Страница:
Параллели между работой мозга и голограммами захватили Прибрама, но он понимал, что его теория ничего не значит без солидной экспериментальной проверки. Одним из исследователей, проведших такую проверку, был биолог Пол Питш из Индианского университета. Интересно, что Питш сначала был ярым противником теории Прибрама. В частности, он очень скептически относился к заявлению Прибрама о том, что память не локализована в мозгу.
Чтобы доказать ошибочность воззрений Прибрама, Питш придумал ряд экспериментов, причем в качестве подопытных он выбрал саламандр. В ранних экспериментах он обнаружил, что удаление мозга не убивает саламандру, а только приводит ее в состояние ступора. Как только мозг возвращается к ней, ее поведение полностью восстанавливается.
Питш рассуждал так: если поведение саламандры в процессе питания не обусловлено локализацией соответствующих функций в мозге, то неважно, каким образом мозг располагается у нее в голове. Если же все зависит именно от их локализации, то теория Прибрама опровергнута. Для этого он поменял местами левое и правое полушария мозга саламандры, но к своему разочарованию обнаружил, что саламандра быстро освоила нормальное кормление.
Он взял другую саламандру и поменял местами верхнюю и нижнюю части мозга. Однако вскоре она также стала есть нормально. Обескураженный этим результатом, экспериментатор решился на более радикальные операции. В серии, состоящей из 100 операций, он разрезал мозг на кусочки, переставляя их, и даже удалил жизненно важные участки мозга, но во всех случаях оставшейся ткани мозга хватало для того, чтобы поведение саламандры возвращалось к исходному, нормальному состоянию [11].
Эти и другие результаты превратили Питша в приверженца теории Прибрама и настолько привлекли внимание к его исследованиям, что о них рассказало телевидение в популярной программе «60 минут». Он детально описывает эти эксперименты в своей провидческой книге «Перестановки мозга» («Shufflebrain»).
Математический язык голограммы
Хотя теории, предсказавшие появление голограммы, в 1977 г. впервые сформулировал Денис Габор (впоследствии Нобелевский лауреат), в конце 1960-х и начале 1970-х годов теория Прибрама получила еще более убедительное экспериментальное подтверждение. Когда Габор впервые пришел к идее голографии, он не думал о лазерах. Его целью было улучшить электронный микроскоп, на то время довольно простое и несовершенное устройство. Он использовал исключительно математический подход, основанный на исчислении, изобретенном в XVIII веке французским математиком Жаном Фурье.
Грубо говоря, Фурье разработал математический метод перевода паттерна любой сложности на язык простых волн. Он также показал, как эти волновые формы могут быть преобразованы в первоначальный паттерн. Другими словами, подобно тому, как телевизионная камера переводит визуальный образ в электромагнитные частоты (8), а телевизор восстанавливает по ним первоначальный образ, математический аппарат, разработанный Фурье, преобразует паттерны. Уравнения, используемые для перевода образов в волновую форму и обратно, известны как преобразования Фурье. Именно они позволили Габору перевести изображение объекта в интерференционное «пятно» на голографической пленке, а также изобрести способ обратного преобразования интерференционных паттернов в первоначальное изображение.
Действительно, особое свойство каждой части голограммы отражать целое обусловлено частностями математического преобразования картины, или паттерна, на язык волновых форм.
На протяжении 1960-х и в начале 1970-х годов различные исследователи заявляли о том, что визуальная система работает как своего рода анализатор частот. Поскольку частота является величиной, измеряющей число колебаний волны в секунду, результаты экспериментов свидетельствовали: мозг может функционировать как голограмма.
Однако только в 1979 году нейрофизиологи из Беркли — Рассел и Карен Девалуа — сделали решающее открытие. Исследования, проведенные в 1960-х годах, показали, что каждая клетка коры головного мозга, непосредственно связанная со зрением, настроена на определенный паттерн: некоторые клетки активизируются, когда глаз видит горизонтальную линию, другие — когда глаз воспринимает вертикальную линию и т. п. В итоге многие исследователи заключили, что мозг принимает сигналы от высокоспециализированных клеток, называемых детекторами свойств, и каким-то образом соединяет их для получения визуальной картины мира.
