Физик, заявляющий, что теория красива, имеет в виду не совсем то, что подразумевается, когда говорят, что красива какая-то картина, музыкальное произведение или стихотворение. Это утверждение не является просто личным выражением полученного эстетического наслаждения, скорее, это ближе к тому, что имеет в виду тренер лошадей, когда он глядит на скаковую лошадь и говорит, что она красива. Конечно, тренер выражает свое личное мнение, но это есть мнение по поводу объективного факта: основываясь на суждениях, которые тренеру иногда трудно выразить словами, он утверждает, что эта лошадь относится к породе тех, которые выигрывают скачки.
   Конечно, разные тренеры могут по-разному оценивать качества лошадей. Именно на этом и держатся лошадиные скачки. Но эстетическое чувство тренеров есть средство для объективного вывода – отбора лошадей для участия в скачках. Предполагается, что чувство прекрасного у физиков служит аналогичной цели – оно помогает отобрать идеи, позволяющие объяснить устройство природы. Физики, как и тренеры лошадей, могут быть правы или ошибаться в своих суждениях, но они не просто забавляются этой игрой. Конечно, часто бывает и такое, но все же это не единственная цель их эстетических суждений.
   Такое сравнение вызывает больше вопросов, чем дает ответов. Во-первых, что такое красивая теория? Каковы те характеристики физических теорий, которые вызывают у нас ощущение красоты? Более трудный вопрос: почему срабатывает ощущение красоты у физиков? Истории, рассказанные в предыдущей главе, продемонстрировали, что такое личное и субъективное чувство, как наше ощущение красоты, помогает не только развивать физические теории, но и судить об их справедливости. Почему мы обладаем таким даром эстетической оценки? Попытка ответить на этот вопрос вызывает к жизни еще более трудный вопрос, хотя он, возможно, и звучит тривиально: а чего собственно хотят добиться физики?
   Что такое красивая теория? Работник одного большого американского музея однажды очень рассердился на то, что я употребил слово «красота» в разговоре о физике. Он сказал, что профессионалы в его области перестали употреблять это слово, так как поняли, насколько трудно определить его смысл. Очень давно физик и математик Анри Пуанкаре признал: «Очень трудно определить понятие математической красоты, но это же относится и к любому другому типу красоты».
   Я не собираюсь пытаться определить, что такое красота, так же как не взялся бы определять понятия любви или страха. Такие вещи не определяются; просто, когда вы их чувствуете, вы знаете, о чем идет речь. Позднее, после того, как эти чувства испытаны вы можете иногда их как-то описать словами, что я и попытаюсь сделать.
   Под красотой физической теории я, безусловно, не имею в виду механическую красоту расположения математических символов на печатном листе. Поэт-метафизик Томас Траерн специально заботился о том, чтобы слова его поэм образовывали на листе бумаги красивый узор22). Но к физике эти игры не относятся. Я также хотел бы отделить тот тип красоты, который я имею в виду, от качества, которое математики и физики иногда называют элегантностью. Доказательство или вычисление элегантно, если с его помощью достигается мощный результат при минимальном количестве не имеющих отношения к делу усложнений. Для красивой теории совершенно не обязательно, чтобы ее уравнения имели элегантные решения. Уравнения общей теории относительности невероятно трудно решить за исключением простейших ситуаций, но это ни в коей мере не противоречит красоте самой теории. Эйнштейн говорил, что ученые должны оставить элегантность для портных.
   Частью того, что я называю красотой, является простота, но простота идей, а не механическая простота, которую можно оценить, подсчитав число уравнений или символов. Теории тяготения Ньютона и Эйнштейна содержат уравнения, определяющие гравитационные силы, создаваемые любым заданным количеством вещества. В ньютоновской теории таких уравнений три (что соответствует трехмерности нашего пространства), в теории Эйнштейна их четырнадцать[101]. Само по себе это не может считаться эстетическим преимуществом ньютоновской теории перед эйнштейновской. На самом деле именно теория Эйнштейна более красива, отчасти из-за простоты ее главной идеи об эквивалентности тяготения и инерции. В этом сходятся все ученые и, как мы видели, во многом благодаря такой оценке теория Эйнштейна получила быстрое признание.
