Первый после перерыва «Космос-1176» был выведен в плоскость, отстоявшую на 146 градусов от плоскости орбиты единственного на тот момент «Эорсата». Из-за различия высот скорости прецессии орбит несколько различались, и угол постепенно увеличивался, но скорость его изменения была достаточно мала – 1 градус за 3 суток, – чтобы конфигурация не сильно изменилась на протяжении совместного функционирования. Во всех последующих случаях, когда «Рорсат» запускался в момент наличия на орбите только одного работающего «Эорсата», начальное угловое расстояние между восходящими узлами их орбит подбиралось в пределах 142—146 градусов.
   До падения «Космоса-954» продолжительность работы «Рорсатов» не превышала полутора-двух месяцев. «Космос-1176» почти удвоил прежний рекорд, проработав 134 дня. Однако в 1981 г. два «Рорсата» пришлось увести на безопасные орбиты всего через 8 и 13 суток после запуска, что свидетельствовало о продолжении неполадок. Средняя долговечность пассивных «Эорсатов» к этому времени достигла уже почти 6 месяцев, а «Космос-1167» функционировал более года. Ограниченность времени функционирования «Рорсатов» заставляла, видимо, синхронизировать их запуски с ожидаемыми периодами повышения военно-морской активности, и эти полеты, как правило, кореллируют с проведением крупных учений ВМФ США и НАТО, а также собственного флота СССР.
   Парные полеты «Рорсатов» удалось возобновить только к середине 1982 г., но через полгода после этого произошел еще один инцидент. 28 декабря 1982 г. работавший с 30 августа «Космос-1402» не удалось перевести на орбиту захоронений и он начал неконтролируемое снижение. Конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Активная зона вошла в атмосферу 7 февраля 1983 г. и радиоактивные продукты деления рассеялись над Южной Атлантикой.
   Авария «Космоса-1402» заставила прервать запуски «Рорсатов» еще на полтора года, парные же полеты возобновились только во второй половине 1985 г. К этому времени «Эорсаты» уже достигли почти непрерывного нахождения на орбите двух спутников одновременно, и в некоторые моменты на орбите оказывалось сразу три компланарных «Эорсата», отстоящих друг от друга на 90 градусов. Однако полностью укомплектовать орбитальную плоскость ни разу не удавалось и, видимо, по этой причине в 1986 г. «Космос-1735» опробовал новую рабочую орбиту с трехсуточной кратностью. Ее высота составляла 405 на 417 километров, и снижение периода обращения с 93,3 до 92.7 минуты обеспечивало воспроизведение наземной трассы через 46 витков вместо 61.
   Месяц спустя «Космос-1737» был выведен на орбиту с наклонением 73,4 градуса – самым высоким из когда-либо использовавшихся при запусках с Байконура. Высота ее была подобрана так, чтобы тоже обеспечивать 3-суточную 46-витковую кратность. На этой орбите, улучшавшей условия наблюдения приполярных районов. «Космос-1737» проработал 8 месяцев. После этого он неожиданно исчез, что могло означать лишь преднамеренное сведение его с орбиты. Хотя после этого все «Эорсаты» стали по завершении работы уводиться с рабочей орбиты тормозным импульсом, а не постепенным разгоном, как раньше, «Космос-1737» до сих нор остается единственным «Эорсатом», заторможенным до немедленного входа в атмосферу.
   В 1987 г. экспериментирование распространилось и на «Рорсаты». Так, «Космос-1900» был выведен на несколько более высокую, чем стандартная, орбиту с перигеем 255 и апогеем 270 километров, обеспечивающую повторение наземной трассы не через 7, а через 6 суток после 95 оборотов.
   Более примечательно, что в 1987 г. были запущены два спутника, оборудованные новыми ядерными энергоустановками. В отличие от предыдущих «Рорсатов» «Космос-1818» и«Космос-1867» сразу выводились на орбиту высотой около 800 км. Как было объявлено впоследствии, каждый из них имел длину 10 метров, диаметр 1,3 м и массу 3800 кг. 1250 кг приходилось на термоионный[18] ядерный реактор «Топаз», заряженный 31,1 кг 90-процентного урана-235 [30].
