Недоумение наблюдателей вызывало то, что до 1986 г. минимум один из каждых 3 спутников оставался нестабилизированным, и 16 из 48 запущенных с 1982 по 1990 г. спутников вообще не передавали навигационных сигналов. Только в 1991 г. выяснилось, что из-за дефицита электронных компонентов часть спутников не оснащалась навигационной аппаратурой и использовалась лишь для отработки выведения на рабочую орбиту.
   Орбита «Глонассов», имеющая высоту 19 100 км, несколько отличается от первоначально заявлявшейся строго полусуточной с высотой 20 000 км. Однако она тоже является кратной, обеспечивая повторение наземной трассы каждого спутника через 8 суток по завершении им 17 витков. Это. возможно, имеет какие-то преимущества на начальном этапе, когда задействованы еще не все орбитальные плоскости и места расположения спутников.
   В испытательных пусках, продолжавшихся с 1982 по 1988 г., спутники доставлялись только в две плоскости. Подобная картина сохраняется и после начала в 1989 г. запусков эксплуатационных спутников.
   Развертывание первой фазы системы, предусматривающей использование 10—12 ИСЗ в двух плоскостях, завершилось в 1991 г. В феврале 1992 г. количество работающих одновременно спутников впервые достигло 12, но поддержание его даже на этом уровне потребует сохранения прежнего темпа запусков ввиду ограниченного ресурса аппаратов.
   Начало же серийного производства эксплуатационных спутников в 1991 г. намечалось только на 1993 г., после чего, надо понимать, только и может начаться переход к полномасштабной системе из 24 ИСЗ, которую планировалось завершить к 1995 г.
   Заявленная точность полностью развернутой системы «Глонасс» составляет 10 метров по каждой из координат и 0,05 м/с по каждой компоненте скорости [10]. Это практически совпадает с проектными требованиями к системе «Навстар/GPS». Подчеркнем, однако, что такая точность в GPS достигается только при использовании особо закодированного сигнала, доступного лишь военным пользователям. Гражданские пользователи системы GPS получают координаты с точностью до 30 метров, а в режиме «выборочной доступности», т е. при преднамеренном ухудшении сигнала для затруднения несанкционированного доступа к точному коду погрешность возрастает до 100 метров. Последняя величина также согласуется с характеристиками аппаратуры системы «Глонасс», доступной для гражданского использования и обеспечивающей погрешность 100 м по широте и долготе и 15 м/с по скорости [1] в отсутствие искусственного ухудшения сигнала[33].
   Как бы то ни было, до завершения полного развертывания системы «Глонасс» низкоорбитальные навигационные системы сохранят свою роль, и наблюдавшаяся до последнего времени картина запусков, в которой ежегодные две партии «Глонассов» балансировались 5-6 низкоорбитальными спутниками едва ли изменится в пользу новой системы.

3.3.3 Геодезические спутники

   Геодезические спутники предназначаются для точного определения формы Земли и конфигурации ее гравитационного поля. Эти данные важны как для научных целей, так и для составления точных топографических карт и наведения ракет дальнего действия.
   Несферичность гравитационного поля Земли искажает траектории движения всех спутников, и любой из них в той или иной степени может использоваться для геодезических измерений. Так, уже первый искусственный спутник, запущенный в 1957 г., позволил уточнить значение экваториального сжатия Земли. Однако для более точных измерений геопотенциала необходимо минимизировать влияние на траекторию других возмущающих факторов, прежде всего сопротивления атмосферы.
   По этой причине специализированный геодезический спутник должен иметь максимальное отношение массы к площади поперечного сечения (минимальный баллистический коэффициент) и выводиться на высокую, предпочтительно круговую орбиту.
