Страница:
Вначале молодой нейрохирург Прибрам принимал на веру Пенфилдову теорию энграм. Но затем произошло нечто, в корне изменившее его взгляды. В 1946 г. он начал работать с выдающимся нейропсихологом Карлом Лэшли из Йеркешской лаборатории высших приматов в Ориндж-Парк, штат Флорида. В распоряжении Прибрама оказался огромный опыт, накопленный Лэшли в течение тридцати лет исследований загадочного механизма памяти, и оказалось, что эксперименты Лэшли ставят под сомнение само существование энграм заодно со всеми выводами Пенфилда.
Лэшли занимался тем, что обучал крыс выполнять серию задач — например, выискивать наперегонки кратчайший путь в лабиринте. Затем он удалял различные участки мозга крыс и заново подвергал их испытанию. Его целью было локализовать и удалить тот участок мозга, в котором хранилась память о способности бежать по лабиринту. К своему удивлению он обнаружил, что вне зависимости от того, какие участки мозга были удалены, память в целом нельзя было устранить. Обычно лишь была нарушена моторика крыс, так что они едва ковыляли по лабиринту, но даже при удалении значительной части мозга их память оставалась нетронутой.
Для Прибрама это были исключительно важные открытия. Если бы память хранилась в определенных участках мозга, подобно тому как книги располагаются в определенных местах на полках, то почему хирургическое вмешательство не влияло на память? В понимании Прибрама единственным ответом могло быть то, что конкретная память не локализуется в определенных участках мозга, а каким-то образом распределена (distributed) по всему мозгу, как единое целое. Проблема состояла в том, что Прибрам не знал, какой механизм или процесс может дать удовлетворительное обоснование этой гипотезе.
Еще более обескуражен экспериментами был сам Лэшли. Позже он писал: «Когда я пытался выявить локализацию памяти, мне порой начинало казаться, что в принципе невозможно вообще никакое обучение. И однако, несмотря на отрицательные результаты эксперимента, оно происходит» [2]. В 1948 году Прибраму предложили должность в Йейльском университете, и перед тем, как туда перебраться, он помог Лэшли описать его монументальные тридцатилетние эксперименты.
Прорыв
Зрение также голографично
Топографическая модель мозга — ключ ко многим загадкам
Лэшли занимался тем, что обучал крыс выполнять серию задач — например, выискивать наперегонки кратчайший путь в лабиринте. Затем он удалял различные участки мозга крыс и заново подвергал их испытанию. Его целью было локализовать и удалить тот участок мозга, в котором хранилась память о способности бежать по лабиринту. К своему удивлению он обнаружил, что вне зависимости от того, какие участки мозга были удалены, память в целом нельзя было устранить. Обычно лишь была нарушена моторика крыс, так что они едва ковыляли по лабиринту, но даже при удалении значительной части мозга их память оставалась нетронутой.
Для Прибрама это были исключительно важные открытия. Если бы память хранилась в определенных участках мозга, подобно тому как книги располагаются в определенных местах на полках, то почему хирургическое вмешательство не влияло на память? В понимании Прибрама единственным ответом могло быть то, что конкретная память не локализуется в определенных участках мозга, а каким-то образом распределена (distributed) по всему мозгу, как единое целое. Проблема состояла в том, что Прибрам не знал, какой механизм или процесс может дать удовлетворительное обоснование этой гипотезе.
Еще более обескуражен экспериментами был сам Лэшли. Позже он писал: «Когда я пытался выявить локализацию памяти, мне порой начинало казаться, что в принципе невозможно вообще никакое обучение. И однако, несмотря на отрицательные результаты эксперимента, оно происходит» [2]. В 1948 году Прибраму предложили должность в Йейльском университете, и перед тем, как туда перебраться, он помог Лэшли описать его монументальные тридцатилетние эксперименты.
Прорыв
В Йейльском университете Прибрам продолжал обдумывать свою гипотезу о том, что память, судя по всему, распределена в мозговой ткани, и чем больше он думал, тем более гипотеза казалась убедительной. Все пациенты, у которых мозг был частично удален по медицинским показаниям, никогда не жаловались на потерю конкретной памяти. Удаление значительной части мозга может привести к тому, что память пациента станет расплывчатой, но никто еще не терял после операции избирательную, так называемую селективную память. Например, люди, получившие травму головы в автомобильных катастрофах, всегда помнили всех членов своей семьи или прочитанный ранее роман. Даже удаление височных долей — той области мозга, которую Пенфилд подверг особенно пристальному изучению, — не приводило к каким-либо провалам в памяти пациента.
Идеи Прибрама получили дальнейшее подтверждение в экспериментах, проведенных им самим и другими исследователями на пациентах, не относящихся к эпилептикам. В результате этих экспериментов не удалось подтвердить выводы Пенфилда об избирательной стимуляции памяти. Сам Пенфилд не смог повторить свои результаты на пациентах, не страдающих эпилепсией.
Несмотря на все большую для Прибрама очевидность распределенного характера памяти, он пока еще не мог понять, как мозгу удается справляться с этой поистине магической задачей. И вот в середине 1960-х годов Прибрам прочел в журнале «Scientific American» статью, где описывались первые опыты построения голограммы. Статья поразила его как гром среди бела дня. Открытие принципа голограммы не только было революционным само по себе: оно сулило решение той головоломки, с которой Прибрам столько лет безуспешно боролся.