   Хотя обеспечение радиационной безопасности при испытаниях нового реактора могло бы быть достаточно веским основанием для проведения их на более высокой орбите, использование «Космосом-1818» и «Космосом-1867» кратной орбиты с повторением трассы через 6 суток и 99 витков, говорит о том, что их деятельность не ограничивалась испытанием энергоустановки. Кроме того, спутники были выведены в одну орбитальную плоскость на расстояние 120 градусов друг от друга, т е. следовали бы вдоль общей трассы с интервалом в двое суток. Проведению совместных наблюдений, однако, помешал выход «Космоса-1818» из строя вскоре после прибытия «Космоса-1867».
   Одним из мотивов перехода на более высокие орбиты могли стать испытания в США противоспутниковой системы самолетного базирования, главной целью которой открыто объявлялись советские спутники морской разведки. (Хотя космическое наблюдение считается стабилизирующим фактором, руководство ВМФ США полагает, что данные советские системы способны вести также прямое целеуказание для противокорабельных средств в реальном масштабе времени.)
   «Топазы», обладавшие кпд теплоэлектрического преобразования 5—10% против 2—4% у прежних реакторов, могли сулить частичную компенсацию потери радиолокационного разрешения при переходе на более высокие орбиты. Кроме того, они обладали значительно большей долговечностью. «Космос-1818» проработал на орбите 6 месяцев, «Космос-1867» – год, и ожидалось, что в дальнейшем ресурс орбитальных реакторов будет доведен до 3—5 лет [31]. Однако продолжение программы оказалось под вопросом из-за очередного инцидента с низкоорбитальным реактором.
   В апреле 1988 г. была утеряна связь с упоминавшимся выше «Космосом-1900», выведенным на орбиту в декабре 1987 г. В течение пяти месяцев спутник неконтролируемо снижался, и наземные службы не могли дать команду ни на увод реактора на высокую орбиту, ни на отделение активной зоны для более безопасного ее схода с орбиты. К счастью, за пять суток до ожидавшегося входа в атмосферу, 30 сентября 1988 г. сработала система автоматического увода реактора, включившаяся ввиду исчерпания запаса топлива в системе ориентации спутника [32].
   Хотя само по себе происшествие не нанесло материального ущерба, его наложение на предшествовавшие катастрофы «Челленджера» и Чернобыльской АЭС привело к беспрецедентным протестам против использования ядерных энергоустановок в космосе. Это обстоятельство стало дополнительным фактором, повлиявшим па прекращение полетов «Рорсатов» в 1988 г.
   Основной причиной отказа от космических локаторов с ядерным энергопитанием стали, надо полагать, не призывы мировой общественности и уж тем более, не создаваемые реакторами помехи для гамма-астрономии, а низкие эксплуатационные характеристики.
   Видимо не случайно после прекращения пусков «Рорсатов» в 1989 г. количество «Эорсатов» стало увеличиваться. С апреля 1987 г. испытанная впервые «Космосом-1735» 3-суточная орбита с 46-витковой периодичностью стала стандартной и одновременно функционирующие спутники стали располагаться в ней через 120 градусов, что обеспечивало их поочередное прохождение одних и тех же участков наземной трассы через сутки друг после друга. В 1989 г. после полного укомплектования этой плоскости тремя спутниками началось неожиданное заполнение второй плоскости, отстоящей на 172 градуса от первой. Поскольку за время оборота наземная трасса смещается на 23,48 градуса, такое угловое расстояние обеспечивает движение всех спутников вдоль одной и той же трассы, причем спутники из второй плоскости опережают соответствующие спутники из первой ровно на 8 витков.
   В конце 1989 г. в обеих орбитальных плоскостях работало по 2 спутника. К концу 1990 г. количество одновременно функционирующих «Эорсатов» возросло до 5. Однако, до теперь уже ожидавшегося состава в 6 спутников система так и не была доведена.