Несмотря на широкую популярность такой точки зрения, Девалуа почувствовали, что это лишь часть правды. Для проверки своего предположения они применили преобразования Фурье для представления черно-белых клеток в простые волновые формы. Затем они провели эксперименты для выяснения того, как клетки мозга в зрительной части коры головного мозга реагируют на эти новые волновые формы. Они обнаружили, что клетки мозга реагировали не на первоначальные образы, а на то, какой вид им придавали преобразования Фурье. Из этого следовал только один вывод: мозг использовал математический метод Фурье — тот же метод, что используется в голографии, а именно, преобразование видимых образов в волновые формы [12].
Открытие Девалуа было впоследствии подтверждено во многих лабораториях мира, и хотя из него не следовало неопровержимых доказательств голографичности мозга, все же оно предоставило достаточно доказательств справедливости теории Прибрама.
Воодушевленный идеей о том, что зрительная часть коры головного мозга реагировала не на паттерны, а на частоты различных волновых форм, Прибрам занялся переоценкой роли, которую частота играла и для других органов чувств.
Вскоре он понял, что важность этой роли была недооценена учеными двадцатого века. За сто лет до открытия Девалуа немецкий физиолог и физик Герман фон Гельмгольц показал, что ухо является анализатором частот. Более поздние исследования обнаружили, что наш орган обоняния также, по-видимому, основывается на так называемых осмических (9)частотах.
Работы Бекеши наглядно продемонстрировали то, что наша кожа чувствительна к вибрационным частотам; более того, он даже представил некоторые данные, свидетельствующие об использовании частотного анализа органом вкуса. Интересно, что Бекеши пришел к тем же математическим преобразованиям Фурье и уравнениям, позволившим ему предсказать реакцию подопытных на различные вибрационные частоты.
Танец как волновая форма
Но, наверное, самой поразительной находкой Прибрама были работы русского ученого Николая Бернштейна, из которых следовало, что даже наши физические движения могут быть закодированы в мозгу в виде волновых форм Фурье. В 1930-х годах Бернштейн облачил участников затеянного им эксперимента в черные костюмы и нарисовал белые точки на их локтях, коленях и других суставах. Затем он расположил участников на черном фоне и произвел киносъемку различных движений, как-то: танцы, ходьбу, прыжки, удары молотом и печатание на машинке. Когда он проявил пленку, на экране появились только белые точки, двигающиеся вверх и вниз по достаточно сложным траекториям (см. рис. 6).
Чтобы зафиксировать и обработать различные линии, вычерчиваемые точками, Бернштейн применил метод Фурье, преобразовав их в волновые формы. К своему удивлению он обнаружил, что волновые формы содержат скрытые паттерны, позволяющие предсказать следующее движение с точностью до нескольких миллиметров.
Рис. 6. Русский исследователь Николай Бернштейн нарисовал белые точки на танцорах и снял их танец на черном фоне. Когда он преобразовал их движения в язык волновых форм, он обнаружил, что их можно анализировать методом Фурье — тем же методом, который использовал Габор для изобретения голограммы.
Когда Прибрам ознакомился с работой Бернштейна, он сразу оценил ее значимость. Возможно, причина того, что при анализе движений танцоров возникали скрытые паттерны, объясняется тем, что так же работал и мозг. Это было прекрасным подтверждением теории Прибрама. Действительно, если мозг анализирует движения, разбивая их на частотные составляющие, то становится ясным, почему скорость обучения различным задачам различна. Например, мы учимся ездить на велосипеде не путем запоминания каждой детали этого процесса. Напротив, мы схватываем движение целиком, в его динамике. Трудно объяснить эту динамическую полноту, присутствующую во многих задачах нашего физического существования, если допустить, что наш мозг запоминает информацию по крохам. Нам гораздо легче понять скорость обучения в том случае, если мозг использует анализ Фурье при выполнении задач и воспринимает их целиком.