Чтобы понять все его волнение, познакомимся немного ближе с тем, что такое голограмма. Одно из явлений, лежащих в основе голограммы, — это интерференция, то есть паттерн (5), возникающий в результате наложения двух или более волн (например, на поверхности воды). Если, например, бросить в пруд камешек, это произведет серию концентрических, расходящихся волн. Если же бросить два камешка, мы увидим соответственно два ряда волн, которые, расходясь, налагаются друг на друга. Возникающая при этом сложная конфигурация из пересекающихся вершин и впадин известна как интерференционная картина.
Такую картину может создавать любое волновое явление, включая свет и радиоволны. Особенно эффективен в данном случае лазерный луч, поскольку он является исключительно чистым, когерентным источником света. Лазерный луч создает, так сказать, совершенный камешек и совершенный пруд. Поэтому лишь с изобретением лазера открылась возможность получать искусственные голограммы.
Голограмма создается, когда одиночный луч лазера расщепляется на два отдельных луча. Первый луч отражается от фотографируемого объекта, после чего второй луч сталкивается с отраженным светом первого. При этом они создают интерференционное изображение, которое затем записывается на пленку (см. рис. 1).
Рис. 1. Голограмма создается, когда одиночный луч лазера расщепляется на два отдельных луча. Первый луч отражается от фотографируемого объекта. Затем второй луч сталкивается с отраженным светом первого. При этом они создают интерференционную картинку, которая затем записывается на пленку.
Для невооруженного глаза картинка, получаемая на пленке, совершенно не похожа на фотографируемый объект. Отдаленно она напоминает концентрические круги, получаемые после броска в воду целой горсти камешков (см. рис. 2). Но как только луч другого лазера (или, в некоторых случаях, просто направленный яркий свет) попадает на пленку, возникает трехмерное изображение первоначального объекта. Трехмерность изображения таких объектов удивительно реальна. Можно обойти голографическую картинку и увидеть ее под разными углами, как будто это реальный объект. Однако при попытке потрогать голограмму рука просто пройдет через воздух и вы ничего не обнаружите (см. рис. 3).
Рис. 2. Фрагмент голографической пленки, содержащий записанное изображение. Для невооруженного глаза изображение на пленке совершенно не похоже на сфотографированный объект и состоит из неправильных кругов, дающих при наложении то, что известно как интерференционная картина. Однако при освещении пленки другим лазером возникает трехмерное изображение первоначального объекта
Трехмерность — не единственное замечательное свойство голограммы. Если часть голографической пленки, содержащей, например, изображение яблока, разрезать на две половинки и затем осветить лазером, каждая половинка будет содержать целое изображение яблока! Даже если каждую из половинок снова и снова делить пополам, целое яблоко по-прежнему будет появляться на каждом маленьком кусочке пленки (хотя изображения будут ухудшаться по мере уменьшения кусочков). В отличие от обычных фотографий, каждая небольшая частичка голографической пленки содержит всю информацию целого (см. рис. 4) (6).
Рис. 3. Трехмерность изображения записанных на голограмме объектов удивительно реальна. Можно обойти голографическую картинку и увидеть ее под разными углами, как будто это реальный объект. Однако при попытке потрогать голограмму рука просто пройдет через воздух, и вы ничего не обнаружите. [«Celeste Undressed». Голографическая стереограмма, полученная Петером Клодиусом (1978). Фотография Брэда Кантоса из коллекции Музея Голографии. Приводится с разрешения авторов]
Именно это обнаружившееся в голограмме свойство и взволновало Прибрама: он понял, что память как одна из центральных функций мозга имеет распределенный, а не локализованный характер. Если каждый кусочек голографической пленки может содержать информацию, по которой создается целое изображение, то совершенно аналогично каждая часть мозга может содержать информацию, восстанавливающую память как целое.
Рис. 4 В отличие от обычных фотографий, каждая небольшая частичка голографической пленки содержит всю информацию целого.
Идеи Прибрама получили дальнейшее подтверждение в экспериментах, проведенных им самим и другими исследователями на пациентах, не относящихся к эпилептикам. В результате этих экспериментов не удалось подтвердить выводы Пенфилда об избирательной стимуляции памяти. Сам Пенфилд не смог повторить свои результаты на пациентах, не страдающих эпилепсией.
Несмотря на все большую для Прибрама очевидность распределенного характера памяти, он пока еще не мог понять, как мозгу удается справляться с этой поистине магической задачей. И вот в середине 1960-х годов Прибрам прочел в журнале «Scientific American» статью, где описывались первые опыты построения голограммы. Статья поразила его как гром среди бела дня. Открытие принципа голограммы не только было революционным само по себе: оно сулило решение той головоломки, с которой Прибрам столько лет безуспешно боролся.
Чтобы понять все его волнение, познакомимся немного ближе с тем, что такое голограмма. Одно из явлений, лежащих в основе голограммы, — это интерференция, то есть паттерн (5), возникающий в результате наложения двух или более волн (например, на поверхности воды). Если, например, бросить в пруд камешек, это произведет серию концентрических, расходящихся волн. Если же бросить два камешка, мы увидим соответственно два ряда волн, которые, расходясь, налагаются друг на друга. Возникающая при этом сложная конфигурация из пересекающихся вершин и впадин известна как интерференционная картина.
