Неясно, всегда ли сохранится различие между универсальными и историческими элементами в наших науках. Современная квантовая механика, так же как и механика Ньютона, ясно отличает условия, описывающие начальное состояние системы (не имеет значения, подразумевается ли вся Вселенная или только ее часть), от законов, управляющих последующей эволюцией этой системы. Однако возможно, что когда-нибудь начальные условия возникнут как часть законов природы. Простой пример того, как это может быть, дает так называемая теория стационарной Вселенной, предложенная в конце 1940-х гг. Германом Бонди и Томасом Голдом, а также (в несколько ином варианте) Фредом Хойлом. В этой модели все галактики разбегаются друг от друга (это иногда выражают несколько неточно словами, что Вселенная расширяется9)), но несмотря на это происходит непрерывное рождение материи, которая заполняет расширяющиеся межгалактические пустоты с такой скоростью, что Вселенная поддерживается в неизменном состоянии и выглядит всегда одинаково. У нас нет приемлемой теории того, как могло бы происходить такое непрерывное рождение материи, но вполне возможно, что если бы подобная теория у нас была, мы смогли бы с ее помощью показать, что расширение Вселенной происходит с такой равновесной скоростью, что рождение материи в точности компенсирует расширение. Это напоминало бы экономическую теорию, согласно которой цены сами подстраиваются так, чтобы предложение уравновесило спрос. В такой теории стационарной Вселенной нет нужды в начальных условиях, так как нет самого начала, а вместо этого факт существования Вселенной можно вывести из условия, что она не меняется.
   Первоначальная версия космологии стационарной Вселенной была достаточно надежно исключена благодаря разным астрономическим наблюдениям, главным среди которых было открытие в 1964 г. микроволнового излучения, как полагают, оставшегося от того времени, когда Вселенная была много плотнее и горячее. Может быть, теория стационарной Вселенной возродится при переходе к бо́льшим масштабам в какой-нибудь будущей космологической теории, которая будет рассматривать сегодняшнее расширение Вселенной всего лишь как флуктуацию в вечной, в среднем неизменной, но постоянно флуктуирующей Вселенной. Существуют и более тонкие возможности, что начальные условия когда-нибудь смогут быть выведены из окончательных законов. Джеймс Хартль и Стивен Хокинг предложили один такой вариант, в рамках которого слияние физики и истории объясняется применением законов квантовой механики ко Вселенной в целом. В наши дни квантовая космология вызывает большие споры среди ученых; концептуальные и математические проблемы очень сложны, и пока что не видно, что нам удалось продвинуться к каким-то определенным выводам.
   В любом случае, если начальные условия возникновения Вселенной должны быть включены в законы природы или если их можно вывести из этих законов, все равно практически мы никогда не сможем исключить элементы историзма и случайности из таких наук, как биология, геология или астрономия. Даже в очень простой системе может возникнуть явление, называемое хаосом, препятствующее всем попыткам предсказать будущее этой системы. В хаотической системе почти одинаковые начальные условия через какое-то время приводят к совершенно разным результатам. Возможность возникновения хаоса в простых системах была известна еще в начале ХХ века; математик и физик Анри Пуанкаре показал, что хаос может развиться даже в такой простой системе, как центральная звезда и две ее планеты. Уже давно установлено, что темные щели в кольцах Сатурна возникли как раз в тех местах, откуда любая вращающаяся вокруг планеты частица выбрасывается благодаря своему хаотическому движению. Новым и удивительным в изучении хаоса стало не открытие, что этот хаос существует, а то, что определенные виды хаотических движений демонстрируют почти универсальные свойства, поддающиеся математическому анализу.