   Есть и другое качество, кроме простоты, делающее физическую теорию красивой – это ощущение неизбежности, которую нам внушает теория. Слушая музыкальное произведение или читая сонет, вы иногда получаете огромное эстетическое наслаждение от ощущения, что в этом произведении ничего нельзя изменить, что ни одна нота и ни одно слово не должны быть иными. В «Святом семействе» Рафаэля расположение каждой фигуры совершенно. Может быть, это не самая любимая ваша картина, но когда вы на нее смотрите, у вас не возникает желания, чтобы что-то было написано иначе. Это же частично верно (и никогда не более, чем частично верно) и в отношении общей теории относительности. Если вам известны общие физические принципы, принятые Эйнштейном, вы понимаете, что не существует другой существенно отличающейся теории тяготения, к которой он мог бы прийти. Как писал сам Эйнштейн об общей теории относительности, «главной привлекательной чертой теории является ее логическая полнота. Если хоть один из ее выводов окажется неверным, теорию следует отвергнуть; похоже, что подправить ее, не разрушив всю структуру, невозможно»[102].
   Это менее верно для теории Ньютона. Ньютон вполне мог предположить, что гравитационная сила уменьшается обратно пропорционально кубу, а не квадрату расстояния, если бы только это соответствовало требованиям астрономических данных, но Эйнштейн не мог включить в свою теорию закон обратных кубов, не разрушив ее концептуальную основу. Поэтому четырнадцать уравнений Эйнштейна неизбежны и, следовательно, красивы, чего нет в трех уравнениях Ньютона. Думаю, что именно это имел в виду Эйнштейн, когда говорил, что левая часть уравнений тяготения в общей теории относительности, содержащая гравитационное поле, красива и как будто вырезана из мрамора, в то время как правая часть уравнений, описывающая материю, все еще уродлива, будто сделана из обыкновенной деревяшки. Все дело в том, что способ включения гравитационного поля в уравнения Эйнштейна почти неизбежен, но в общей теории относительности нет ничего, что объясняло бы, почему материя входит в уравнения именно в таком, а не ином виде.
   То же ощущение неизбежности возникает (опять же, только частично) при рассмотрении современной стандартной модели сильных и электрослабых сил, действующих между элементарными частицами. Одно общее свойство придает общей теории относительности и стандартной модели черты неизбежности и простоты: и та, и другая теории подчиняются принципам симметрии.
   Принцип симметрии – это просто утверждение, что нечто выглядит одинаково с некоторых разных точек зрения. Из всех подобных симметрий простейшей является приближенная двусторонняя симметрия человеческого лица. Так как две стороны вашего лица мало отличаются, то оно выглядит одинаково, если посмотреть на него непосредственно, или поменять местами левую и правую сторону, как это происходит, когда вы глядите в зеркало. Стандартный прием в кино – дать зрителям внезапно понять, что лицо актера, на которое вы смотрели, на самом деле было видно в зеркале; впечатление было бы испорчено, если бы у людей, как у камбалы, оба глаза были бы на одной стороне лица, причем всегда на одной и той же.
   Некоторые вещи обладают более расширенной симметрией, чем человеческое лицо. Куб выглядит одинаково, если смотреть на него с шести разных направлений, попарно взаимно перпендикулярных друг другу, а также, если поменять местами правое и левое. Идеальные кристаллы выглядят одинаково, не только если смотреть на них с разных направлений, но и если перемещаться внутри кристалла в определенных направлениях на заданное расстояние. Сфера выглядит одинаково, если смотреть на нее с любого направления. Пустое пространство выглядит одинаково со всех точек и вдоль всех направлений.
   Подобные симметрии интересовали и развлекали художников и ученых в течение многих веков, но в науке эти симметрии не играли особой роли. Мы знаем многое о соли, и тот факт, что соль – это кубический кристалл, выглядящий одинаково с шести различных точек зрения, не относится к числу самых важных ее свойств. Нет сомнений и в том, что двусторонняя симметрия – не самое интересное, что можно сказать о человеческом лице. Те симметрии в природе, которые действительно важны, это симметрии не вещей, а законов.