Реакция научного сообщества
Несмотря на полученные результаты, подтверждавшие голографическую модель Прибрама, она по-прежнему оставалась спорной. Дело в том, что существует множество теорий относительно того, как работает мозг, и все они, в той или иной степени, находят подтверждения. Некоторые исследователи считают, что распределенный характер памяти можно объяснить приходящими и отходящими потоками различных химических соединений мозга. Другие придерживаются мнения, что память и обучение обусловлены электрическими флуктуациями между большими группами нейронов. Каждая научная школа имеет своих ярых сторонников, и, вероятно, здесь уместно будет напомнить, что для большинства ученых аргументы Прибрама по сей день остаются неубедительными. Например, нейрофизиолог Фрэнк Вуд из медицинского института Баумана Грея (Уинстон-Сейлем, Северная Каролина) полагает, что «имеется весьма мало экспериментальных фактов, для толкования которых никак не обойтись без голографической теории» [13]. Чтобы не оставаться голословным, Прибрам предлагает в качестве контраргумента книгу, содержащую около 500 ссылок, которые подтверждают его теорию.
Прибрам не одинок в своих построениях и аргументах. Д-р Ларри Досси, бывший директор городской больницы в Далласе, признает, что теория Прибрама противоречит многим устоявшимся воззрениям относительно работы мозга, но отмечает при этом, что «многие специалисты в области физиологии мозга заинтригованы этой идеей, поскольку существующие на сегодня теории деятельности мозга могут служить лишь очень условным объяснением его поразительных функциональных возможностей» [14].
Мнение Досси разделяет невролог Ричард Рестак, автор телесериала Пи-Би-Эс (10)«Мозг». Он отмечает, что, несмотря на исчерпывающие доказательства того, что способности человека распределены холистически по всему мозгу, большинство исследователей продолжают придерживаться концепции локального характера функций мозга, распределенных подобно городам на географической карте. Рестак считает, что такие взгляды являются не только «сверхупрощенными», но и действуют по сути как «смирительная рубашка для других концепций, признающих более сложный характер мозга» [15].
Он полагает, что «голограмма не только возможное, но и наилучшее в настоящий момент объяснение работы мозга» [16].
Прибрам встречает Болла
К 1970 году у Прибрама было накоплено достаточно доказательств, подтверждающих правоту его теории. Кроме того, он стал проверять свои идеи в лаборатории и обнаружил, что одиночные нейроны области мозга, отвечающей за моторику, реагируют селективно на частоты — открытие, которое в дальнейшем еще более подкрепит его выводы. Но прежде всего следовало ответить на вопрос: если картина реальности в мозгу совсем не картина, а голограмма, то голограмма чего?
Представьте себе, что вы делаете снимок группы людей, сидящих за столом, а затем, проявив снимок, обнаруживаете, что вместо людей на нем только расплывчатые интерференционные картинки, расположенные вокруг стола. В обоих случаях уместно спросить: где же настоящая реальность — кажущийся объективный мир, воспринятый наблюдателем/фотографом, или пятно интерференционных картинок, записанное камерой/мозгом?
Прибрам понимал, что если его голографическую модель мозга довести до логического конца, откроется вероятность того, что объективный мир — мир кофейных чашек, горных пейзажей, деревьев и настольных ламп — вовсе не существует, или, по крайней мере, не существует в том виде, в котором мы его наблюдаем. Стало быть, древние мистики были правы, утверждая, что реальность — это «майя», иллюзия, а внешний мир на самом деле — бесконечная звучащая симфония волновых форм, «частотная область», трансформированная в мир и познанная нами только после прохождения через наши чувства?