   Существование хаотического движения не означает, что поведение системы вроде колец Сатурна не до конца определяется законами движения и тяготения и начальными условиями, а означает лишь то, что мы не можем рассчитать практически эволюцию некоторых явлений во времени (например, орбиты частиц в темных щелях колец Сатурна). Несколько более строго, существование хаоса в системе означает, что при любой точности, с которой мы задаем начальные условия, неизбежно наступит момент времени, после которого мы потеряем всякую возможность предсказать, как будет вести себя система. При этом все же остается верным утверждение, что в какой бы далекий момент времени в будущем мы ни захотели предсказать поведение физической системы, подчиняющейся законам Ньютона, существует определенная точность задания начальных условий, при которой мы способны это сделать. (Приведем такую аналогию: всякий автомобиль, едущий по дороге, когда-нибудь сожжет весь бензин в баке, сколько бы мы его туда ни залили, и все же, как бы далеко мы ни хотели попасть, всегда существует то достаточное количество бензина, которое позволит нам доехать до нужного места.) Иными словами, открытие явления хаоса не отвергает детерминизм доквантовой физики, но заставляет нас быть чуть более аккуратными в рассуждениях о том, что мы понимаем под этим словом. В квантовой механике нет детерминизма в смысле механики Ньютона; соотношение неопределенностей Гейзенберга говорит нам, что нельзя одновременно точно измерить положение и скорость частицы, и даже если мы произведем все возможные в один и тот же момент времени измерения, мы можем только предсказать вероятности результатов этих измерений в любой последующий момент времени. Все же мы увидим ниже, что даже в квантовой механике в определенном смысле поведение любой физической системы полностью определяется начальными условиями и законами природы.
   Конечно, каким бы ни был этот детерминизм, он мало помогает, когда мы сталкиваемся с реальными непростыми системами вроде биржи или жизни на Земле. Вторжение исторических случайностей постоянно ограничивает объем того, что мы когда-либо можем надеяться объяснить. Всякое объяснение нынешних форм жизни на Земле не может не учитывать вымирание динозавров шестьдесят пять миллионов лет тому назад, которое в наши дни объясняется столкновением Земли с кометой. Но никто никогда не сможет объяснить, почему комета столкнулась с Землей именно тогда. Самые смелые надежды ученых заключаются в том, что мы сможем протянуть цепочку объяснений всех явлений природы до окончательных законов и исторических случайностей.
   Вторжение в науку исторических случайностей означает также, что нам следует быть очень внимательными в отношении того, какого же типа объяснения мы хотим получить от окончательных законов. Например, когда Ньютон впервые сформулировал свои законы движения и тяготения, послышались возражения, что эти законы не объясняют одну из главных особенностей Солнечной системы, а именно что все планеты вращаются вокруг Солнца в одну сторону. Сейчас мы понимаем, что это явление связано с историей. То, как планеты вращаются вокруг Солнца, есть следствие того, как Солнечная система сконденсировалась из вращающегося газового диска. Мы и не должны ожидать, что можно вывести это только из законов движения и тяготения. Разделение законов и исторических событий – деликатное дело, и мы учимся этому все время.
   Вполне возможно, что те явления, которые мы рассматриваем сейчас как произвольные начальные условия, в конце концов смогут быть выведены из универсальных законов, но и наоборот, вполне возможно, что принципы, которые мы сейчас считаем универсальными законами природы, в конце концов окажутся историческими случайностями. В последнее время ряд физиков-теоретиков забавляется идеей, что тот объект, который мы обычно называем Вселенной, а именно расширяющийся рой галактик, простирающийся во всех направлениях по крайней мере на десятки миллиардов световых лет, есть на самом деле «субвселенная», маленькая часть значительно большей «Мегавселенной», состоящей из множества таких частей, причем в каждой из них те величины, которые мы называем мировыми константами (электрический заряд электрона, отношение масс элементарных частиц и т.п.), могут иметь разные значения. Возможно даже, что те утверждения, которые мы называем законами природы, меняются при переходе от одной субвселенной к другой. В этом случае те объяснения значений констант и законов, которые найдены нами, могут включать неустранимый элемент историзма, а именно то, что по случайности мы находимся в определенной субвселенной, которую и населяем. Даже если в этих идеях окажется что-то разумное, я все же не думаю, что нам надо будет расстаться с мечтами об открытии окончательных законов природы; эти законы могут оказаться мегазаконами, определяющими вероятности нахождения в субвселенных разного типа. Сидни Коулмен и другие уже храбро попытались вычислить эти вероятности, применив законы квантовой механики ко всей Мегавселенной. Я хочу подчеркнуть, что все подобные идеи очень спекулятивны, не до конца математически сформулированы и пока что не имеют никакой экспериментальной поддержки.