   Симметрия законов природы – это утверждение, что при определенном изменении точки зрения, с которой наблюдаются естественные явления, обнаруженные при этом законы природы не меняются.
   Такие симметрии часто называют принципами инвариантности. Например, открытые нами законы природы не меняют свою форму при изменении ориентации наших лабораторий; нет разницы в том, измеряем ли мы расстояния по направлению к северу, северо-востоку, вверх или в любом другом направлении. Древним и средневековым философам и ученым это не было очевидно; ведь в повседневной жизни имеется явная разница между направлениями вверх, вниз и по горизонтали. Только после зарождения современной науки в XVII в. стало ясно, что низ отличается от верха или направления к северу только потому, что под нами есть большая масса, Земля, а не потому, что (как думал Аристотель) низ и верх являются естественными вместилищами тяжелых и легких вещей, соответственно. Обратите внимание, что эта симметрия не утверждает, что верх и низ одинаковы; наблюдатели, измеряющие расстояния вниз и вверх от поверхности Земли, по-разному описывают события вроде падения яблока, но при этом обнаруживают одни и те же законы, подобные закону притяжения яблока большой массой Земли.
   Законы природы выглядят одинаково, где бы ни находились наши лаборатории; на результатах экспериментов не может сказываться то, где проводятся опыты, – в Техасе, в Швейцарии или на какой-нибудь планете с другой стороны нашей Галактики. Законы природы не меняют своего вида, как бы мы не установили часы: нет никакой разницы, начнем ли мы отсчитывать время от начала первой Олимпиады, от Рождества Христова или от момента рождения Вселенной. Это отнюдь не означает, что с течением времени ничто не меняется, или что Техас это то же самое, что Швейцария. Утверждение заключается в том, что законы, обнаруженные в разные моменты времени и в разных местах, одинаковы. Если бы таких симметрий не было, все научные данные нужно было бы переделывать в каждой новой лаборатории и в каждый момент времени.
   Любой принцип симметрии в то же самое время есть и принцип простоты. Если бы законы природы различали направления вверх, вниз или на север, то в уравнения, описывающие эти законы, пришлось бы ввести какие-то дополнения, позволяющие проследить за ориентацией наших лабораторий. Соответственно, сами уравнения стали бы заведомо более сложными. На самом деле даже та система обозначений, которую используют математики и физики, для того чтобы уравнения выглядели как можно проще и компактнее, основана на предположении, что все направления в пространстве эквивалентны.
   Эти симметрии необычайно важны в классической физике, но их значение еще больше возрастает в квантовой механике. Рассмотрим, что отличает один электрон от другого? Только его энергия, импульс и спин; если не считать этих свойств, каждый электрон во Вселенной похож на любой другой. Все эти свойства электрона характеризуют то, каким образом его квантово-механическая волновая функция откликается на преобразования симметрии, а именно на изменения установки часов, местоположения или ориентации нашей лаборатории23). Таким образом, вещество теряет свою главенствующую роль в физике: все, что остается, – это принципы симметрии и разные способы преобразования волновых функций под действием преобразований симметрии.
   Существуют и менее очевидные преобразования пространства-времени, чем простые трансляции и вращения. Законы природы не меняют своей формы для наблюдателей, движущихся с различными постоянными скоростями: нет разницы, проводим ли мы эксперимент здесь, в Солнечной системе, крутящейся вокруг центра Галактики со скоростью в несколько сотен километров в секунду, или в далекой галактике, удаляющейся от нас со скоростью в десятки тысяч километров в секунду. Этот принцип симметрии часто называют принципом относительности. Широко распространено мнение, что он был сформулирован Эйнштейном, однако уже в ньютоновской механике был свой принцип относительности. Разница между ними только в том, как скорость движения наблюдателя влияет на наблюдение положений и моментов времени в обоих теориях. Но Ньютон просто постулировал свой принцип относительности; что же касается Эйнштейна, то он явно сформулировал его так, чтобы он был совместим с тем экспериментальным фактом, что скорость света не зависит от скорости движения наблюдателя. В этом смысле упор на симметрию как на вопрос, относящийся к физике, в работе Эйнштейна 1905 г. по специальной теории относительности ознаменовал начало современного отношения к роли принципов симметрии.