Такую картину может создавать любое волновое явление, включая свет и радиоволны. Особенно эффективен в данном случае лазерный луч, поскольку он является исключительно чистым, когерентным источником света. Лазерный луч создает, так сказать, совершенный камешек и совершенный пруд. Поэтому лишь с изобретением лазера открылась возможность получать искусственные голограммы.
Голограмма создается, когда одиночный луч лазера расщепляется на два отдельных луча. Первый луч отражается от фотографируемого объекта, после чего второй луч сталкивается с отраженным светом первого. При этом они создают интерференционное изображение, которое затем записывается на пленку (см. рис. 1).
Рис. 1. Голограмма создается, когда одиночный луч лазера расщепляется на два отдельных луча. Первый луч отражается от фотографируемого объекта. Затем второй луч сталкивается с отраженным светом первого. При этом они создают интерференционную картинку, которая затем записывается на пленку.
Для невооруженного глаза картинка, получаемая на пленке, совершенно не похожа на фотографируемый объект. Отдаленно она напоминает концентрические круги, получаемые после броска в воду целой горсти камешков (см. рис. 2). Но как только луч другого лазера (или, в некоторых случаях, просто направленный яркий свет) попадает на пленку, возникает трехмерное изображение первоначального объекта. Трехмерность изображения таких объектов удивительно реальна. Можно обойти голографическую картинку и увидеть ее под разными углами, как будто это реальный объект. Однако при попытке потрогать голограмму рука просто пройдет через воздух и вы ничего не обнаружите (см. рис. 3).
Рис. 2. Фрагмент голографической пленки, содержащий записанное изображение. Для невооруженного глаза изображение на пленке совершенно не похоже на сфотографированный объект и состоит из неправильных кругов, дающих при наложении то, что известно как интерференционная картина. Однако при освещении пленки другим лазером возникает трехмерное изображение первоначального объекта
Трехмерность — не единственное замечательное свойство голограммы. Если часть голографической пленки, содержащей, например, изображение яблока, разрезать на две половинки и затем осветить лазером, каждая половинка будет содержать целое изображение яблока! Даже если каждую из половинок снова и снова делить пополам, целое яблоко по-прежнему будет появляться на каждом маленьком кусочке пленки (хотя изображения будут ухудшаться по мере уменьшения кусочков). В отличие от обычных фотографий, каждая небольшая частичка голографической пленки содержит всю информацию целого (см. рис. 4) (6).
Рис. 3. Трехмерность изображения записанных на голограмме объектов удивительно реальна. Можно обойти голографическую картинку и увидеть ее под разными углами, как будто это реальный объект. Однако при попытке потрогать голограмму рука просто пройдет через воздух, и вы ничего не обнаружите. [«Celeste Undressed». Голографическая стереограмма, полученная Петером Клодиусом (1978). Фотография Брэда Кантоса из коллекции Музея Голографии. Приводится с разрешения авторов]
Именно это обнаружившееся в голограмме свойство и взволновало Прибрама: он понял, что память как одна из центральных функций мозга имеет распределенный, а не локализованный характер. Если каждый кусочек голографической пленки может содержать информацию, по которой создается целое изображение, то совершенно аналогично каждая часть мозга может содержать информацию, восстанавливающую память как целое.
Рис. 4 В отличие от обычных фотографий, каждая небольшая частичка голографической пленки содержит всю информацию целого.
Зрение также голографично
Память — не единственная функция мозга, в основе которой лежит голографический принцип. Еще одно открытие Лэшли заключалось в том, что зрительные центры мозга обнаруживают удивительную сопротивляемость хирургическому вмешательству. Даже после удаления у крыс 90 % зрительного отдела коры головного мозга (часть мозга, которая принимает и обрабатывает видимое глазом) они были в состоянии выполнять задачи, требующие сложных зрительных операций. Аналогичные исследования, проведенные Прибрамом, показали, что 98 % оптических нервов у кошек могут быть удалены без серьезного нарушения их способности выполнять сложные зрительные задачи [3]. Это можно сравнить с ситуацией, когда зрители в кинотеатре смотрят кинофильм на экране, 90 % площади которого удалено. Таким образом, проведенные Прибрамом эксперименты еще раз подвергли сомнению общепринятую концепцию зрительного восприятия, основанную на взаимно-однозначном соответствии между видимым образом и тем, как он представлен в мозгу. Другими словами, считалось, что, когда мы смотрим на квадрат, электрическая активность зрительной области коры головного мозга также принимает форму квадрата (см. рис. 5).
Хотя, казалось, открытие Лэшли нанесло смертельный удар общепринятой теории восприятия, Прибрам не был удовлетворен. Работая в Йейльском университете, он поставил ряд экспериментов по выяснению этого вопроса и в течение семи лет тщательно измерял электрическую активность мозга у обезьян во время выполнения ими различных зрительных задач. Он не только не обнаружил взаимного соответствия между предметом и его изображением в мозгу, но даже не выявил никакой системы в активизации электродов. О своих наблюдениях он писал: «Полученные экспериментальные результаты не согласуются с положением, согласно которому предмет проецируется на поверхность коры головного мозга подобно фотографии» [4].
