В.И. Тюрин
Внимание глубина

Глава 1. ВЫЗОВ НЕПТУНУ

   Осенним хмурым утром 12 октября 1964 года от генуэзского порта отчалило судно “Торрегранд”. Несмотря на плохую погоду, на верхней палубе было много людей. Среди них выделялся сухощавый человек с загорелым лицом - Жак-Ив Кусто. Когда “Торрегранд” вышел в открытое море, Кусто перерезал трос, и водонепроницаемый бронзовый цилиндр с прикрепленными к нему флагами 30 государств скрылся в пучине. В цилиндре была декларация о взятии человеком власти над глубинами моря. Копия декларации была направлена в Организацию Объединенных Наций. Так официально было провозглашено начало подводной эры, а властному богу моря древних римлян Нептуну брошен вызов.
   Но фактически массовое вторжение в подводный мир началось значительно раньше. Человека во все времена повелительно звала к себе его древняя прародина - океан. И хотелось ему не только летать как птица, но и плавать как рыба. Наше поколение может считать, что эти мечты уже в какой-то мере осуществлены. В нашу жизнь давно уже вошли и стали привычными скорости и техника воздушного океана.
   Но всем ли вам доводилось парить в синеве подводного мира? Видеть мир, полный красочных, непривычных для человеческого глаза пейзажей, морские луга в солнечных бликах, причудливые, заросшие водорослями и ракушками скалы, зловещие темные гроты. Приходилось ли любоваться бесчисленными, разнообразными по цвету и форме морскими звездами Тихого океана, встречаться с осьминогом или наблюдать среди обильной растительности Баренцева моря стаи серебристых рыб, когда они вдруг” словно по команде, блеснув серебристыми телами, круто разворачиваются и ложатся на другой курс. Приходилось ли плавать под водой ночью в Черном море, когда каждое ваше движение в воде сопровождается миллионами искр.
   Таинственный и волшебный подводный мир! Кусто назвал его миром безмолвия. Это определение верно в том смысле, что поверхность моря является барьером для проникновения звуков. Лишь тысячная доля звуковой энергии попадает из одной среды в другую, а вся остальная отражается либо вверх, если звук шел из воздуха, либо вниз, если он шел из воды. Но и находясь под водой, человек, к сожалению, слышит лишь жалкую долю звуков. Хотя мы хорошо теперь знаем, что этот мир совсем не безмолвен.
   Еще во времена Аристотеля подозревали, что рыбы не прочь “поболтать”. Рыбаки Желтого и Китайского морей жалуются, что не могут заснуть в своих тонкостенных деревянных джонках из-за неугомонного хора морских обитателей. Огромное число рыб обходится без зрения, но не известно ни одной, которая была бы от природы глухонемой. Рыбаки южных морей Западной Африки издавна слушают подводные звуки, приложив ухо к вертикально опущенному в воду веслу: так они узнают, где имеется скопление рыбы, которая, как теперь доказано с помощью гидрофона, невероятно болтлива.
   А вот другое броское название - “мир без солнца”. Оно также неточно. Ведь именно солнце и согревает и освещает подводный мир.
   Поверхностный слой воды толщиной в 1 сантиметр поглощает до 94 процентов солнечного тепла. Более нижние слои нагреваются за счет конвекции. Солнце, как уже говорилось, и освещает подводный мир. Правда, глубина проникновения солнечных лучей зависит от географической широты места, времени года и суток, метеорологических факторов, а также от прозрачности воды.
   Нельзя назвать подводный мир и миром без запахов. Он ими полон. По-своему пахнет каждый морской организм, каждое море, каждый залив, каждое течение. Наши органы обоняния не улавливают большинства из этих запахов, но рыбы их хорошо ощущают. Обоняние у них очень тонкое. По способности различать запахи речной угорь, например, превосходит охотничьих собак. Известно, что взрослые рыбы - кета, горбуша, живущие в морях, - безошибочно находят дорогу к родной реке. Многие исследователи считают, что они ориентируются по запаху ее воды.