Сознавая, что решение, которое он ищет, может находиться вне поля его деятельности, он обратился к сыну-физику за советом. Сын порекомендовал посмотреть работу физика по имени Дэвид Бом. Ознакомившись с этой работой, Прибрам был поражен. Он не только нашел ответ на мучивший его вопрос, но и понял, что, согласно Бому, вся вселенная представляет собой одну большую голограмму!
2. Космос как голограмма
Нельзя не оценить героическую решимость Бома в его усилиях разорвать путы научных догм. Он оказался в совершенном одиночестве со своей новой идеей, которую между тем характеризует как внутренняя согласованность, так и логическая мощь, что и оборачивается ее способностью в совершенно неожиданном контексте представить и истолковать широчайший круг физических явлений.
…Его теория оказалась настолько притягательной, что многие почувствовали: вселенная не может быть иной, нежели ее описал Бом.
Джон Бриггс и Дэвид Пит«Зеркальная вселенная»
Путь, приведший Бома к уверенности в том, что вселенная структурирована наподобие голограммы, начинался у самого истока представлений о материи, с мира элементарных частиц. Его интерес к науке и природе вещей проявился довольно рано. Будучи еще юношей, он изобрел чайник, не проливающий мимо ни капли воды, после чего его отец, преуспевающий бизнесмен, уговорил его попытаться заработать на этой идее. Но после того, как Бом узнал, что первым делом надо произвести анализ рынка путем опроса горожан, его интерес к бизнесу сильно померк [1].
Напротив, его интерес к науке продолжал возрастать, а его неординарная пытливость приводила к новым, неизвестным ранее высотам. Более всего его увлекла квантовая физика, когда в 30-е годы он посещал государственный колледж штата Пенсильвания. Очарование этой области физики легко понять. Странные новые континенты, обнаруженные физиками в глубинах атома, содержали намного больше чудес, чем открытия Кортеса или Марко Поло вместе взятые. Этот новый мир был интригующим, прежде всего потому, что все в нем противоречило здравому смыслу. Он больше напоминал волшебную страну, нежели продолжение естественного мира, обитель Алисы в Стране Чудес, в которой появление таинственных сил было нормой, а вся логика была поставлена с ног на голову.
Одно из поразительных открытий, к которому пришли физики-атомщики, заключалось в том, что если разбивать материю на все более мелкие части, то можно в конце концов достичь предела, за которым эти части — электроны, протоны и т.д. — не обладают более признаками объекта. Например, большинство из нас представляет себе электрон в виде вращающейся маленькой сферы или мячика, но нет ничего более далекого от истины. Хотя электрон иногда может вести себя как сосредоточенная небольшая частица, физики обнаружили, что он в буквальном смысле не обладает протяженностью. Большинству из нас это трудно себе представить, поскольку все на нашем уровне существования имеет протяженность. И тем не менее, если вы попытаетесь измерить ширину электрона, вы столкнетесь с неразрешимой задачей. Просто электрон не является объектом, в том смысле, который мы ему приписываем.
Еще одно важное открытие, сделанное физиками, состоит в том, что электрон может проявлять себя и как частица, и как волна. Если выстрелить электроном в экран выключенного телевизора, можно увидеть маленькую световую точку на экране. Появившийся на фосфоресцирующем слое след, оставляемый электроном, ясно свидетельствует о сходной с частицей природе электрона. Но это не единственная форма, которую может принимать электрон; он также может растворяться в энергетическое пятно и вести себя словно распределенная в пространстве волна. Он может делать то, чего не делает частица. Если им выстрелить в экран с двумя микроскопическими отверстиями, он пройдет сквозь оба отверстия одновременно. Когда волнообразные электроны соударяются, они образуют интерференционные картины. Электрон, как сказочный оборотень, может проявляться и как частица, и как волна.
Такое изменчивое поведение присуще всем элементарным частицам. Оно также характерно для всех явлений, ранее считавшихся чисто волновыми. Свет, гамма-лучи, радиоволны, рентгеновские лучи — все они могут превращаться из волны в частицу и обратно. Сегодня физики рассматривают такие внутриатомные явления не в рамках отдельных категорий волн или частиц, а как единую категорию, обладающую сразу двумя свойствами.