Рис. 5. Исследователи, занимающиеся теорией зрения, ранее считали, что существует взаимно-однозначное соответствие между видимым образом и тем, как он представлен в мозгу. Прибрам обнаружил, что это не так.
Нечувствительность, которую, как оказалось, проявляет зрительная область мозга к хирургическому вмешательству, означала, что зрение, как и память, имеет распределенный характер. Ознакомившись с теорией голографии, Прибрам начал рассматривать ее как возможное объяснение работы мозга. Природа голограммы как «целого, заключенного в части» вполне могла объяснить, почему удаление большой части коры головного мозга не нарушает способность мозга выполнять зрительные задачи. Если мозг обрабатывает изображения с помощью некоторой внутренней голограммы, даже небольшая часть этой голограммы могла бы восстановить увиденную ранее целую картину. Эта теория также объясняла отсутствие взаимного соответствия между внешним миром и электрической активностью мозга. Действительно, если мозг использует голографический принцип для обработки зрительной информации, взаимное соответствие между изображением и электрической активностью должно быть не больше, чем соответствие между отвлеченной интерференционной картиной на фрагменте голографической пленки и самим закодированным на пленке изображением.
Однако оставалось непонятным, какие волновые явления в мозгу способны создавать такие внутренние голограммы. Как только Прибрам сформулировал для себя этот вопрос, он тотчас же начал искать возможный ответ. К тому времени было известно, что в электрическом взаимодействии между нервными клетками мозга, или нейронами, с необходимостью принимает участие прочая мозговая ткань. Нейроны имеют древовидные разветвления, и когда электрический сигнал достигает конца одного такого разветвления, он распространяется далее в виде волн, точно таких, какие мы наблюдаем на поверхности воды. Поскольку нейроны тесно прилегают друг к другу, расходящиеся электрические волны постоянно налагаются друг на друга. Когда Прибрам увидел это своим мысленным взором, ему стало ясно, что волны могут создавать бесконечный калейдоскопичный ряд интерференционных картин, в которых и коренится адаптированность мозга к принципу голографии. «Голографический принцип неизменно фигурирует в волновой природе взаимодействия нервных клеток мозга, — пишет Прибрам. — Мы просто не могли себе этого представить» [5].
Хотя, казалось, открытие Лэшли нанесло смертельный удар общепринятой теории восприятия, Прибрам не был удовлетворен. Работая в Йейльском университете, он поставил ряд экспериментов по выяснению этого вопроса и в течение семи лет тщательно измерял электрическую активность мозга у обезьян во время выполнения ими различных зрительных задач. Он не только не обнаружил взаимного соответствия между предметом и его изображением в мозгу, но даже не выявил никакой системы в активизации электродов. О своих наблюдениях он писал: «Полученные экспериментальные результаты не согласуются с положением, согласно которому предмет проецируется на поверхность коры головного мозга подобно фотографии» [4].
Рис. 5. Исследователи, занимающиеся теорией зрения, ранее считали, что существует взаимно-однозначное соответствие между видимым образом и тем, как он представлен в мозгу. Прибрам обнаружил, что это не так.
Нечувствительность, которую, как оказалось, проявляет зрительная область мозга к хирургическому вмешательству, означала, что зрение, как и память, имеет распределенный характер. Ознакомившись с теорией голографии, Прибрам начал рассматривать ее как возможное объяснение работы мозга. Природа голограммы как «целого, заключенного в части» вполне могла объяснить, почему удаление большой части коры головного мозга не нарушает способность мозга выполнять зрительные задачи. Если мозг обрабатывает изображения с помощью некоторой внутренней голограммы, даже небольшая часть этой голограммы могла бы восстановить увиденную ранее целую картину. Эта теория также объясняла отсутствие взаимного соответствия между внешним миром и электрической активностью мозга. Действительно, если мозг использует голографический принцип для обработки зрительной информации, взаимное соответствие между изображением и электрической активностью должно быть не больше, чем соответствие между отвлеченной интерференционной картиной на фрагменте голографической пленки и самим закодированным на пленке изображением.
Однако оставалось непонятным, какие волновые явления в мозгу способны создавать такие внутренние голограммы. Как только Прибрам сформулировал для себя этот вопрос, он тотчас же начал искать возможный ответ. К тому времени было известно, что в электрическом взаимодействии между нервными клетками мозга, или нейронами, с необходимостью принимает участие прочая мозговая ткань. Нейроны имеют древовидные разветвления, и когда электрический сигнал достигает конца одного такого разветвления, он распространяется далее в виде волн, точно таких, какие мы наблюдаем на поверхности воды. Поскольку нейроны тесно прилегают друг к другу, расходящиеся электрические волны постоянно налагаются друг на друга. Когда Прибрам увидел это своим мысленным взором, ему стало ясно, что волны могут создавать бесконечный калейдоскопичный ряд интерференционных картин, в которых и коренится адаптированность мозга к принципу голографии. «Голографический принцип неизменно фигурирует в волновой природе взаимодействия нервных клеток мозга, — пишет Прибрам. — Мы просто не могли себе этого представить» [5].
Топографическая модель мозга — ключ ко многим загадкам
Прибрам опубликовал свою первую статью о предполагаемой голографической природе мозга в 1966 году и в течение последующих нескольких лет продолжал развивать и уточнять свою теорию. По мере того как с ней знакомились другие исследователи, становилось все более ясно, что распределенный характер памяти и зрения — не единственная нейрофизиологическая загадка, которую можно разгадать с помощью голографической модели.