   Спутники, предназначенные специально для геодезических измерений, стали запускаться в СССР с 1968 г. Они выводились ракетами С-1 («Космос») на круговые орбиты высотой 1200 км с наклонением 74 градуса, и их сигналы были очень похожи на сигналы дебютировавших годом ранее навигационных спутников. Это вполне объяснимо, так как техника доплеровских измерений может использоваться и для навигации и геодезических целей. Однако не образующие упорядоченной системы одиночные спутники не позволяют проводить привязку в произвольное время и в произвольном месте, что делает очевидным их использование преимущественно для геодезических измерений.
   Отдельные спутники данной серии выводились на орбиты, отличающиеся от остальных по наклонению («Космос-480» и «Космос-708»). Для навигации это сулило бы только дополнительные сложности, но для геодезических целей сопоставление измерений при различных наклонениях представляет интерес.
   С 1972 г. высота орбит геодезических спутников увеличилась до 1300—1400 км, что могло быть связано либо с некоторым уменьшением их массы, либо с улучшением энергетических характеристик носителя «Космос»[34], а с 1981 г. геодезические спутники стали запускаться более грузоподъемным носителем «Циклон» (F-2). Новые спутники выводились на орбиты высотой 1500 км и наклонением 73,6 или 82,6 градуса, В 1989 г. очередной спутник этого типа, «Космос-1950», был назван «элементом комплекса „Гео-ИК“ и сообщалось, что его бортовое оборудование включает передатчик для доплеровских измерений, импульсную лампу и лазерные уголковые отражатели.
   Внешний вид «Космоса-1950» (рис. 3.8) показывает его конструктивное родство с низкоорбитальными навигационными спутниками, объясняющееся близостью задач и сходством используемых методик. Установленная на спутнике импульсная лампа способна выдавать серии из 9 вспышек с энергией 800—1200 джоулей до 55 раз в сутки. Фотографирование их на фоне звездного неба позволяет определить местоположение точки наблюдения с точностью до 15 метров [13]. (Такая же методика использовалась на американских геодезических спутниках «Анна-1» и «Геос», запускавшихся в 1962—1975 гг.). Ограниченный ресурс бортовых систем диктует необходимость запусков геодезических спутников в среднем раз в год. Несравненно более долговечными являются пассивные спутники, оборудованные уголковыми отражателями для лазерной локации. Первым спутником такого класса стал американский «Лагеос», выведенный на орбиту в 1976 г. В СССР уголковые отражатели начали устанавливаться на спутниках системы «Глонасс», а в 1989 г. вместе с очередными парами «Глонассов» были запущены два специальных геодезических спутника «Эталон».
   Спутники «Эталон» аналогичны по конструкции «Лагеосу» и представляют собой сферический корпус диаметром 1294 мм из алюминиево-титанового сплава, в который вмонтировано 306 сборок из 7 кварцевых уголковых отражателей каждая. Шесть из более чем 2100 отражателей каждого спутника изготовлены из германия и предназначаются для проведения в будущем измерений в инфракрасном диапазоне.
   Впоследствии планировалось запустить еще два «Эталона», хотя спутники, в которых нечему ломаться, на орбитах высотой около 19000 километров могут функционировать практически вечно.

3.3.4 Метеорологические спутники

   Метеорологическая обстановка влияет не только на мирную, но и на военную деятельность. Не говоря уже о необходимости учета погодных условий при планировании учебной или боевой деятельности вооруженных сил, наличие или отсутствие облачности определяет возможность выполнения разведывательной фотосъемки, а точность наведения головных частей современных МБР требует учета температуры воздуха и скорости ветра в районе цели. Таким образом, военным пользователям метеорологические наблюдения со спутников необходимы даже более, чем гражданским.
   Работы по созданию спутниковой метеорологической системы начались в начале 60-х гг. В отличие от практически всех остальных космических аппаратов метеоспутники разрабатывались не ракетной фирмой, а ВНИИ электромеханики, относящимся к Министерству электротехнической промышленности. Такая аномалия могла быть вызвана изначальным стремлением создать спутник с электромеханической системой ориентации, избавляющей чувствительную инфракрасную и телевизионную аппаратуру от отрицательного воздействия выхлопов ракетных двигателей. (Нельзя, впрочем, исключить, что все было как раз наоборот).