Такие внутриатомные явления были названы квантами (11), то есть мельчайшими частицами, из которых, по мнению физиков, сотворена Вселенная.
Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы смотрим на них. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения. (Здесь следует отметить, что это лишь одно из возможных следствий такого рода экспериментов, а не общее мнение всех физиков, как будет ясно из дальнейшего. Сам Бом дает результатам этих экспериментов другое объяснение.)
Еще раз отметим: такое поведение материи представляется более загадочным, нежели то, к которому мы привыкли в окружающем нас мире. Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он оставлял бы прямой след только в тех местах, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал бы чертить прямую линию и оставлял бы широкий волнистый след, наподобие зигзагообразного следа, который оставляет змея на песке пустыни (см. рис. 7).
Рис. 7. В современной физике найдено убедительное доказательство того, что электроны и другие «кванты» проявляют себя как частицы только при условии, что мы наблюдаем за ними. В другое время они ведут себя как волны. Эта ситуация такая же странная, как если бы шар в кегельбане катился по линии, когда на него смотрят, и оставлял волновой след в тот миг, когда наблюдатель моргнул.
С такой же ситуацией столкнулись физики-атомщики, когда впервые наблюдали процесс собирания квантов в частицы.
Физик Ник Герберт, поддерживающий эту теорию, говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен, и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа», и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который никогда не испытал мягкость шелка в ответ на прикосновение человеческой руки, поскольку все, к чему он прикасался, тотчас превращалось в золото.
«Человеческому постижению недоступна истинная природа „квантовой реальности“, — говорит Герберт, — поскольку все, к чему бы мы ни прикоснулись, превращается в материю» [2].
Напротив, его интерес к науке продолжал возрастать, а его неординарная пытливость приводила к новым, неизвестным ранее высотам. Более всего его увлекла квантовая физика, когда в 30-е годы он посещал государственный колледж штата Пенсильвания. Очарование этой области физики легко понять. Странные новые континенты, обнаруженные физиками в глубинах атома, содержали намного больше чудес, чем открытия Кортеса или Марко Поло вместе взятые. Этот новый мир был интригующим, прежде всего потому, что все в нем противоречило здравому смыслу. Он больше напоминал волшебную страну, нежели продолжение естественного мира, обитель Алисы в Стране Чудес, в которой появление таинственных сил было нормой, а вся логика была поставлена с ног на голову.
Одно из поразительных открытий, к которому пришли физики-атомщики, заключалось в том, что если разбивать материю на все более мелкие части, то можно в конце концов достичь предела, за которым эти части — электроны, протоны и т.д. — не обладают более признаками объекта. Например, большинство из нас представляет себе электрон в виде вращающейся маленькой сферы или мячика, но нет ничего более далекого от истины. Хотя электрон иногда может вести себя как сосредоточенная небольшая частица, физики обнаружили, что он в буквальном смысле не обладает протяженностью. Большинству из нас это трудно себе представить, поскольку все на нашем уровне существования имеет протяженность. И тем не менее, если вы попытаетесь измерить ширину электрона, вы столкнетесь с неразрешимой задачей. Просто электрон не является объектом, в том смысле, который мы ему приписываем.
Еще одно важное открытие, сделанное физиками, состоит в том, что электрон может проявлять себя и как частица, и как волна. Если выстрелить электроном в экран выключенного телевизора, можно увидеть маленькую световую точку на экране. Появившийся на фосфоресцирующем слое след, оставляемый электроном, ясно свидетельствует о сходной с частицей природе электрона. Но это не единственная форма, которую может принимать электрон; он также может растворяться в энергетическое пятно и вести себя словно распределенная в пространстве волна. Он может делать то, чего не делает частица. Если им выстрелить в экран с двумя микроскопическими отверстиями, он пройдет сквозь оба отверстия одновременно. Когда волнообразные электроны соударяются, они образуют интерференционные картины. Электрон, как сказочный оборотень, может проявляться и как частица, и как волна.