Колоссальная вместимость памяти
Среди прочего голография дает объяснение тому, каким образом мозг умудряется хранить столько информации в столь небольшом пространстве. Гениальный физик и математик, уроженец Венгрии, Джон фон Нейман однажды рассчитал, что в среднем в течение человеческой жизни мозг накапливает порядка 2, 81020 бит информации (280 000 000 000 000 000 000). Такое невообразимое количество информации никак не согласуется с традиционной картиной механизма хранения памяти.
В этом смысле показательно, что именно голограммы обладают фантастической способностью к хранению информации. Изменяя угол, под которым два лазера облучают кусочек фотопленки, оказывается возможным записать множество изображений на одной и той же поверхности. Любое записанное таким образом изображение может быть восстановлено простым освещением пленки лазером, направленным под тем же углом, под которым находились первоначально два луча. Используя этот метод, исследователи рассчитали, что на одном квадратном сантиметре пленки можно разместить столько же информации, сколько содержится в десяти Библиях! [6]
Способность забывать и вспоминать
Фрагменты голографической пленки, содержащие множественные изображения, наподобие тех, которые были описаны выше, дают также ключ к пониманию нашей способности забывать и вспоминать. Если такой кусочек пленки перемещать под лучом лазера, на нем в непрерывной последовательности будут появляться и исчезать записанные образы. Предполагается, что наша способность вспоминать есть не что иное, как освещение лазерным лучом фрагмента пленки для активизации определенного образа. То есть когда мы не можем вспомнить некий образ, это означает, что, посылая, так сказать, луч на пленку, мы не можем найти правильный угол, под которым этот образ вызывается в памяти.
Ассоциативная память
Марсель Пруст в романе «В сторону Свана» описывает, как всего один глоток чая и кусочек пирожного вдруг погрузили рассказчика в целую анфиладу воспоминаний. Сначала он сбит с толку, но затем, после некоторого усилия, начинает постепенно вспоминать картины прошлого, начиная с той, где его, маленького мальчика, угощали чаем с таким же пирожным. Все мы сталкивались с подобным опытом — вкус определенной пищи или вид давно забытых предметов вдруг пробуждают в нас образы из далекого прошлого.
Из голографической модели следует дальнейшая аналогия с ассоциативной памятью. Это можно проиллюстрировать еще одним способом голографической записи. Сначала свет одного лазерного луча отражается одновременно от двух объектов, скажем, от кресла и курительной трубки. Затем происходит наложение отраженных световых потоков от двух объектов, и результирующая интерференционная картина записывается на пленку. Если теперь осветить кресло лазерным лучом и пропустить отраженный свет через пленку, на ней появится трехмерное изображение трубки. И наоборот, если то же самое проделать с трубкой, появляется голограмма кресла. Поэтому, если наш мозг действует голографически, подобный процесс может прояснить, почему некоторые объекты вызывают у нас специфические воспоминания.
Способность моментально узнавать знакомые предметы
На первый взгляд наша способность узнавать знакомые предметы не кажется такой уж необычной, однако исследователи мозга давно считают ее весьма сложной. Например, моментальное узнавание знакомого лица в толпе из нескольких сотен основано не на каких-либо индивидуальных талантах, а на чрезвычайно быстрой и надежной обработке информации мозгом.
В опубликованной в 1970 году статье в британском научном журнале «Nature» физик Петер Ван Хеерден предположил, что в основе этой способности лежит особый тип голографии, известный как голографическое распознавание образов (7). В голографии распознавания образ предмета записывается обычным способом, за исключением того, что луч лазера отражается от специального устройства, известного как фокусирующее зеркало, прежде чем попадет на неэкспонированную пленку. Если второй предмет, подобный, но не идентичный первому, осветить лазерным лучом и отраженный от зеркала луч направить на пленку, на пленке появится яркое световое пятно. Чем ярче и четче световое пятно, тем ближе подобие между первым и вторым предметом. Если два объекта совершенно не похожи друг на друга, световое пятно не появится. Разместив светочувствительный элемент за голографической пленкой, мы получим систему распознавания образов [7].
Метод, аналогичный вышеописанному и известный как интерференционная голография, может объяснить механизм распознавания знакомых и незнакомых черт, например, лица человека, которого мы не видели много лет. Этот метод заключается в том, что объект рассматривается через голографическую пленку, содержащую его образ. При этом любая черта объекта, изменившаяся по сравнению с первоначально записанным изображением, будет по-иному отражать свет. Для человека, смотрящего через пленку, сразу становится ясным, что изменилось и что сохранилось в объекте. Этот метод настолько точный, что позволяет регистрировать изменения, происходящие при нажатии пальцем на гранитную плиту, нашел впоследствии практическое применение в области материаловедения [8].