   Система электромеханической стабилизации начала отрабатываться еще в 1963 г. на спутниках «Космос-14» и «Космос-23». Измерительная же аппаратура испытывалась на возвращаемых фоторазведчиках «Космос-45», «Космос-65» и «Космос-92».
   Первым целевым метеоспутником официально считается «Космос-122», 25 мая 1966 г. запущенный с Байконура[35] на круговую орбиту высотой 625 км и наклонением 65 градусов. Однако с августа 1964 по май 1966 г. на точно такие же орбиты выводились еще 4 «Космоса», которые также могли предназначаться для экспериментальных метеорологических наблюдений.
   После испытаний «Космоса-122» запуски были перенесены в Плесецк, предоставлявший возможность вывода на околополярные орбиты. В 1967 г. «Космос-144» и «Космос-156» впервые образовали экспериментальную космическую систему «Метеор», включающую два аппарата на взаимно перпендикулярных орбитах с наклонениями 81,2 градуса. Однако штатная эксплуатация системы началась только в 1969 г., после чего используемые спутники и стали официально называться «Метеорами».
   С декабря 1971 г. высота рабочей орбиты «Метеоров» была увеличена до 900 км, что расширяло полосу обзора, хотя и приводило к снижению разрешения. Система «Метеор» обеспечивала получение телевизионных изображений облачного покрова Земли в видимом и инфракрасном диапазоне через каждые 6 часов. В 1975 г. появились спутники «Метеор-2», способные помимо этого измерять вертикальный профиль температуры в атмосфере, а также оснащенные системой прямой передачи изображения, позволяющей без посредства Центра управления в любой точке Земли получать телеизображение соответствующего участка с разрешением 2 км.
   В 1982-84 гг. запуски «Метеоров» были переведены с ракеты-носителя «Восток» (А-1) на «Циклон» (F-2). При этом наклонение рабочих орбит изменилось с 81,2 до 82,6 градуса, как это произошло и со спутниками радиотехнической разведки, и несколько увеличилась высота полета – с 900 до 950 километров.
   Последней моделью серии «Метеор» стал «Метеор-3», дебютировавший в 1984 г. (Первый спутник этого типа вышел на нерасчетную орбиту из-за отказа последней ступени носителя и был назван «Космосом-1612»). ИСЗ «Метеор-3» имеют массу 2150 кг по сравнению с примерно 1500 кг у предыдущих, но тем не менее доставляются на более высокие орбиты, благодаря большей экономичности осуществляемого «Циклоном» двухимпульсного выведения. Увеличение высоты орбиты до 1200 км дало возможность ликвидировать разрывы между полосами наблюдения в экваториальных районах при сохранении угла зрения оптической системы. Измерительная аппаратура «Метеоров-3» размещается на универсальной монтажной платформе, что позволяет менять ее состав в зависимости от особенностей задач каждого спутника.
   Штатная конфигурация системы «Метеор-3» предусматривает одновременное нахождение на орбитах трех спутников, восходящие узлы которых отстоят друг от друга на 60 градусов. После того как в 1991 г. с запуском 4-го «Метеора-3» она была полностью укомплектована, эксплуатация «Метеоров-2», очевидно, завершилась. Последние два «Метеора-2» были выведены на орбиты в 1990 г., несмотря на наличие еще трех работоспособных предшественников, что можно истолковать как стремление поместить на орбитальное хранение остающиеся спутники данного типа перед полным переключением на новую систему.