   До сих пор я обсуждал две проблемы, возникающие при обсуждении цепочки объяснений, ведущих к окончательным законам: вторжение исторических случайностей и сложность, не дающую нам возможности что-то реально объяснить, даже если мы рассматриваем только универсалии, свободные от элементов историзма. Но есть еще одна требующая обсуждения проблема, связанная со словом «возникновение». Когда мы рассматриваем явления природы на все более сложных уровнях, мы обнаруживаем возникновение явлений, не имеющих аналогов на более простых уровнях, и уж тем более на уровне элементарных частиц. Например, нет ничего похожего на разум на уровне отдельных живых клеток и ничего похожего на жизнь на уровне атомов и молекул. Идея возникновения была хорошо схвачена физиком Филиппом Андерсоном в названии его статьи в 1972 г.: «Чем больше, тем разнообразнее»[21]. Внезапное возникновение новых явлений на высоком уровне сложности наиболее очевидно в биологии и науках о поведении, но следует подчеркнуть, что такое возникновение не есть специфика жизни или социального поведения; такое случается и в самой физике.
   В физике исторически наиболее важным примером возникновения новых качеств является термодинамика, наука о теплоте. В первоначальной формулировке, данной в XIX в. Карно, Клаузиусом и другими, термодинамика выглядела как автономная наука, не выводимая из механики частиц и сил, а построенная на новых понятиях температуры и энтропии, не имеющих аналогов в механике. Только первый закон термодинамики, закон сохранения энергии, перекидывал мостик между механикой и термодинамикой. Центральным принципом термодинамики был второй закон, согласно которому (в одной из формулировок) физические системы обладают не только энергией и температурой, но и определенной величиной, называемой энтропией[22], которая всегда растет со временем в любой замкнутой системе, достигая максимума, когда система приходит в состояние равновесия[23]. Именно этот принцип запрещает Тихому океану передать такое количество тепловой энергии Атлантическому, чтобы Тихий океан замерз, а Атлантический закипел; подобный катаклизм не нарушил бы закона сохранения энергии, но он запрещен, так как уменьшил бы энтропию.
   Физики XIX в. воспринимали второй закон термодинамики как аксиому, сформулированную на основании опыта и столь же фундаментальную, как и любой другой закон природы. В те времена это казалось разумным. Термодинамика, похоже, успешно применялась в самых разнообразных ситуациях, начиная от поведения пара (та задача, которая породила саму термодинамику) и кончая замерзанием, кипением и химическими реакциями. (В наши дни мы могли бы добавить более экзотические примеры; астрономы обнаружили, что мириады звезд в шаровых скоплениях в нашей и других галактиках ведут себя как газы при определенной температуре, а в работах Бекенштейна и Хокинга было теоретически показано, что черные дыры обладают энтропией, пропорциональной площади поверхности дыры.) Если термодинамика столь универсальна, то как можно ее логически связать с физикой определенных типов частиц и сил?
   Затем, во второй половине XIX в., в работах нового поколения физиков-теоретиков (включая Джеймса Клерка Максвелла в Шотландии, Людвига Больцмана в Германии и Джосайи Уилларда Гиббса в Америке) было показано, что принципы термодинамики можно на самом деле математически вывести, анализируя вероятности различных конфигураций систем определенного типа, в которых энергия распределяется среди очень большого числа подсистем. Так происходит, например, в газе, энергия которого распределяется среди образующих газ молекул. (Эрнст Нагель приводит этот пример как образец сведения одной теории к другой[24]) В рамках такой статистической механики тепловая энергия газа является просто кинетической энергией его частиц; энтропия есть мера беспорядка в системе; второй закон термодинамики выражает тенденцию изолированной системы становиться все более неупорядоченной. Переток теплоты из всех океанов в Атлантический привел бы к увеличению порядка, и именно поэтому так не происходит.