Фотографическая память
В 1972 году сотрудники Гарвардского университета Дэниел Поллен и Майкл Трактенберг, специализирующиеся на исследованиях зрительного восприятия, выдвинули гипотезу, согласно которой голографическая теория мозга может объяснить существование у некоторых людей фотографической памяти (известной также как «эйдетическая»). Ее обладателю обычно требуется всего несколько мгновений для сканирования сцены, которую он желает запомнить. Если он хочет воссоздать запечатленную в памяти ситуацию, он «проецирует» ее ментальное изображение на экран перед открытыми или закрытыми глазами — экран реальный или воображаемый. Изучая некую Элизабет, профессора истории искусств Гарвардского университета, обладающую этими уникальными способностями, Поллен и Трактенберг обнаружили, что при чтении ментально проецируемого образа страницы из гетевского «Фауста» ее глаза двигались так, будто она читала настоящую страницу.
Заметив, что при уменьшении фрагмента голографической пленки записанный на нем образ не становится более расплывчатым, Поллен и Трактенберг предположили, что некоторые люди имеют особо рельефную память благодаря доступу к очень большим областям их голографической памяти. С другой стороны, большинство из нас, по-видимому, обладает гораздо менее рельефной памятью из-за ограниченного доступа к участкам голографической памяти [9].
Передача навыков
Прибрам уверен в том, что голографическая модель также проливает свет на нашу способность передавать навыки от одной части тела к другой. Отложите на минуту книгу, которую вы сейчас читаете, и попробуйте выписать свое имя в воздухе с помощью левого локтя. Вы, наверное, обнаружите, что это довольно просто сделать, хотя, скорее всего, вы этим никогда раньше не занимались. Для классической науки такая способность загадочна, так как считается, что различные области мозга (например, та часть, которая управляет движениями локтя) «жестко программируемы», то есть способны выполнять задачи только после того, как повторное обучение вызовет соответствующие соединения нервных клеток мозга. Прибрам замечает, что эту проблему можно разрешить, если допустить, что мозг преобразовывает все содержимое памяти, включая такие навыки, как письмо, в язык интерференционных волновых форм. Такой мозг был бы гораздо более оперативным и мог бы переносить записанную информацию из одного места в другое подобно тому, как из одной тональности в другую транспонирует мелодию умелый пианист.
Тот же механизм мог бы объяснить, каким образом мы узнаем знакомое лицо, независимо от того, под каким углом мы видим его. То есть как только мозг запомнил лицо (или любой другой объект) и преобразовал его в язык волновых форм, он может буквально перевернуть эту внутреннюю голограмму для того, чтобы изучить ее под желаемым углом.
Фантомные боли, или как мы контролируем внешний мир
Большинству из нас ясно, что чувство любви, голода, ярости и т. п. — это внутренняя реальность, в то время как звуки, солнечный свет, запах свежевыпеченного хлеба и т. п. — это реальность внешняя. И все же нет полной ясности в том, как мозгу удается проводить различие между внутренним и внешним. Например, Прибрам отмечает, что когда мы смотрим на человека, его образ в действительности находится на поверхности сетчатки нашего глаза. Однако мы не воспринимаем человека как образ на сетчатке. Мы воспринимаем его как некий «внешний» образ. Сходным образом, когда, скажем, ушиблен палец, мы испытываем в нем боль. Но боль на самом деле не в пальце. Фактически она представляет собою некий нейрофизиологический процесс, протекающий где-то в нашем мозгу. Каким образом наш мозг умудряется обрабатывать все множество нейрофизиологических процессов, проявляющихся в виде опыта и протекающих внутри мозга, создавая при этом впечатление, что часть из них — внутренние, а часть — внешние объекты, выходящие за пределы нашего «серого вещества»?
Способность создавать иллюзию того, что вещи находятся там, где их нет, и есть главное свойство голограммы. Голограмма имеет видимую пространственную протяженность, но если провести рукой сквозь нее, вы ничего не обнаружите. Несмотря на свидетельство ваших органов чувств, никакой прибор не обнаружит присутствия энергетической аномалии или материи на месте голограммы. Это происходит потому, что голограмма — это виртуальный образ — образ, возникающий там, где его нет, и обладающий не большей глубиной, чем ваше «трехмерное» отражение в зеркале. Подобно тому как образ в зеркале расположен на плоскости амальгамы, фактическое нахождение голограммы всегда будет на фотоэмульсии, расположенной на поверхности записывающей пленки.
Доказательство того, что мозг способен создавать иллюзию протекания внутренних процессов вне тела, в дальнейшем было получено Георгом фон Бекеши, нобелевским лауреатом в области физиологии. В ряде экспериментов, проведенных в конце 60-х годов со слепыми перципиентами, Бекеши располагал вибраторы у них на коленях, затем изменял уровень вибраций. С помощью такого метода ему удалось сделать так, что источник вибраций «перепрыгивал» с одного колена на другое. Более того, он обнаружил, что может вызвать у своих подопытных ощущение вибрации в пространстве между коленями. Другими словами, он показал, что люди способны ощущать предметы в пространстве, не имея для этого сенсорных рецепторов [10]. По мнению Прибрама, работа Бекеши согласуется с голографической моделью и проливает дополнительный свет на то, как интерферирующие волновые фронты — или, в случае Бекеши, интерферирующие источники механической вибрации — помогают мозгу локализовать свое восприятие вне физических границ тела. Он полагает, что этот процесс может также объяснить фантомные боли, то есть ощущение присутствия ампутированной руки или ноги у некоторых людей. Эти люди часто отмечают странные, вполне реалистические боли, покалывания и зуд на месте ампутированных конечностей, что может быть объяснено голографической памятью конечности, записанной в интерференционной картине мозга.