   В отличие от США, Японии и Западной Европы в СССР до сих пор не существует геостационарных метеоспутников. Хотя еще в 1976 г. Советский Союз обязался до конца 1978 запустить такой спутник в рамках международной программы изучения глобальных атмосферных процессов (ПИ-ГАП/GARP), впоследствии обещание было взято назад со ссылкой на технические трудности. Тем не менее СССР зарезервировал на стационарной орбите 3 места для спутников GOMS (Geostationary Operational Meteorological Satellite)[36]. С 1988 г. первый запуск такого спутника, ставшего также известным как 17Ф45 [14] и «Электро» [15], неизменно обещался «в следующем году», но летом 1991 г. он был наконец собран и отправлен на космодром для испытаний. Поскольку «Электро» весит 2400 кг, т е. на 200 кг больше чем РН «Протон» с разгонным блоком ДМ может доставить на геостационарную орбиту, его запуск должен осуществляться с использованием нового блока ДМ-2, первый полет которого также задерживается по крайней мере с конца 1990 г. В настоящее время запуск первого ИСЗ «Электро» планируется на 1993 г. [16].
   Для военных пользователей геостационарные метеоспутники представляют наименьший интерес. В метеорологическом обеспечении военной деятельности особое значение имеет точное определение погодных условий в относительно небольших районах. По этой причине после того, как спутники Национального управления по изучению океана и атмосферы (НОАА) США стали запускаться на более высокие орбиты, ВВС США создали специализированные низкоорбитальные метеоспутники DMSP[37] для удовлетворения своих специфических нужд, таких как обеспечение полетов и планирование съемок с разведывательных спутников.
   В Советском Союзе такой специализации не наблюдается, возможно потому, что Вооруженные силы, контролируя все космические аппараты, имеют возможность получать всю необходимую информацию из единой системы метеонаблюдений. Кроме того, на советских спутниках оптической разведки устанавливаются бортовые датчики облачности, позволяющие избежать расходования пленки при неблагоприятных погодных условиях в районе цели [17].

3.3.5. Исследовательские и калибровочные спутники

   Довольно большое количество советских спутников, не связываемых с известными научными или народнохозяйственными программами, не удается отнести также ни к одной из рассмотренных выше военных категорий. Даже после отбрасывания уникальных пусков, которые могут относиться к различным прерванным проектам, остается более ста спутников, четко разделяющихся по орбитальным параметрам на несколько серий. Периодическая замена аппаратов в пределах каждой из них свидетельствует об осуществлении продолжительных программ, а отсутствие какого бы то ни было упоминания о их конкретном назначении заставляет предположить, что эти программы также носят военный характер.
   В космической деятельности Министерства обороны США имеется ряд вспомогательных программ, носящих исследовательский характер. Они охватывают испытания и отработку оборудования для перспективных космических систем военного назначения, различные калибровочные устройства, зонды для измерения плотности атмосферы и т п. Естественно ожидать существования подобных направлений и в советской программе, так что по крайней мере некоторые неотождествленные серии советских спутников могут предназначаться для решения аналогичных задач.
   По этой причине в обзорах Исследовательской службы Конгресса США для советских спутников, не относящихся к вышеперечисленным военным категориям и не отождествленных как научные или прикладные, было введено понятие «малые (minor) военные спутники». Этот термин отражает вспомогательность их предполагаемого военного значения и отчасти подчеркивает их небольшие размеры, поскольку «малые» спутники запускались легкими носителями «Космос».
   Запуски с использованием носителей В-1 начались в 1964 г. на космодроме Капустин Яр, а с 1967 г. распространились также в Плесецк. Все такие спутники выводились на вытянутые орбиты, распадающиеся по высоте апогея на три группы: низкие (500—600 км), высокие (1200—2200 км) и промежуточные (800—870 км). Если запуски с Капустина Яра обеспечивали наклонения орбит 48,4—49 градусов, то с Плесецка низкоапогейные спутники выводились на орбиты с наклонением 71 градус, а высокоапогейные – 82 градуса (см. табл. 3.11).