   Какое-то время, в период между 1880-м и 1890-м гг., происходила настоящая битва между теми, кто поддерживал новую статистическую механику, и теми, кто, как Макс Планк и химик Вильгельм Оствальд, продолжали утверждать логическую независимость термодинамики[25]. Эрнст Цермело пошел еще дальше и пытался доказать, что, поскольку в рамках статистической механики уменьшение энтропии маловероятно, но все же возможно, то предположения о молекулах, на которых построена статистическая механика, не могут быть верными. Эта битва была в конце концов выиграна последователями статистической механики, после того как в начале ХХ в. всеми была признана реальность атомов и молекул. Тем не менее, даже получив объяснение в терминах частиц и сил, термодинамика продолжает иметь дело с такими понятиями, как температура и энтропия, теряющими всякий смысл на уровне отдельных частиц.
   Термодинамика это скорее способ рассуждений, а не часть универсального физического закона; когда мы ее применяем, мы всегда можем уверенно пользоваться одними и теми же принципами. Но объяснение того, почему термодинамика применима к любой конкретной системе[26], принимает форму вывода, использующего методы статистической механики и отталкивающегося от деталей устройства системы, а это неизбежно опять приводит нас на уровень элементарных частиц. Если воспользоваться картиной стрелок объяснений, которую я уже применял выше, то термодинамику можно рассматривать как определенную систему таких стрелок, снова и снова возникающих в очень разных физических обстоятельствах, но где бы они не возникли, всегда с помощью методов статистической механики можно проследить, как они сходятся к более глубоким законам и в конце концов к принципам физики элементарных частиц. Как показывает этот пример, применимость научной теории для выяснения очень широкого круга явлений совершенно не означает автономность ее от более глубоких физических законов.
   То же утверждение верно и в других областях физики, например в связанных между собой явлениях хаоса и турбулентности. Физики, работающие над этими проблемами, обнаружили, что снова и снова, в самых разных ситуациях, повторяются одни и те же типы поведения системы; например, считается, что в турбулентном потоке жидкости любого сорта распределение энергии по отдельным завихрениям разного размера универсально, идет ли речь о турбулентности приливной волны на гавайском пляже или о турбулентности, возникшей в межзвездном газе в результате пролета звезды. Однако не все потоки жидкости турбулентны, и даже если турбулентность возникла, она не всегда проявляет эти «универсальные» свойства. Каковы бы ни были математические соображения, приводящие к выводу об универсальных свойствах турбулентности, нам все равно надлежит объяснить, почему эти соображения применимы к любому конкретному турбулентному потоку, а этот вопрос неизбежно требует ответа, включающего как случайности (скорость приливной волны или форма трубы, по которой течет жидкость), так и универсальные закономерности (свойства воды и законы движения жидкости), которые в свою очередь должны быть объяснены с помощью более глубоких законов.
   Аналогичные рассуждения применимы и к биологии. В этом случае бо́льшая часть того, что мы наблюдаем, зависит от исторических случайностей, но есть несколько приближенно универсальных закономерностей, вроде правила биологии популяций, утверждающего, что особи мужского и женского рода имеют тенденцию рождаться в равных количествах. (В 1930 г. генетик Рональд Фишер объяснил, что если только в сообществе возникает тенденция производить, скажем, больше мужских, чем женских особей, то каждый ген, ответственный за то, что особь чаще рождает самок, а не самцов, начинает распространяться по всей популяции, так как несущие этот ген женские потомки встречают меньше конкуренции при поисках пары.) Подобные правила применимы к широкому кругу популяций. Можно думать, что они верны даже для жизни на других планетах, если только она воспроизводится половым путем. Аргументы, приводящие к этим правилам, одни и те же, идет ли речь о людях, птицах или инопланетянах. Однако рассуждения всегда покоятся на определенных предположениях о рассматриваемых организмах, и если мы зададимся вопросом, почему эти предположения следует считать правильными, мы должны будем искать ответ частично в исторических случайностях, а частично в универсальных закономерностях, вроде структуры ДНК (или того, что ее заменяет на других планетах), что в свою очередь находит объяснение в физике и химии, а следовательно в стандартной модели элементарных частиц.