Экспериментальная проверка топографического мозга
Колоссальная вместимость памяти
Среди прочего голография дает объяснение тому, каким образом мозг умудряется хранить столько информации в столь небольшом пространстве. Гениальный физик и математик, уроженец Венгрии, Джон фон Нейман однажды рассчитал, что в среднем в течение человеческой жизни мозг накапливает порядка 2, 81020 бит информации (280 000 000 000 000 000 000). Такое невообразимое количество информации никак не согласуется с традиционной картиной механизма хранения памяти.
В этом смысле показательно, что именно голограммы обладают фантастической способностью к хранению информации. Изменяя угол, под которым два лазера облучают кусочек фотопленки, оказывается возможным записать множество изображений на одной и той же поверхности. Любое записанное таким образом изображение может быть восстановлено простым освещением пленки лазером, направленным под тем же углом, под которым находились первоначально два луча. Используя этот метод, исследователи рассчитали, что на одном квадратном сантиметре пленки можно разместить столько же информации, сколько содержится в десяти Библиях! [6]
Способность забывать и вспоминать
Фрагменты голографической пленки, содержащие множественные изображения, наподобие тех, которые были описаны выше, дают также ключ к пониманию нашей способности забывать и вспоминать. Если такой кусочек пленки перемещать под лучом лазера, на нем в непрерывной последовательности будут появляться и исчезать записанные образы. Предполагается, что наша способность вспоминать есть не что иное, как освещение лазерным лучом фрагмента пленки для активизации определенного образа. То есть когда мы не можем вспомнить некий образ, это означает, что, посылая, так сказать, луч на пленку, мы не можем найти правильный угол, под которым этот образ вызывается в памяти.
Ассоциативная память
Марсель Пруст в романе «В сторону Свана» описывает, как всего один глоток чая и кусочек пирожного вдруг погрузили рассказчика в целую анфиладу воспоминаний. Сначала он сбит с толку, но затем, после некоторого усилия, начинает постепенно вспоминать картины прошлого, начиная с той, где его, маленького мальчика, угощали чаем с таким же пирожным. Все мы сталкивались с подобным опытом — вкус определенной пищи или вид давно забытых предметов вдруг пробуждают в нас образы из далекого прошлого.
Из голографической модели следует дальнейшая аналогия с ассоциативной памятью. Это можно проиллюстрировать еще одним способом голографической записи. Сначала свет одного лазерного луча отражается одновременно от двух объектов, скажем, от кресла и курительной трубки. Затем происходит наложение отраженных световых потоков от двух объектов, и результирующая интерференционная картина записывается на пленку. Если теперь осветить кресло лазерным лучом и пропустить отраженный свет через пленку, на ней появится трехмерное изображение трубки. И наоборот, если то же самое проделать с трубкой, появляется голограмма кресла. Поэтому, если наш мозг действует голографически, подобный процесс может прояснить, почему некоторые объекты вызывают у нас специфические воспоминания.
Способность моментально узнавать знакомые предметы
На первый взгляд наша способность узнавать знакомые предметы не кажется такой уж необычной, однако исследователи мозга давно считают ее весьма сложной. Например, моментальное узнавание знакомого лица в толпе из нескольких сотен основано не на каких-либо индивидуальных талантах, а на чрезвычайно быстрой и надежной обработке информации мозгом.
В опубликованной в 1970 году статье в британском научном журнале «Nature» физик Петер Ван Хеерден предположил, что в основе этой способности лежит особый тип голографии, известный как голографическое распознавание образов (7). В голографии распознавания образ предмета записывается обычным способом, за исключением того, что луч лазера отражается от специального устройства, известного как фокусирующее зеркало, прежде чем попадет на неэкспонированную пленку. Если второй предмет, подобный, но не идентичный первому, осветить лазерным лучом и отраженный от зеркала луч направить на пленку, на пленке появится яркое световое пятно. Чем ярче и четче световое пятно, тем ближе подобие между первым и вторым предметом. Если два объекта совершенно не похожи друг на друга, световое пятно не появится. Разместив светочувствительный элемент за голографической пленкой, мы получим систему распознавания образов [7].
Метод, аналогичный вышеописанному и известный как интерференционная голография, может объяснить механизм распознавания знакомых и незнакомых черт, например, лица человека, которого мы не видели много лет. Этот метод заключается в том, что объект рассматривается через голографическую пленку, содержащую его образ. При этом любая черта объекта, изменившаяся по сравнению с первоначально записанным изображением, будет по-иному отражать свет. Для человека, смотрящего через пленку, сразу становится ясным, что изменилось и что сохранилось в объекте. Этот метод настолько точный, что позволяет регистрировать изменения, происходящие при нажатии пальцем на гранитную плиту, нашел впоследствии практическое применение в области материаловедения [8].
Фотографическая память
В 1972 году сотрудники Гарвардского университета Дэниел Поллен и Майкл Трактенберг, специализирующиеся на исследованиях зрительного восприятия, выдвинули гипотезу, согласно которой голографическая теория мозга может объяснить существование у некоторых людей фотографической памяти (известной также как «эйдетическая»). Ее обладателю обычно требуется всего несколько мгновений для сканирования сцены, которую он желает запомнить. Если он хочет воссоздать запечатленную в памяти ситуацию, он «проецирует» ее ментальное изображение на экран перед открытыми или закрытыми глазами — экран реальный или воображаемый. Изучая некую Элизабет, профессора истории искусств Гарвардского университета, обладающую этими уникальными способностями, Поллен и Трактенберг обнаружили, что при чтении ментально проецируемого образа страницы из гетевского «Фауста» ее глаза двигались так, будто она читала настоящую страницу.
