно было обнаружить биологические маркеры эпилепсии, такие как комплексы спайк-медленная волна. До сих пор в некоторых учебниках можно найти такое однобокое представление об ЭЭГ.
Конец бесплатного ознакомительного фрагмента