Такое изменчивое поведение присуще всем элементарным частицам. Оно также характерно для всех явлений, ранее считавшихся чисто волновыми. Свет, гамма-лучи, радиоволны, рентгеновские лучи — все они могут превращаться из волны в частицу и обратно. Сегодня физики рассматривают такие внутриатомные явления не в рамках отдельных категорий волн или частиц, а как единую категорию, обладающую сразу двумя свойствами.
Такие внутриатомные явления были названы квантами (11), то есть мельчайшими частицами, из которых, по мнению физиков, сотворена Вселенная.
Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы смотрим на них. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения. (Здесь следует отметить, что это лишь одно из возможных следствий такого рода экспериментов, а не общее мнение всех физиков, как будет ясно из дальнейшего. Сам Бом дает результатам этих экспериментов другое объяснение.)
Еще раз отметим: такое поведение материи представляется более загадочным, нежели то, к которому мы привыкли в окружающем нас мире. Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он оставлял бы прямой след только в тех местах, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал бы чертить прямую линию и оставлял бы широкий волнистый след, наподобие зигзагообразного следа, который оставляет змея на песке пустыни (см. рис. 7).
Рис. 7. В современной физике найдено убедительное доказательство того, что электроны и другие «кванты» проявляют себя как частицы только при условии, что мы наблюдаем за ними. В другое время они ведут себя как волны. Эта ситуация такая же странная, как если бы шар в кегельбане катился по линии, когда на него смотрят, и оставлял волновой след в тот миг, когда наблюдатель моргнул.
С такой же ситуацией столкнулись физики-атомщики, когда впервые наблюдали процесс собирания квантов в частицы.
Физик Ник Герберт, поддерживающий эту теорию, говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен, и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа», и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который никогда не испытал мягкость шелка в ответ на прикосновение человеческой руки, поскольку все, к чему он прикасался, тотчас превращалось в золото.
«Человеческому постижению недоступна истинная природа „квантовой реальности“, — говорит Герберт, — поскольку все, к чему бы мы ни прикоснулись, превращается в материю» [2].
Бом и взаимосвязь явлений микромира
Один из аспектов квантовой реальности, вызвавший особый интерес Бома, заключался в странной взаимосвязи, существующей между, казалось бы, несвязанными событиями на внутриатомном уровне. Удивительным было также безразличие большинства физиков к этому явлению; вследствие такого безразличия один из самых известных примеров взаимосвязи оставался скрытым в течение ряда лет, пока его не обнаружили.
Предположение о такой связи было сделано одним из отцов-основателей квантовой физики Нильсом Бором. Бор указал на то, что если элементарные частицы существуют только в присутствии наблюдателя, тогда бессмысленно говорить о существовании, свойствах и характеристиках частиц до их наблюдения. Это вызвало ропот у многих физиков, поскольку наука в значительной степени основывалась на свойствах явлений «объективного мира». Но если теперь оказалось, что свойства материи зависят от самого акта наблюдения, то что ожидало впереди всю науку? Эйнштейн был встревожен утверждениями Бора, поскольку играл большую роль в создании основ квантовой механики. Особенно он возражал против той гипотезы Бора, согласно которой свойства частиц отсутствуют, пока они не наблюдаемы, так как в сочетании с другими открытиями квантовой физики это означало бы, что элементарные частицы взаимосвязаны самым невероятным образом. Суть этих открытий заключалась в том, что некоторые внутриатомные процессы приводят к созданию пар частиц, имеющих идентичные или очень близкие свойства. Представьте себе весьма нестабильный атом, который физики называют позитроний. Атом позитрония состоит из электрона и позитрона (позитрон — это электрон с положительным зарядом). Поскольку позитрон является античастицей электрона, эти две частицы в конце концов аннигилируют и распадаются на два кванта света, или «фотона», бегущих в противоположных направлениях (способность одного типа частиц превращаться в другой тип — еще одно любопытное свойство квантового микромира). Согласно квантовой физике, вне зависимости от того, как далеко разбегутся фотоны, при измерении они дают одинаковые углы поляризации, то есть пространственной ориентации волновой формы фотона, исходящей из точки.