   Лауреат Нобелевской премии биохимик Альберт Сцент-Дьерди называет воду “матрицей жизни”. Наукой доказано, что жизнь на земле зародилась в океане. Поэтому не случайно одну из своих книг известный австрийский подводный фотограф Ганс Хасс так и озаглавил “Мы выходим из моря”. Есть неоспоримые доказательства, что наши далекие предки, в эволюционном смысле слова, имели жабры и жили в воде. На ранних стадиях развития зародыши человека и многих животных - обезьяны, кролика, курицы и даже рыбы очень похожи друг на друга. На третьей неделе развития у зародыша человека появляются складки, подобные тем, которые можно обнаружить в начале развития у всех позвоночных животных. Они представляют собой зачатки жабр. У рыб из этих зачатков развиваются настоящие жабры, у наземных животных они в дальнейшем бесследно исчезают.
   Ганс Хасс шутит: “Когда-то рыбы, побуждаемые излишним любопытством, отважились выбраться на сушу; теперь человек стремится, подобно рыбе, в море”.
   Науке известно возвращение в морскую стихию некоторых животных из предков китов, которым в наземных условиях не хватало еды. Но природе на это потребовались миллионы лет. Человек, благодаря мышлению, достиг того же с помощью современной науки и техники за какие-то десятилетия.
   Но на пути его проникновения в подводный мир много препятствий как очевидных, так и скрытых. Громадное, возрастающее с глубиной давление воды, токсическое действие кислорода и углекислого газа, наркотическое действие инертных газов, насыщение организма газами под повышенным давлением, которое при выходе с глубины требует длительной декомпрессии, жесткие температурные условия и ряд специфических заболеваний, несчастные случаи, связанные с эксплуатацией дыхательной аппаратуры и нападением морских животных, - вот далеко не полный перечень барьеров, ограждающих владения Нептуна от свободного проникновения в его глубины. Но так ли уж непреодолимы все эти преграды?
   Опыт показывает, что большую часть происшествий при занятиях подводным спортом можно было бы избежать. Виновато в них только невежество спортсмена-подводника в вопросах специальной физиологии и патологии.
   Решив написать книгу, я рассуждал так: врач должен лечить не только от болезней, но и от незнания. Спортсмену-подводнику - человеку, как правило, с отличным здоровьем - нужен в первую очередь не врач-лекарь, а врач-наставник, учитель, который предупредит о возможных опасностях и научит правильно вести себя при спусках под воду.
   Помните, если вы дерзнули поспорить с природой, то необходимо подготовить себя к этому серьезно, иначе при первом же вторжении в море легкомыслие будет жестоко наказано.
   Конечно, в небольшой книге рассказать подробно обо всем невозможно. Поэтому хочется надеяться, что, прочитав ее, вы продолжите свое образование, пользуясь не только литературой, перечисленной в конце книги, но и посещая кружки и секции подводного плавания.

Глава 2. ГОСТЕПРИИМЕН ЛИ ОКЕАН?

   Космонавт Скотт Карпентер, проживший в подводной лаборатории “Силаб-2” 30 суток и систематически выходивший из нее на работу в толщу воды, по возвращении на поверхность заявил, что подводный мир более враждебен человеку, чем космос.
   Заявление Скотта Карпентера не лишено оснований. Иначе лежащий у наших ног океан не был бы до сих пор исследован хуже обратной стороны луны.
   Человек и животные, не приспособленные добывать кислород непосредственно из воды, могут находиться под водой лишь очень ограниченное время. Интересно проследить, как этим пользуются отдельные представители животного мира в борьбе за существование. Хаупинские лягушки на юге Китая охотятся на птиц, которыми питаются. Выбрав открытое место, лягушка переворачивается на спину и притворяется мертвой, но как только обманутая птица приблизится к ней, мгновенно обхватывает жертву лапами и увлекает ее под воду. Кальмары побеждают своих врагов-кашалотов, главным образом, тем, что удерживают их под водой дольше, чем те могут там пробыть. Таким образом, причиной гибели кашалота в схватке с кальмаром является кислородное голодание головного мозга, а вовсе не повреждения от могучих щупальцев кальмара.
   Или такой любопытный случай. В марте 1960 года одним из тральщиков китобойного флота был пойман… кит. Кит попал в глубоководный трал, запутался, и поэтому не смог своевременно всплыть на поверхность. Вследствие этого у него развилось кислородное голодание.