   В этом месте мои рассуждения могут показаться несколько туманными, так как в реальной работе в области термодинамики, динамики жидкостей или биологии популяций ученые используют языки, специфичные для каждой конкретной области исследований, и говорят об энтропии, вихрях или стратегии репродукции, а не об элементарных частицах. Это происходит не только потому, что мы реально не можем использовать наши исходные принципы для расчета сложных явлений; это есть еще и отражение того, какого типа вопросы мы хотим задать об этих явлениях. Даже если бы у нас был чудовищных размеров компьютер, который мог бы проследить историю каждой элементарной частицы в приливной волне или в теле плодовой мушки, все горы компьютерных выдач вряд ли пригодились бы тому, кто хотел всего лишь узнать, есть ли завихрения в потоке воды или жива ли мушка.
   Нет причин предполагать, что сближение научных объяснений должно приводить к сближению научных методов. Термодинамика, хаос и биология популяций будут каждая использовать свой собственный язык и развиваться по своим собственным правилам, что бы мы не узнали об элементарных частицах. Как говорит химик Роальд Хоффман, «большая часть полезных химических представлений… неточна. Но если свести их к физике, они вообще исчезают»[27]. Атакуя тех, кто пытается свести химию к физике, Ганс Примас перечисляет ряд полезных понятий химии, для которых велика опасность исчезнуть при такой редукции: валентность, структура связей, локализованные орбитали, ароматичность, кислотность, цвет, запах, растворимость в воде[28]. Я не вижу причин, почему химики должны перестать употреблять эти понятия, если они находят их полезными или интересными. Но тот факт, что они продолжают это делать, не должен вызывать сомнений в другом факте, что все эти понятия химии имеют тот смысл, который в них вкладывается, благодаря лежащим в их основе законам квантовой механики электронов, протонов и нейтронов. Как подчеркивал Лайнус Полинг, «нет ни одного раздела химии, который не зависел бы в своих фундаментальных основах от квантовых принципов»[29].
   Из всех разделов знания, которые мы пытаемся связать с принципами физики с помощью стрелок объяснений, наибольшую трудность вызывает проблема сознания. Мы ведь сразу постигаем наши собственные мысли, без всякого вмешательства чувств, так как же можно рассматривать сознание в рамках физики и химии? Физик Брайан Пиппард, занимавший кресло Максвелла в качестве Кавендишевского профессора в Кембриджском университете, выразил это так: «Вот уж что действительно немыслимо, так это то, что физик-теоретик, даже обладая компьютером неограниченной мощности, должен вывести из законов физики, будто какая-то сложная структура уверена в своем существовании»[30].
   Должен сознаться, что эти вопросы для меня ужасно трудны и я не обладаю необходимой специальной подготовкой. Все же я не согласен с Пиппардом и многими другими учеными, занимающими те же позиции. Ясно, что здесь мы имеем дело с тем, что литературовед назвал бы предметным коррелятом к сознанию. Я наблюдаю, что физические и химические изменения у меня в мозгу и в теле соотносятся (и как причина, и как следствие) с изменениями в моих сознательных мыслях. Я смеюсь, когда чем-то обрадован; мой мозг проявляет разную электрическую активность, когда я сплю и когда бодрствую; сильные эмоции управляются количеством гормонов в моей крови; кроме того, я иногда произношу вслух свои мысли. Все это еще не сознание в чистом виде; я никогда не смогу выразить с помощью смеха, волн мозговой активности, гормонов или слов, что значит чувствовать, что ты грустен или весел. Но оставим на минутку сознание в стороне. Разумно считать, что эти предметные корреляты к сознанию могут изучаться научными методами и в конечном счете могут быть объяснены через физику или химию мозга и тела. (Не надо понимать слово «объяснены» так, что мы можем предсказать все или почти все. Но мы способны понять, почему смех, мозговые волны и гормоны производят тот или иной эффект. Точно так же мы не можем предсказать погоду в следующем месяце, хотя и понимаем, как и чем эта погода определяется.)