   Последний запуск «Эорсата» состоялся в январе 1991 г., и к августу 1991г. в системе оставалось только 3 функционирующих спутника. Хотя ввиду потепления отношений СССР и США задача слежения за американскими авианосными группами могла потерять былой приоритет, такой резкий перелом тенденции может означать, что в данном случае мы имеем дело с одним из первых примеров сокращения военной космической программы из-за разрастания экономического кризиса.
   Помимо вышеописанных систем морской разведки, КБ В. Н. Челомея еще с 70-х гг. разрабатывало космическую РЛС на базе своей орбитальной пилотируемой станции «Алмаз». Ее бортовой радиолокатор с синтезированием апертуры предназначался для ведения обзорной съемки вне зависимости от времени суток или погодных условий и, обладая разрешением, измеряемым метрами, мог бы конкурировать со спутниками обзорной фоторазведки, как это сделали десять лет спустя американские ИСЗ «Лакросс».
   Первый радиолокационный «Алмаз» был доставлен на Байконур в июле 1981 г., но в декабре министр обороны Д. Ф. Устинов запретил запуск и распорядился прекратить все работы в данной области. Программа возобновилась только после смерти Устинова и Челомея в декабре 1984 г.
   Первый летный образец был утерян из-за аварии РН «Протон» 29 ноября 1986 г. [33]. Следующий запуск состоялся 25 июля 1987 г. Резервный аппарат, получивший обозначение «Космос-1870», был выведен на орбиту высотой около 260 км. Небывало высокое для «Протона» наклонение 71,9 градуса давало возможность при боковом обзоре охватить территории до 78 градуса широты, а 1350 кг бортового запаса топлива (несимметричного диметилгидразина и четырехокиси азота) позволили продержаться на такой низкой орбите 2 года, корректируя ее в среднем каждые 10—12 дней. Радиолокатор, работающий на частоте 3 ГГц (??? = 10 см) с мощностью в импульсе 190 кВт, обеспечил получение изображений с разрешением 25—30 метров.
   Военных заказчиков это, очевидно, не устроило. По неофициальным данным разрешение аналогичной американской системы «Лакросс» составляет от 1 до 3 метров [34] и этот предел является принципиальным, поскольку «Лакросс» создавался прежде всего для слежения за советской бронетехникой и мобильными пусковыми установками. К тому же на «Космосе-1870» еще не была решена проблема ретрансляции данных в реальном масштабе времени и локатор работал в среднем 10 минут за виток, причем только 20% информации записывалось.
   На следующем «Алмазе», запущенном 31 марта 1991 г. и считающемся предэксплуатационным, наземное разрешение должно было повыситься до 15 метров, а ретрансляция информации па Землю осуществляется как непосредственно, так и через два геостационарных спутника [35]. Тем не менее, этот «Алмаз» был с самого начала объявлен как многоцелевой аппарат для дистанционного зондирования Земли, и налаживание коммерческого распространения за рубежом его радиолокационных снимков говорит об отказе от разведывательного применения системы.
   Отметим однако, что обнародованные изображения участков морского побережья, полученные «Космосом-1870», демонстрируют возможность по наблюдаемой на них волновой картине морской поверхности выявлять структуру дна и внутренних течений на глубинах до 200 метров. Поэтому нельзя исключить, что подобные системы могут вновь привлечь военный интерес, уже как средство обнаружения подводных лодок.

3.2.3 Спутники предупреждения о ракетном нападении

   Создание в СССР и США в конце 50-х гг. межконтинентальных баллистических ракет вынудило каждую сторону разрабатывать также средства обнаружения пусков таких ракет другой стороны, чтобы не быть застигнутой врасплох возможным нападением.