В 1935 году Эйнштейн со своими коллегами, Борисом Подольским и Натаном Розеном, опубликовал ставшую впоследствии знаменитой статью под названием «Может ли квантово-механическое описание физической реальности считаться законченным?». В ней авторы объясняли, почему существование таких пар частиц могло служить доказательством ошибки Бора. Они говорили, что две такие частицы, скажем, два фотона, излучаемые с распадом позитрона, могли бы распространяться на значительные расстояния (12). Затем частицы перехватываются, а их углы поляризации измеряются. Если углы поляризации измеряются в один и тот же момент и оказываются идентичными, как подсказывает квантовая физика, и если Бор прав и такие свойства, как поляризация, не существуют, пока не наблюдаются и не измеряются, то это означает, что каким-то образом два фотона мгновенно устанавливают один и тот же угол поляризации. Проблема состоит в том, что, согласно специальной теории относительности Эйнштейна, ничто не может двигаться быстрее скорости света, тем более двигаться мгновенно, поскольку это приведет к разрушению барьера времени и откроет дверь различного рода неприемлемым парадоксам. Эйнштейн и его коллеги были уверены, что ни одно из «разумных определений реальности» не может допустить такую связь, превышающую скорость света, и потому Бор ошибался [3]. Их аргументирование известно сейчас как парадокс Эйнштейна-Подольского-Розена, или EPR-парадокс.
После выхода статьи Эйнштейна Бор остался невозмутим. Вместо того чтобы допустить скорость связи фотонов, превышающую скорость света, он предложил другое объяснение. Если элементарные частицы не существуют, пока не наблюдаются, тогда никто не может представлять их в виде независимо существующих «объектов». То есть Эйнштейн основывал свое возражение на ошибочном предположении о независимом существовании пары частиц. На самом деле они были частью неделимой системы, и было бы немыслимо думать о них по-другому.
Со временем большинство физиков приняло сторону Бора и согласилось, что его подход верен. Триумфу Бора способствовали также успешные предсказания его теории относительно поведения частиц, и физики сразу приняли его версию. В то время, когда Эйнштейн и его коллеги выдвинули свой пример о паре частиц, по техническим и другим причинам постановка такого эксперимента была затруднена. Этот эксперимент так и остался в воображении. Хотя Бор привел свой аргумент для того, чтобы противостоять атаке Эйнштейна на квантовую механику, как мы позже увидим, взгляды Бора на неделимость внутриатомных систем имели большое значение для постижения природы реальности. Ирония заключается в том, что провидческие теории Бора были в большой степени проигнорированы, и сулящая революционное открытие идея взаимосвязи субъекта и объекта была отложена в долгий ящик.
Предположение о такой связи было сделано одним из отцов-основателей квантовой физики Нильсом Бором. Бор указал на то, что если элементарные частицы существуют только в присутствии наблюдателя, тогда бессмысленно говорить о существовании, свойствах и характеристиках частиц до их наблюдения. Это вызвало ропот у многих физиков, поскольку наука в значительной степени основывалась на свойствах явлений «объективного мира». Но если теперь оказалось, что свойства материи зависят от самого акта наблюдения, то что ожидало впереди всю науку? Эйнштейн был встревожен утверждениями Бора, поскольку играл большую роль в создании основ квантовой механики. Особенно он возражал против той гипотезы Бора, согласно которой свойства частиц отсутствуют, пока они не наблюдаемы, так как в сочетании с другими открытиями квантовой физики это означало бы, что элементарные частицы взаимосвязаны самым невероятным образом. Суть этих открытий заключалась в том, что некоторые внутриатомные процессы приводят к созданию пар частиц, имеющих идентичные или очень близкие свойства. Представьте себе весьма нестабильный атом, который физики называют позитроний. Атом позитрония состоит из электрона и позитрона (позитрон — это электрон с положительным зарядом). Поскольку позитрон является античастицей электрона, эти две частицы в конце концов аннигилируют и распадаются на два кванта света, или «фотона», бегущих в противоположных направлениях (способность одного типа частиц превращаться в другой тип — еще одно любопытное свойство квантового микромира). Согласно квантовой физике, вне зависимости от того, как далеко разбегутся фотоны, при измерении они дают одинаковые углы поляризации, то есть пространственной ориентации волновой формы фотона, исходящей из точки.