   Самое важное отличие ньютоновской физики от эйнштейновской при ответе на вопрос, как движение наблюдателя влияет на наблюдение пространственно-временных положений, заключается в том, что в специальной теории относительности утверждение, что два удаленных друг от друга события произошли одновременно, не имеет абсолютного смысла. Один наблюдатель может видеть, что двое часов одновременно бьют полдень; другой наблюдатель, движущийся относительно первого, обнаруживает, что одни часы пробили полдень раньше или позже других. Как уже отмечалось выше, из-за этого ньютоновская теория гравитации, как впрочем и любая аналогичная теория тяготения, несовместима с специальной теорией относительности. Ньютоновская теория утверждает, что в любой момент времени сила притяжения, действующая со стороны Солнца на Землю, зависит от того, где в этот момент находится Солнце. Возникает вопрос: в этот же момент относительно чего?
   Естественный способ исправить положение заключается в отказе от старой ньютоновской идеи о мгновенном действии на расстоянии и замене этой идеи картиной сил, обусловленных полями. В такой картине Солнце не притягивает Землю непосредственно; оно создает в окружающем пространстве поле, называемое гравитационным, которое затем оказывает силовое действие на Землю. Может показаться, что такое отличие не составляет большой разницы, но на самом деле разница огромная: когда, например, на поверхности Солнца возникает протуберанец, он сначала оказывает влияние только на гравитационное поле вблизи Солнца, после чего это небольшое изменение поля начинает распространяться в пространстве со скоростью света, как рябь на поверхности воды от брошенного камешка, достигая Земли примерно через восемь минут. Все наблюдатели, движущиеся с любой постоянной скоростью, согласны с таким описанием, так как в специальной теории относительности все наблюдатели измеряют одну и ту же скорость света. Подобным образом электрически заряженное тело создает поле, называемое электромагнитным, действующее посредством электрических и магнитных сил на другие заряженные тела. Когда электрически заряженное тело внезапно приходит в движение, электромагнитное поле меняется сначала только вблизи тела, а затем это изменение поля распространяется со скоростью света. На самом деле в этом случае изменения электромагнитного поля и есть то, что известно нам как свет, хотя это может быть свет такой большой или маленькой длины волны, которая недоступна нашему зрению.
   В рамках доквантовой физики специальная теория относительности Эйнштейна хорошо согласовывалась с дуалистичной картиной природы: есть частицы, например электроны, протоны, нейтроны в обычных атомах, и есть поля – гравитационное или электромагнитное. Развитие квантовой механики привело к значительно более единой картине. С точки зрения квантовой механики энергия и импульс поля (например, электромагнитного) распространяются в виде сгустков, называемых фотонами, которые ведут себя как частицы, хотя и не имеющие массы. Аналогично, энергия и импульс гравитационного поля переносятся в виде сгустков, называемых гравитонами[103], также ведущими себя как частицы с нулевой массой. В длинно-действующем силовом поле вроде гравитационного поля Солнца мы не наблюдаем отдельных гравитонов главным образом потому, что их чрезвычайно много.
   В 1929 г. Вернер Гейзенберг и Вольфганг Паули, основываясь на более ранней работе Макса Борна, Гейзенберга, Паскуаля Йордана и Юджина Вигнера, объяснили в нескольких статьях, каким образом массивные частицы, такие как электрон, могут рассматриваться как сгустки энергии и импульса в полях разного типа, например электронном поле. Точно так же, как электромагнитная сила между двумя электронами возникает в рамках квантовой механики в результате обмена фотонами, так и сила между фотонами и электронами порождается обменом электронами. Различие между материей и силой в значительной степени исчезает: каждая частица может играть роль пробного тела, на которое действуют силы, но эта же частица, участвуя в обмене, может порождать другие силы. В наши дни общепринято считать, что единственный способ, позволяющий объединить принципы специальной теории относительности и квантовой механики, достигается в квантовой теории поля или в подобной теории. Это и есть та самая логическая жесткость, которая придает красоту истинно фундаментальной теории: квантовая механика и специальная теория относительности почти несовместимы и их союз в рамках квантовой теории поля накладывает сильные ограничения на возможные способы взаимодействия частиц друг с другом.