   Кита без признаков жизни извлекли на поверхность. Спустя несколько минут после подъема на палубу кит неожиданно ожил, смел могучим ударом хвоста леерные ограждения и ушел в воду.
   Всем известно, что для нормального существования человека необходимы вода, пища, определенные температурные условия и, главное, воздух. Наблюдения показывают, что хорошо упитанный человек без пищи, но при наличии воды может жить 30-40 суток, а без воды - 8-10 суток. При низкой температуре, например, в ледяной воде (1-5° С), гибель человека наступает через 60-90 минут, а без воздуха человек погибает уже через 3-5 минут.
   Вспомним, какова же потребность человека в кислороде.
   Хорошо тренированный спортсмен при интенсивном плавании потребляет его от 1,5 до 3 литров в минуту. При этом легочная вентиляция возрастает до 50-75 литров в минуту (в покое при нормальном давлении легочная вентиляция - 8-9 литров в минуту). Это значит, что если бы человек имел жабры, то для удовлетворения кислородного запроса ему пришлось бы прогонять через них не менее 250-375 литров воды в минуту.
   Итак, мы знаем, что потребность человека в кислороде велика и что без воздуха он может прожить всего лишь несколько минут. Но мы знаем и то, что еще совсем недавно свободное ныряние с задержкой дыхания было единственным способом побывать в подводном мире. Естественно, что время пребывания под водой волновало человека. Знаменитый французский ныряльщик начала XX столетия Лалиман, который мог проплыть под водой 112 метров, даже написал книгу “Как жить под водой”. С тем чтобы увеличить время задержки дыхания, он рекомендовал специальные упражнения, способствующие перемещению неиспользованного воздуха, находящегося в верхних дыхательных путях и даже в пищеводе, в легкие.
   Еще в древние времена человеку пришла мысль об использовании дыхательной трубки. Но, к сожалению, возможности ее применения были и остаются ограниченными. Однако поговорим об этом подробнее.
   В историческом повествовании “Емельян Пугачев” Вячеслава Шишкова есть сцена с доставанием купеческого сундука со дна Волги. Пугачев смастерил для дыхания под водой длинную трубку из двух камышовых стволов, просмолил их стыки варом. Конец пятиаршинной трубки вставил в изогнутый коровий рог с отверстием на конце. Ранее он “смерил шестом глыбь; вышло без малого четыре аршина” (что-то около 280 сантиметров).
   “Пугачев, проверив жердью положение сундука, перекинул конец добротной веревки через перекладину, к концу прикрепил камень и спустил на дно. Затем торопливо разделся - крепкие мускулы заиграли под белой кожей, - привязал к спине с полпуда, чтоб вода не вздымала тело с глубины, взял в рот коровий рог с камышовой трубкой, продул ее и, перекрестившись, погрузился в воду. Конец трубки торчал над водой, чутко было, как из нее вырывалось сиплое дыхание.
   - Глянь, черт, сатана, что измыслил,- говорили на сплотиках.- Да с такой трубкой-то неделю под водой жить можно…
   Из конца трубки все шумней, все чаще вырывалось дыхание. Вот дудка быстро, приподнявшись торчком, всплыла наверх, как поплавок, и легла на бок. А вслед за нею выскочил и Пугачев”.
   Попробуем разобраться, можно ли дышать на такой глубине через камышовую трубку, если предположить, что ее не обожмет водой?
   При вертикальном положении человека под водой уже на глубине один метр на его грудную клетку, поверхность которой составляет около 6600 квадратных сантиметров, приходится дополнительная нагрузка около 660 килограммов. Известно, что средне развитый физически человек может преодолеть на вдохе 50-100 мм рт.ст., а на выдохе - 80-150 мм рт.ст. Таким образом, на метровой глубине человек может сделать вдох с большим трудом, а на глубине двух метров вдох уже практически невозможен.