В 1935 году Эйнштейн со своими коллегами, Борисом Подольским и Натаном Розеном, опубликовал ставшую впоследствии знаменитой статью под названием «Может ли квантово-механическое описание физической реальности считаться законченным?». В ней авторы объясняли, почему существование таких пар частиц могло служить доказательством ошибки Бора. Они говорили, что две такие частицы, скажем, два фотона, излучаемые с распадом позитрона, могли бы распространяться на значительные расстояния (12). Затем частицы перехватываются, а их углы поляризации измеряются. Если углы поляризации измеряются в один и тот же момент и оказываются идентичными, как подсказывает квантовая физика, и если Бор прав и такие свойства, как поляризация, не существуют, пока не наблюдаются и не измеряются, то это означает, что каким-то образом два фотона мгновенно устанавливают один и тот же угол поляризации. Проблема состоит в том, что, согласно специальной теории относительности Эйнштейна, ничто не может двигаться быстрее скорости света, тем более двигаться мгновенно, поскольку это приведет к разрушению барьера времени и откроет дверь различного рода неприемлемым парадоксам. Эйнштейн и его коллеги были уверены, что ни одно из «разумных определений реальности» не может допустить такую связь, превышающую скорость света, и потому Бор ошибался [3]. Их аргументирование известно сейчас как парадокс Эйнштейна-Подольского-Розена, или EPR-парадокс.
После выхода статьи Эйнштейна Бор остался невозмутим. Вместо того чтобы допустить скорость связи фотонов, превышающую скорость света, он предложил другое объяснение. Если элементарные частицы не существуют, пока не наблюдаются, тогда никто не может представлять их в виде независимо существующих «объектов». То есть Эйнштейн основывал свое возражение на ошибочном предположении о независимом существовании пары частиц. На самом деле они были частью неделимой системы, и было бы немыслимо думать о них по-другому.
Со временем большинство физиков приняло сторону Бора и согласилось, что его подход верен. Триумфу Бора способствовали также успешные предсказания его теории относительно поведения частиц, и физики сразу приняли его версию. В то время, когда Эйнштейн и его коллеги выдвинули свой пример о паре частиц, по техническим и другим причинам постановка такого эксперимента была затруднена. Этот эксперимент так и остался в воображении. Хотя Бор привел свой аргумент для того, чтобы противостоять атаке Эйнштейна на квантовую механику, как мы позже увидим, взгляды Бора на неделимость внутриатомных систем имели большое значение для постижения природы реальности. Ирония заключается в том, что провидческие теории Бора были в большой степени проигнорированы, и сулящая революционное открытие идея взаимосвязи субъекта и объекта была отложена в долгий ящик.
Живое море электронов
В начале своей карьеры Бом также разделял позицию Бора, но недоумевал, почему Бор и его коллеги так мало внимания уделяют вопросам взаимосвязи в микромире. После окончания Государственного колледжа в штате Пенсильвания он поступил в Калифорнийский университет в Беркли и до получения докторской степени в 1943 году работал в Лоренсовской радиационной лаборатории (Lawrence Berkeley Radiation Laboratory). Там он встретился с еще одним поразительным примером квантовой взаимосвязи.