   Первые системы так называемого «раннего оповещения» опирались на мощные наземные РЛС, фиксирующие ракеты после их появления из-за местного горизонта. Использование отражения радиоволн от ионосферы позволяет заглядывать и за горизонт, но и в этом случае предельная достижимая мощность излучателя ограничивает дальность обнаружения двумя-тремя тысячами километров и максимальное время оповещения с помощью наземных систем составляет 10—15 минут до прилета. Наблюдение же с околоземной орбиты в принципе позволяет обнаружить ракету практически сразу же после старта по излучению выхлопной струи двигателя, Достигаемое при этом увеличение времени оповещения с 15 до 30 минут (для межконтинентальной дальности) было принципиальным для США, основу ядерного потенциала которых составляли стратегические бомбардировщики. Поэтому в 1958 г. одним из трех направлений программы ВВС США WL-117L наряду со спутниками детальной и обзорной фоторазведки стала разработка системы «Мидас»[19] для обнаружения пусков советских МБР [36].
   Предварительные проработки подобных систем в СССР в начале 60-х гг. показали, что имевшийся технологический уровень был еще недостаточным и масштаб работ был, очевидно, поначалу ограничен. Первый экспериментальный спутник, на котором аппаратура обнаружения еще отсутствовала, был выведен на орбиту в сентябре 1972 г, под именем «Космос-520».
   Однако когда в том же 1972 г. США ввели свою спутниковую систему раннего оповещения в штатную эксплуатацию, задача создания аналогичной системы приобрела в глазах советского руководства наивысший приоритет. В 1973 г. было принято постановление ВПК и ЦК КПСС, предписывающее создать спутниковую систему предупреждения о ракетном нападении (ССПРН) и передать Министерству обороны ее первую очередь к 1978 г., а вторую – в начале 80-х гг. [37].
   Спутники первого поколения использовали высокоэллиптические орбиты с апогеем около 40 тысяч км и периодом обращения около 12 часов, аналогичные орбитам спутников связи «Молния» и обеспечивающие ежесуточное повторение двухвитковой наземной трассы. В отличие от «Молний», трассы этих спутников были значительно смещены к западу, что позволяло наблюдать из апогея за территорией США, находясь одновременно в зоне радиовидимости с территории СССР.
   С 1972 по 1976 г. было запущено четыре экспериментальных спутника. В течение 1977 г. на орбиты было выведено сразу три спутника, что было расценено наблюдателями как создание ограниченной эксплуатационной системы.
   Фактически же эти спутники предназначались лишь для отработки обнаружения американских ракет после экспериментов по калибровке и слежению за пусками с территории СССР. Однако после первых же успешных наблюдений американских запусков было приказано немедленно передать систему в опытную эксплуатацию. Государственные приемосдаточные испытания начались в середине 1978 г., и в сентябре спутниковая система предупреждения о ракетном нападении была включена в государственную систему противоракетной обороны [37].
   В отличие от американских, первые советские спутники раннего оповещения использовали для наблюдения телекамеры-видиконы, – приспособленные для ближнего инфракрасного и ультрафиолетового диапазонов, а для уменьшения засветки фоновым излучением Земли и отражениями солнечного света от облаков наблюдение осуществлялось не по вертикали, а наклонно [37]. Поэтому апогей орбит спутников располагались не непосредственно над США, а над Атлантикой к Тихим океаном. Это, кстати, позволяет наблюдать за районами базирования американских МБР не на одном, а на обоих суточных витках. Кроме того, во время наблюдения оказывается возможным поддержание прямой радиосвязи либо с Москвой, либо с Дальним Востоком СССР.
   Тем не менее, три спутника не обеспечивали круглосуточного наблюдения, и с 1980 г. система стала расширяться. Запуск «Космоса-1223» сформировал конфигурацию из четырех орбитальных плоскостей, отстоящих друг от друга на 80 градусов, а с 1981 г. запуски стали производиться также в промежутки между этими плоскостями. Одновременно в феврале-марте 1981 г. трассы всех рабочих спутников были сдвинуты на 30 градусов к востоку, что, казалось, удаляло их от цели, но тем самым создавало более благоприятные условия для наклонного наблюдения за территорией США (рис. 2.6, 2.7).