   Орбиты каждого из этих типов применялись и для научных запусков (многие из которых были отождествлены как таковые лишь годы спустя), поэтому очень вероятно, что рассматриваемые спутники базировались на унифицированной конструкции, разработанной фирмой Янгеля и хорошо известной по первым спутникам серии «Космос».
   Оптические измерения свидетельствовали, что спутники стабилизируются на орбите вращением, но никому из независимых наблюдателей не удавалось получить от них дешифруемые радиосигналы (в отличие от научных спутников, которые обычно сразу распознавались по телеметрии).
   Малые высоты перигеев – от 220 до 290 км – ограничивали орбитальное существование запускаемых В-1 спутников считанными месяцами. Наиболее короткоживущими были низкоапогейные аппараты с периодом обращения около 92 минут, и спутники этой серии запускались 6—8 раз в год. В общей сложности на их долю приходится 63 из 98 запусков В-1, не отождествленных как научные.
   Регулярность замен низкоорбитальных спутников свидетельствовала, что программа носит эксплуатационный, а не экспериментальный характер. О ее назначении высказывались самые различные гипотезы, от определения погодных условий в районах съемки фоторазведчиков, до ведения радиотехнической разведки и контроля за ядерными взрывами в космосе.
   Однако для слежения за ядерными взрывами необходимо одновременное нахождение на орбите сразу нескольких спутников. Метеорологическое обеспечение фоторазведывательных полетов не требует такой скрытности связи. К тому же, как сказано выше, советские спутники оптической разведки используют собственные бортовые датчики облачности. Предположение об ведении радиотехнической разведки само по себе непротиворечиво, хотя для эффективности такой системы также желательно было бы иметь на орбите несколько спутников одновременно. Кроме того оно не очень увязывается с многолетним осуществлением таких запусков параллельно с существованием группировки спутников радиотехнической разведки, запускаемых носителями С-1.
   Наиболее логичным кажется предположение [18], что данные спутники использовались для калибровки наземных радиолокационных станций и определения параметров верхней атмосферы.
   С 1974 г. запуски на аналогичные орбиты стали осуществляться также с помощью более мощной ракеты С-1. В 1974—76 г. она заменила В-1 при наиболее редких запусках на высокоэллиптические орбиты с периодом обращения около 109 минут. Запуски на орбиты с апогеями 850—1000 км в 1977 г. прекратились вместе с использованием В-1 и два запуска С-1 в 1974 и 1976 гг. на близкие к этим орбиты с апогеями около 720 и перигеями 240—280 км не получили продолжения. Наиболее же массовая серия низкоапогейных запусков В-1 была в 1975—76 гг. сменена спутниками, выводимыми ракетами С-1 на околокруговые орбиты средней высотой около 495 километров и наклонением 65,8 градуса. До тех пор на такие орбиты выводились только мишени для спутникового перехвата, и поэтому запущенный в 1975 г. «Космос-752» поначалу рассматривался как неиспользованная по каким-то причинам мишень.
   Увеличение со временем количества «неперехваченных мишеней», а также расширение запусков и на другие наклонения, свидетельствовало о самостоятельной роли этих спутников, а синхронное прекращение пусков низкоапогейных спутников ракетами В-1 позволяет предположить преемственность двух программ.
   Примерно половина запускаемых носителями С-1 низкоорбитальных «малых» спутников, начиная с «Космоса-816» в 1976 г., периодически отделяет во время полета небольшие объекты, снижающиеся значительно быстрее основного аппарата. Если сами спутники при начальной высоте орбиты около 500 км существуют по несколько лет, «фрагменты» падают за несколько месяцев. Как правило, объекты появляются попарно и сбрасываются с основного аппарата симметрично, так что половина оказывается выше, а половина ниже его орбиты. Объекты обычно выпускаются небольшими группами на протяжении многих месяцев, причем отделение новой партии часто совпадает со сходом предыдущих с орбиты.