   Немецкий физиолог Штиглер экспериментально доказал, что при погружении с дыхательной трубкой на глубину 60 сантиметров, можно дышать через нее в течение 3 минут 40 секунд, на метровой глубине - 30 секунд, на глубине 1,5 метра - 6 секунд. Попытка дышать через трубку на глубине двух метров окончилась неудачей. Штиглер с расширением сердца был доставлен в больницу. Таким образом, длительное дыхание через трубку возможно лишь при плавании непосредственно у водной поверхности. На глубине же 280 сантиметров, чтобы сделать вдох, дыхательные мышцы должны преодолеть сопротивление более 213 мм рт.ст., что эквивалентно давлению на грудную клетку с силой 1868 килограммов. Сила же дыхательных мышц на вдохе у наиболее развитых спортсменов-подводников, мастеров спорта СССР и рекордсменов Европы и мира составляет в среднем 127,5+9,63 мм рт.ст.
   Вот и получается, что даже если Пугачев был очень хорошо физически развит и тренирован, и то он вряд ли смог бы на такой глубине сделать вдох, а тем более дышать длительное время.
   Обеспечить нормальное дыхание человека под водой можно. Но для этого ему необходимо подавать воздух, сжатый до давления данной глубины. Такой воздух подают аквалангистам легочные автоматы дыхательных аппаратов.
   Пребывание на глубине связано для человеческого организма и с другими трудностями.
   Толща воздушного океана, на дне которого мы живем, давит на каждый квадратный сантиметр поверхности нашего тела с силой в один килограмм. Общее давление на человека, поверхность тела которого равна 1,6-1,8 квадратных метра, составляет 16-18 тонн. Давление колоссальное. Но мы его не замечаем, потому что оно равномерно распределено со всех сторон, а организм наш состоит в среднем на 65 процентов из жидкости, которая практически несжимаема.
   Вода в 800 раз тяжелее воздуха, поэтому при погружении в нее человек испытывает дополнительное давление, и оно будет тем большим, чем глубже он опустится. На глубине 10 метров давление, относительно атмосферного, удвоится и будет равно двум килограммам на каждый квадратный сантиметр поверхности тела. На глубине 20 метров величина давления утроится и т.д. К тому же при вертикальном положении тела в воде давление на его верхние участки будет меньше, чем на нижние. Вследствие такого неравномерного давления водяного столба, верхние участки тела оказываются переполненными кровью, а нижние - обескровлены. Объем брюшной полости уменьшается, а диафрагма устанавливается выше. При горизонтальном положении неравномерность давления воды выражена менее заметно. Если при вертикальном положении величина в разности давлений на крайние точки тела достигает 0,17-0,19 кгс/см 2, то в положении лежа разница в давлении на спину и грудь будет составлять лишь 0,02-0,03 кгс/см 2.
   Во многих случаях существенно определяет время пребывания на глубине температура воды. Средняя летняя температура воды даже в самых теплых замкнутых морях не превышает 32° С. Обычно же подводному спортсмену приходится плавать в более холодной воде. Летняя температура поверхности воды теплых открытых морей и океанов в среднем равна 22-29° С. По мере удаления от экватора к полюсам температура поверхности океана постепенно понижается, доходя до 1,5-1,9° С в полярных районах.
   В состоянии полного покоя человек производит в течение часа столько тепла, сколько его нужно для нагревания двух литров ледяной воды до температуры тела. При выполнении очень тяжелой физической работы он мог бы за то же время нагреть до температуры тела около 23 литров ледяной воды. Таким образом, теплопродукция нашего организма весьма ограничена и составляет в сутки примерно 2000 ккал. Поэтому время пребывания в холодной воде без защитной одежды исчисляется минутами.
   В силу физических особенностей воды охлаждение в ней и по интенсивности, и по характеру функциональных изменений в организме человека значительно отличается от охлаждения в воздухе. На воздухе при снижении его температуры до 4° С человек может без опасности для здоровья находиться до 6 часов, при этом температура тела у него даже не падает. В воде такой же температуры человек погибает от переохлаждения уже спустя 60-90 минут.
   Если в воздушной среде основные теплопотери при температуре воздуха 15-20° С происходят путем излучения (40-45 процентов) и испарения (20-25 процентов), а на долю теплоотдачи конвекцией приходится лишь 30-35 процентов, то в воде без защитной одежды вся основная масса тепла теряется путем конвекции. К тому же в воздушной среде теплопотери идут с площади, составляющей 75 процентов поверхности тела, а в воде со всей поверхности.