Заметив, что при уменьшении фрагмента голографической пленки записанный на нем образ не становится более расплывчатым, Поллен и Трактенберг предположили, что некоторые люди имеют особо рельефную память благодаря доступу к очень большим областям их голографической памяти. С другой стороны, большинство из нас, по-видимому, обладает гораздо менее рельефной памятью из-за ограниченного доступа к участкам голографической памяти [9].
Передача навыков
Прибрам уверен в том, что голографическая модель также проливает свет на нашу способность передавать навыки от одной части тела к другой. Отложите на минуту книгу, которую вы сейчас читаете, и попробуйте выписать свое имя в воздухе с помощью левого локтя. Вы, наверное, обнаружите, что это довольно просто сделать, хотя, скорее всего, вы этим никогда раньше не занимались. Для классической науки такая способность загадочна, так как считается, что различные области мозга (например, та часть, которая управляет движениями локтя) «жестко программируемы», то есть способны выполнять задачи только после того, как повторное обучение вызовет соответствующие соединения нервных клеток мозга. Прибрам замечает, что эту проблему можно разрешить, если допустить, что мозг преобразовывает все содержимое памяти, включая такие навыки, как письмо, в язык интерференционных волновых форм. Такой мозг был бы гораздо более оперативным и мог бы переносить записанную информацию из одного места в другое подобно тому, как из одной тональности в другую транспонирует мелодию умелый пианист.
Тот же механизм мог бы объяснить, каким образом мы узнаем знакомое лицо, независимо от того, под каким углом мы видим его. То есть как только мозг запомнил лицо (или любой другой объект) и преобразовал его в язык волновых форм, он может буквально перевернуть эту внутреннюю голограмму для того, чтобы изучить ее под желаемым углом.
Фантомные боли, или как мы контролируем внешний мир
Большинству из нас ясно, что чувство любви, голода, ярости и т. п. — это внутренняя реальность, в то время как звуки, солнечный свет, запах свежевыпеченного хлеба и т. п. — это реальность внешняя. И все же нет полной ясности в том, как мозгу удается проводить различие между внутренним и внешним. Например, Прибрам отмечает, что когда мы смотрим на человека, его образ в действительности находится на поверхности сетчатки нашего глаза. Однако мы не воспринимаем человека как образ на сетчатке. Мы воспринимаем его как некий «внешний» образ. Сходным образом, когда, скажем, ушиблен палец, мы испытываем в нем боль. Но боль на самом деле не в пальце. Фактически она представляет собою некий нейрофизиологический процесс, протекающий где-то в нашем мозгу. Каким образом наш мозг умудряется обрабатывать все множество нейрофизиологических процессов, проявляющихся в виде опыта и протекающих внутри мозга, создавая при этом впечатление, что часть из них — внутренние, а часть — внешние объекты, выходящие за пределы нашего «серого вещества»?
Способность создавать иллюзию того, что вещи находятся там, где их нет, и есть главное свойство голограммы. Голограмма имеет видимую пространственную протяженность, но если провести рукой сквозь нее, вы ничего не обнаружите. Несмотря на свидетельство ваших органов чувств, никакой прибор не обнаружит присутствия энергетической аномалии или материи на месте голограммы. Это происходит потому, что голограмма — это виртуальный образ — образ, возникающий там, где его нет, и обладающий не большей глубиной, чем ваше «трехмерное» отражение в зеркале. Подобно тому как образ в зеркале расположен на плоскости амальгамы, фактическое нахождение голограммы всегда будет на фотоэмульсии, расположенной на поверхности записывающей пленки.
Доказательство того, что мозг способен создавать иллюзию протекания внутренних процессов вне тела, в дальнейшем было получено Георгом фон Бекеши, нобелевским лауреатом в области физиологии. В ряде экспериментов, проведенных в конце 60-х годов со слепыми перципиентами, Бекеши располагал вибраторы у них на коленях, затем изменял уровень вибраций. С помощью такого метода ему удалось сделать так, что источник вибраций «перепрыгивал» с одного колена на другое. Более того, он обнаружил, что может вызвать у своих подопытных ощущение вибрации в пространстве между коленями. Другими словами, он показал, что люди способны ощущать предметы в пространстве, не имея для этого сенсорных рецепторов [10]. По мнению Прибрама, работа Бекеши согласуется с голографической моделью и проливает дополнительный свет на то, как интерферирующие волновые фронты — или, в случае Бекеши, интерферирующие источники механической вибрации — помогают мозгу локализовать свое восприятие вне физических границ тела. Он полагает, что этот процесс может также объяснить фантомные боли, то есть ощущение присутствия ампутированной руки или ноги у некоторых людей. Эти люди часто отмечают странные, вполне реалистические боли, покалывания и зуд на месте ампутированных конечностей, что может быть объяснено голографической памятью конечности, записанной в интерференционной картине мозга.
Экспериментальная проверка топографического мозга