   Фрагменты имеют радиолокационные сечения порядка 0,1 квадратного метра. Рассчитанные же по скорости их снижения баллистические коэффициенты составляют около 0,1 м /кг, что дает для массы каждого зонда около 1—2 кг [19], По всей видимости, объекты являются полыми без каких бы то ни было активных систем, а разница в баллистических коэффициентах говорит о различии их форм.
   Слежение за такими пассивными зондами позволяет определять вариации плотности верхних слоев атмосферы, которая значительно, иногда многократно, меняется в зависимости от времени года, суток и состояния солнечной активности и влияет на точность управления полетами спутников и баллистических ракет.
   Помимо этого, орбитальные мишени с точно известными радиолокационными характеристиками могут использоваться для калибровки радиолокационных станций, используемых в системе контроля космического пространства и предупреждения о ракетном нападении. В этом случае целесообразно использование мишеней разной формы, например, эталонных сфер и имитаторов радиолокационных характеристик реальных боеголовок. Использование космических мишеней для проверки радиолокационных средств для Советского Союза более актуально чем для США. США отрабатывают свои системы слежения на тихоокеанском атолле Кваджалейн с использованием реальных пусков МБР из Калифорнии, тогда как СССР лишен аналогичной возможности. Кроме того, в отличие от США, в СССР продолжается эксплуатация системы противоракетной обороны Москвы, что требует периодических учебных «атак».
   С 1976 до 1983 г. предельное количество мишеней, отделяемых низкоорбитальными спутниками, составляло 24. Начиная с «Космоса-1601» эта величина возросла до 28. В ряде случаев технические неполадки, видимо, препятствовали сбросу всех объектов, а иногда фиксировались фрагменты, могущие представлять собой конструктивные элементы основного аппарата.
   С 1988 г. аналогичные спутники стали запускаться также носителями «Циклон». При этом использовались несколько более высокие орбиты со средней высотой 530 км и наклонениями 74 или 82,5 градуса, но характер орбитального поведения остался прежним. Первый спутник нового типа, «Космос-1985», отделил 36 объектов партиями по 2—6 штук на протяжении более чем двух лет.
   Продолжении этой серии «Космосом-2053» в 1989 и «Космосом-2106» в 1990 г. позволяет предположить, что калибровочные пуски постепенно переключаются с носителя С-1 «Космос» на «Циклон», подобно тому как это произошло с геодезическими спутниками.
   Одновременно с этим неожиданно возобновились пуски «малых» спутников на высокоапогейные орбиты. Запущенные с годичным интервалом «Космос-2002» и «Космос-2059» были в 1989 и 1990 гг. выведены на наиболее вытянутые их использовавшихся малыми спутниками орбиты с апогеем около 2300 км и перигеем всего 190 км. При таких низких перигеях оба упали в течение нескольких месяцев, но вскоре после запуска каждый отделил по 10 небольших объектов, просуществовавших около полутора месяцев.
   Кроме того, в 1990 г. «Космос-2098» был выведен на орбиту с апогеем 2000 км и перигеем около 400 км, использовавшуюся последний раз в 1983 г. В 1987 г. после 10-летнего перерыва «Космос-1868» также вновь использовал «среднеапогейную» орбиту высотой 280 на 710 км, а в 1991 на похожую орбиту высотой 200 на 780 км был выведен «Космос-2164».
   Эпизодичность последних запусков делает более вероятным их экспериментальный характер. Однако если при использовании носителя В-1 низкие перигеи рабочих орбит могли диктоваться кратковременностью разгонного участка ее второй ступени, то сохранение этой же формы орбиты при применении РН С-1 свидетельствует о каком-то значении именно таких траекторий. Возможно, таким путем определяется вертикальный профиль параметров атмосферы и/или имитируется траектория полета МБР, апогей которой может достигать тысяч километров, а перигей находится ниже поверхности Земли.