   Температура кожи различных участков тела в воздушной среде не одинакова. Температура кожи груди и спины колеблется от 33 до 35° С, температура кистей и стоп - от 24 до 29° С. В воде температура всей поверхности тела со временем неизбежно приближается к температуре воды. А это значит, что нарушается нормальное восприятие сигналов, идущих от температурных нервных окончаний в центральную нервную систему. Вследствие этого температура глубоких слоев тела постепенно понижается и достигает ненормально низкой величины прежде, чем появляется ощущение холода или усиливается теплопродукция.
   К тому же при погружениях под воду под действием холода и давления наблюдается притупление болевой чувствительности. Это обстоятельство приводит к тому, что ранения кожи иногда бывают под водой незамеченными и обнаруживаются только после выхода из нее, когда восстанавливается нормальная чувствительность организма.
   А теперь поговорим о том, как мы слышим под водой.
   Звук в водной среде проводится быстрее, чем в воздухе, из-за ее большой плотности. Средняя скорость распространения звука в воде 1400-1500 метров в секунду, т.е., в 4,5 раза быстрее, чем в атмосфере. Ориентироваться под водой по звуку весьма сложно. Дело в том, что наши слуховые анализаторы слева и справа воспринимают звук в воде из-за его скорости почти одновременно (разница меньше 0,00001 секунды), т.е. четкого пространственного восприятия не происходит. К тому же звук под водой воспринимается преимущественно путем костной проводимости, которая на 40 процентов ниже воздушной. Поэтому слышимость ухудшается. Она зависит в воде не столько от силы звука, сколько от его тональности: чем выше тон, тем более отдаленный слышен звук. При погружении в снаряжении с объемным шлемом воздушная проводимость сохраняется почти полностью, а значит, ориентирование под водой по звуку частично лучше, чем при плавании без шлема или со шлемом, плотно облегающим голову.
   Ну, а как мы под водой видим?
   Прозрачность воды зависит от количества и состава растворенных в ней веществ, которые рассеивают свет. В мутной воде, даже при ясной солнечной погоде, видимость почти отсутствует. В прозрачной она зависит от освещенности. Световые лучи, падая на водную поверхность, частично отражаются от нее. Величина отражения лучей находится в прямой зависимости от угла их падения. Небольшая рябь, волна резко ухудшают видимость. Потери на поглощение и рассеивание света на метр пути в воде равнозначны потерям на один километр пути в воздухе. На 10-метровой глубине освещенность в четыре раза меньше, чем на поверхности; на глубине 20 метров она уменьшается уже в восемь раз, а на 50-метровой глубине - в несколько десятков раз.
   Способность глаза видеть в воде имеет свои особенности, которые объясняются преломляющей способностью оптической системы глаза и водной среды. Коэффициенты их преломления примерно одинаковы, поэтому, если пловец погружается без маски, то свет проходит через воду и попадает в глаз, почти не преломляясь: лучи сходятся не на сетчатой оболочке, как это бывает в норме, а значительно дальше, за ней. В результате изображение предметов неясно, расплывчато, человек становится как бы дальнозорким (в зависимости от состояния зрения рефракция глаза в воде может измениться до 25 диоптрий).
   Если человек под водой находится в маске, то луч проходит вначале слой воды, затем слой воздуха в маске и только потом попадает в глаз и преломляется в его оптической системе как обычно. Но человек при этом видит предмет несколько ближе и крупнее, чем он есть на самом деле. Опытные спортсмены-подводники без труда приноравливаются к этим особенностям и легко ориентируются под водой.

Глава 3. ГДЕ ЛЕГЧЕ ЗАБЛУДИТЬСЯ: В ЛЕСУ ИЛИ ПОД ВОДОЙ?

   Человек, находящийся на земле, поддерживает равновесие тела и ориентируется в окружающем пространстве с помощью вестибулярного аппарата, зрения, мышечно-суставного чувства и ощущений, возникающих во внутренних органах и коже при изменении положения тела. Он все время чувствует действие силы тяжести, все время находится в физическом соприкосновении с поверхностью земли или различными предметами так, что сразу же ощущает малейшее изменение положения тела.
   Совсем по-другому чувствует себя человек в воде.