   Все вышеупомянутые симметрии только ограничивают те типы сил и виды материи, которые может содержать теория, но сами по себе эти симметрии не требуют обязательного существования никакого определенного вида материи или силы. В ХХ в., особенно в последние десятилетия, значение принципов симметрии поднялось на новый качественный уровень: именно они определяют сейчас само существование всех известных сил в природе.
   В общей теории относительности основополагающий принцип симметрии утверждает, что все системы отсчета эквивалентны: законы природы выглядят одинаково не только для наблюдателей, движущихся с любой постоянной скоростью, но вообще для всех наблюдателей, как бы ускоренно не двигались и не вращались их лаборатории. Представьте, что мы заберем свои физические приборы из тиши университетской лаборатории и начнем производить эксперименты на равномерно вращающейся карусели. Вместо того, чтобы отсчитывать все направления от севера, мы станем измерять их по отношению к деревянным лошадкам, укрепленным на вращающейся карусели. На первый взгляд все законы природы станут выглядеть совершенно иначе. Наблюдатели на вращающейся карусели ощущают центробежную силу, которая отбрасывает все незакрепленные предметы к наружному борту карусели. Если бы физики родились и выросли на карусели и не знали бы, что они находятся на вращающейся платформе, то сформулированные ими для описания природных явлений законы механики обязательно включали бы центробежную силу так что эти законы выглядели бы существенно иначе, чем те, которые известны нам.
   Исаак Ньютон был очень встревожен тем, что законы природы, по-видимому, различают неподвижную и вращающуюся системы отсчета. Это тревожило физиков и в последующие столетия. В 1880-е гг. физик и философ из Вены Эрнст Мах указал на другую возможную интерпретацию этого явления. Мах подчеркнул, что есть еще кое-что, помимо центробежной силы, отличающее вращающуюся карусель от обычной лаборатории. С точки зрения астронома, находящегося на карусели, Солнце, звезды, галактики – короче говоря, вся материя во Вселенной кажется вращающейся вокруг зенита. Вы или я скажем, что это происходит, потому что вращается карусель, но астроном, выросший на карусели и, естественно, использующий ее как систему отсчета, будет настаивать, что вся остальная Вселенная вращается вокруг него. Мах задал вопрос, а нельзя ли рассматривать это великое кажущееся вращение материи как причину возникновения центробежной силы. Если так, то обнаруженные на карусели законы природы на самом деле ничем не отличаются от тех, которые найдены в более привычных лабораториях; кажущаяся разница возникает просто от того, что наблюдатели в разных лабораториях видят вокруг себя разные вещи.
   Догадка Маха была подхвачена Эйнштейном и приняла конкретные формы в общей теории относительности. В этой теории действительно существует влияние далеких звезд, создающее эффект центробежной силы на вращающейся карусели. Это сила тяготения. Конечно, в ньютоновской теории тяготения нет ничего, кроме простого притяжения между массами. Общая теория относительности более сложна: вращение материи Вселенной вокруг зенита, наблюдаемое на карусели, порождает поле, чем-то напоминающее магнитное поле, образуемое током, циркулирующим в катушке электромагнита. Именно эта «гравимагнитная» сила производит в системе отсчета, связанной с каруселью, эффекты, которые в более привычных системах отсчета приписываются центробежной силе. Уравнения общей теории относительности, в противоположность уравнениям ньютоновской механики, сохраняют свой вид как в лаборатории на карусели, так и в обычной лаборатории; вся разница в наблюдениях в этих лабораториях полностью связана с разным окружением – в одном случае Вселенная вращается вокруг зенита, в другом случае – нет. Однако, если тяготения не существует, такая интерпретация центробежной силы была бы невозможной, так что сила, которую мы ощущаем, находясь на карусели, позволила бы отличить систему отсчета, связанную с этой каруселью, от более привычных лабораторных систем. Этим была бы исключена какая бы то ни было эквивалентность между вращающимися и неподвижными лабораториями. Отсюда можно сделать вывод: симметрия между различными системами отсчета требует существования гравитации.