   Итоговая штатная конфигурация системы включает 9 спутников на орбитах, отстоящих друг от друга на 40 градусов и обеспечивающих движение всех аппаратов вдоль общей наземной трассы с интервалами в 2 часа 40 минут. Из-за малого ресурса или низкой надежности спутников завершить развертывание системы удалось только в 1986 г, для чего в 1984—86 гг. приходилось запускать по 7 спутников в год (см. табл. 2.9). В данном случае прекращение функционирования спутников сразу становится заметным, поскольку для сохранения заданной геометрии обзора требуется регулярно корректировать орбиту, чтобы компенсировать гравитационные возмущения со стороны Солнца и Луны.
   С полным укомплектованием системы темп запусков резко упал, а после локального всплеска в 1990 г, когда было запущено 6 спутников, пуски прекратились более чем на год, до января 1992 г. При этом последний спутник 1990 г., «Космос-2105», был выведен на орбиту, отстоящую всего на 15 градусов к востоку от предыдущего «Космоса-2097», выпадая таким образом из общего строя.
   Умышленные отклонения от общего профиля полета наблюдались и раньше, когда, например, в 1985 г. «Космос-1661» стабилизировал свою трассу на 35 градусов западнее стандартной. Нечто подобное в конце своего активного существования в 1990 г. временно проделал «Космос-1793». Объяснением таких маневров могла бы быть отработка вертикальной геометрии наблюдения, которая могла стать осуществимой ввиду усовершенствования технологии.
   Вертикальное наблюдение в сочетании с размещением спутника на стационарной орбите дает возможность не только регистрировать факт пуска ракет, но и определять азимут их полета– Именно такая методика применяется на американских спутниках раннего оповещения, использующих геостационарную орбиту с 1968 г.
   Постановление 1973 г. также предусматривало создание «высокоорбитальной» (читай – геостационарной) спутниковой системы в качестве второго этапа развертывания ССПРН. Западные наблюдатели об этом, разумеется не знали, однако, когда в октябре 1975 г. «Космос-775» был выведен на стационарную орбиту над Атлантическим океаном, он сразу был сочтен предвестником геостационарной системы раннего оповещения СССР, Вскоре это предположение было забыто, поскольку в последующие годы все пуски на геостационарную орбиту явно связывались с созданием систем спутниковой связи (см. раздел 3.3.3)
   Однако три спутника: «Космос-1546, – 1629 и -1894», запущенные в 1984, 1985 и 1987 гг., в отличие от остальных геостационарных «Космосов», в сообщениях ТАСС никак не комментировались. Все эти спутники помещались в точку стояния над 24—25 градусом западной долготы, из которой центральная часть территории США наблюдается как раз на краю видимого диска Земли.
   Последним из невразумительно объясненных стационарных спутников стал запущенный 14 февраля 1991 г. «Космос-2133», который, как можно заключить из [38], является экспериментальным образцом спутника нового типа[20].
   Эпизодичность подобных запусков свидетельствует о том, что геостационарный эшелон ССПРН еще далек от эксплуатационной готовности и сокращение пусков высокоэллиптических спутников не связано с развертыванием геостационарных, хотя в перспективе этого естественно было бы ожидать, если, конечно, не будет принято решение использовать оба эшелона параллельно.
   Точных данных о надежности советской ССПРН не имеется[21]. По утверждению разработчиков, она исключительно надежна, и частота ложных срабатываний не превышает одного в год, тогда как ни один из побочных (испытательных, космических) пусков за все время эксплуатации пропущен не был [38]. Бывший же «представитель заказчика» заявляет, что ложные сигналы выдаются часто, вследствие чего спутники раннего оповещения используются только для предварительного предупреждения, требующего подтверждения наземными РЛС [39].

3.3. Вспомогательные системы.

3.3.1 Спутники связи

   Система связи и управления войсками является важнейшим звеном в организации деятельности вооруженных сил, обеспечивая их функционирование как единого целого.