   В воде он весит не более 2-3 килограммов. При этом удельный вес его тела на вдохе будет меньше удельного веса воды (0,976), а на выдохе немного больше удельного веса воды (1,013-1,057). Вес человека в воде в комплекте № 1 за счет воздуха, содержащегося в маске и дыхательной трубке, близок к нулю, так что значение силы тяжести утрачивается. Под водой падает скорость движений, изменяется их размах и резкость. Там, например, легко перевернуться через голову, зато невозможно сделать движение резко.
   Особенно важную роль при ориентировании под водой играет тот факт, что подводный пловец лишен привычной опоры, не соприкасается с землей и часто ее вообще не видит. С погружением на глубину толща воды со всех сторон кажется равномерно синей и даже может быть светлее со стороны песчаного дна, за счет отражения от него лучей. К тому же при движении под водой большая плотность водной среды и плохая видимость создают впечатление огромной скорости. Жак-Ив Кусто сравнивал плавание с буксировщиком, который развивал скорость три мили в час, с ездой на автомашине со скоростью 70 миль в час в тумане и без ветрового стекла.
   При плавании человека в мутной воде, ночью или при голубой пелене из всех ориентирующих его органов чувств остается один вестибулярный аппарат, на отолиты которого по-прежнему действует сила земного притяжения. В связи с этим спортсмену-подводнику необходимо иметь представление о его строении.
   Вестибулярный аппарат находится во внутреннем ухе. Внутреннее ухо по-другому называют лабиринтом, так как оно представляет собой пещеру в височной кости с запутанными ходами. Часть этих ходов соединяется друг с другом, а часть заканчивается тупиками. Костная часть лабиринта заполнена жидкостью - перилимфой, в которой плавает кожистый лабиринт, повторяющий по форме костный. Кожистый лабиринт, в свою очередь, заполнен жидкостью - эндолимфой, В лабиринте различают следующие части: три полукружных канала, преддверие и улитку. Две первые части лабиринта образуют вестибулярный аппарат.
   В преддверии костного лабиринта лежат два кожистых мешочка. Заложенные в них окончания вестибулярного нерва представляют собой как бы нежнейший войлок, плавающий в эндолимфе. На этом войлоке расположены мельчайшие кристаллы извести, так называемые отолиты. От преддверия начинаются три полукружных канала, расположенные во взаимно перпендикулярных плоскостях. В расширенной части каждого канала, у входа в его преддверие, заложены нервные окончания, имеющие вид кисточек.
   Вестибулярный аппарат улавливает линейные и угловые ускорения. Линейные ускорения улавливает отолитовый аппарат, а угловые - полукружные каналы. Эти раздражения передаются в мозг, сигнализируя об изменении направления.
   Когда мы поворачиваем голову, то в том полукружном канале, который лежит в плоскости вращения, эндолимфа в силу инерции будет вначале несколько отставать от движения стенок кожистого лабиринта, изменяя тем самым давление в различных частях вестибулярного аппарата. Этот сдвиг эндолимфы относительно волосков нервных окончаний, находящихся в расширении полукружного канала, вызывает раздражение их, которое, доходя до мозга, создает ощущение начала вращения.
   Ощущения, вызываемые в нашем сознании раздражением вестибулярного аппарата, не всегда соответствуют реальной обстановке. Так, например, человек, идущий с завязанными глазами, будет постепенно заворачивать в сторону. Если человеку с завязанными глазами позволить управлять автомобилем, то во всех случаях со временем движение автомобиля переходит в спираль. Это явление объясняется иллюзией противовращения, которая наблюдается при любом “слепом” действии, если у человека нет достаточной тренировки в таких упражнениях. В основе этого явления лежит чисто физиологический механизм. Мы уже разобрали, как доводится до сознания начало движения. Посмотрим, что произойдет при “слепом” действии дальше.
   При установившемся равномерном движении головы эндолимфа и волоски нервных окончаний полукружных каналов будут двигаться вместе, не давая никаких ощущений движения. В момент же остановки вращения лимфа по инерции будет еще некоторое время двигаться, отклоняя волоски по ходу прекратившегося уже движения. Это новое отклонение волосков нервных окончаний вызовет раздражение вестибулярного нерва, которое передается коре головного мозга и будет осознано, как начавшееся новое движение, но в обратную сторону.