   Географическая протяженность СССР и распространенность сферы деятельности вооруженных сил далеко за пределы государственных границ делают системы космической связи незаменимыми для организации как стратегического, так и оперативного управления войсками. При этом для СССР поддержание постоянной связи между подразделениями и вышестоящими инстанциями представляется особенно важным, т к., насколько можно судить, в советской военной иерархии нижестоящие звенья обладают меньшей свободой действий. Эти обстоятельства отчасти могут объяснить разнообразие существующих в СССР систем космической связи, использующих спутники как на низких, так и на высокоэллиптических и геостационарных орбитах.
   Спутники связи на высокоэллиптических орбитах.
   Разработка спутников связи началась в СССР в первой половине 60-х гг. Отдаленность территории СССР от экватора затрудняла использование геостационарной орбиты, поэтому в первой системе космической связи были применены сильно вытянутые эллиптические орбиты с апогеем около 40 тысяч километров и перигеем около 450—500 километров, обеспечивающие период обращения близкий к 12 часам.
   При расположении апогея такой орбиты над Северным полушарием спутник находится в зоне радиовидимости с территории СССР 8—9 часов в сутки. Правда из-за возмущающего влияния экваториального сжатия Земли большая ось вытянутой орбиты, вообще говоря, не остается неподвижной, а вращается в плоскости орбиты. Скорость ее вращения, однако, обращается в нуль для наклонения 63,4 градуса, которое как нельзя более подходит как для наблюдения таких спутников с территории СССР, так и для их запуска по штатным траекториям выведения с Байконура и Плесецка, обеспечивающим наклонения орбит 65 и 62,8 градуса соответственно.
   Период обращения по высокоэллиптической орбите подбирается несколько меньшим 12 часов, так чтобы с учетом прецессии плоскости орбиты обеспечить ежесуточное повторение наземной трассы, что значительно облегчает задачу наведения наземных приемных станций.
   Первый такой спутник был выведен на орбиту 22 августа 1964 г., но из-за нераскрытия бортовой остронаправленной антенны он не мог использоваться по назначению и был назван «Космосом-41» [la]. Первым советским спутником связи стал ИСЗ «Молния-1», запущенный 23 апреля 1965 г. Разработка этих аппаратов начиналась в ОКБ-1, а затем была передана образованному в Красноярске «филиалу № 2», возглавленному М. Ф. Решетневым и ныне известному как НПО прикладной механики [1б].
   Спутники «Молния-1» имеют массу около 1500 кг и оборудованы ретрансляторами на лампах бегущей волны мощностью 40 и 20 ватт, работающими соответственно в диапазонах 4,1/3,4 ГГц для телевещания на систему наземных станций «Орбита» и 1/0,8 ГГц для телефонно-телеграфной связи[22]. Прием и передача информации осуществляются через одну из двух остронаправленных антенн зонтичного типа. Наряду с ретрансляцией одного телевизионного канала бортовая аппаратура обеспечивает многоканальную телефонную и высокочастотную телеграфную связь, осуществляемую путем мультиплексирования ряда телефонных каналов [2].
   Последнее обстоятельство прямо указывает на двойное назначение системы «Молния». Хотя ретрансляция телепрограмм является чисто народнохозяйственным приложением, ВЧ-связь всегда использовалась для правительственных и военных нужд.
   Систему из трех спутников «Молния-1», минимально необходимых для поддержания круглосуточной связи, удалось создать только в 1968 г. с запуском «Молнии 1-10». В 1969—70 гг. она была заменена системой из 4 спутников, плоскости орбит которых отстояли друг от друга на 90 градусов, обеспечивая большее перекрытие зон связи. Относительное расположение самих спутников на орбитах синхронизировалось так, чтобы все они следовали вдоль одной и той же наземной трассы.
   В 1970 г. запуски «Молний» были перенесены из Байконура в Плесецк, что с 1973 г. сопровождалось уменьшением наклонения используемых орбит с 65 до 62,8 градусов и некоторым изменением вследствие этого процедуры стабилизации трассы.
   В 1971 г. начались запуски спутников «Молния-2», использующих ту же базовую конструкцию, но с увеличенными на 50% солнечными батареями и новой ретрансляционной аппаратурой. Рабочая частота увеличилась до 6 ГГц, что повлекло замену зонтичных антенн на рупорные.