Что же представляет собой гафний? Видимо, мало кто из читателей держал в руках этот серебристо-белый блестящий металл. В то же время запасы его в природе отнюдь не назовешь скудными: достаточно сказать, что гафния в 25 раз больше, чем серебра, и в тысячу (!) раз больше, чем золота. А уж серебро и золото, наверное, видел каждый. Чем же объяснить такой парадокс?
Во всем виновата чрезвычайная рассеянность гафния: он так распылен по белу свету, что на всей земле нет ни одного месторождения этого элемента. Словно тень, он неотступно следует за цирконием: в любом минерале циркония есть хоть немного гафния. Однако лишь циркон, в котором на каждые сто атомов циркония приходится в среднем всего один атом гафния, может быть использован промышленностью как гафниевое сырье. Но между "может быть использован" и металлическим гафнием лежит длинный и сложный технологический путь. И усложняет его не кто иной, как... цирконий.
Дело в том, что цирконий и гафний - химические близнецы. "Вот так близнецы, - вправе возразить дотошный читатель.- Ведь цирконий был открыт в 1789 году и, значит, старше гафния чуть ли не на полтора столетия. Он ему в пра-пра-прадедушки годится!" И тем не менее редкая пара элементов может продемонстрировать столь поразительное сходство химических свойств, каким обладают цирконий и гафний. До сих пор не найдено реакции, в которую вступал бы один из них и не желал бы вступать другой.
Из-за этого сходства химики долго не замечали гафний, и поэтому тот оказался значительно моложе циркония. Оно же ставит на пути технологов, стремящихся разлучить близнецов, многочисленные "препоны и рогатки". Еще не так давно для разделения циркония и гафния приходилось выполнять 500 операций растворения и кристаллизации, основанных на буквально микроскопической разнице в растворимости солей этих элементов. Нетрудно представить, во что обходилась такая процедура. Поэтому всего каких-нибудь полтора десятка лет назад никто не занимался производством гафния в примышленных масштабах: нужен он был только ученым для исследовательских целей - им хватало нескольких килограммов в год. Что же касается циркония, который всегда содержал примеси гафния, то большой бедой это не считалось: "Гафний, так гафний. Разве он мешает цирконию?"
До поры до времени гафний и в самом деле не мешал своему более маститому собрату. Цирконий обычно использовали как коррозионностойкий материал, и примеси гафния, которому борьба с коррозией тоже была вполне по плечу, не становились ложкой дегтя. Но когда цирконий получил ответственное назначение стал служить "одеждой" урановых стержней в ядерных реакторах, родство с гафнием могло губительно повлиять на его "карьеру". Дело в том, что, несмотря на необыкновенное сходство этих элементов, по одному вопросу их "мнения" принципиально расходятся. "Пропускать или не пропускать нейтроны"? - эту дилемму каждый из них решает по-своему: если цирконий практически прозрачен для нейтронов, то гафний, наоборот, жадно их поглощает. Материал, в который "одевают" уран, не должен быть препятствием для инициаторов ядерной реакции. Чистый цирконий подходит для этой цели как нельзя лучше. Но присутствие всего лишь 2% гафния ухудшает "пропускную способность" циркония в 20 раз.
Ученые вынуждены были всерьез задуматься над проблемой получения циркония так называемой реакторной чистоты, т. е. практически не содержащего гафния (не более 0,01%). Полтысячи операций, разумеется, не устраивали промышленность, и наука нашла выход: вскоре был разработан достаточно эффективный и экономичный способ очистки циркония от гафния. Гафний же в виде гидроокиси, получаемой в процессе разделения, поначалу рассматривался как побочный продукт. Однако вскоре эти взгляды пришлось изменить: технике потребовался и сам гафний, причем для чего бы вы думали? Для использования в... ядерных реакторах, где он прежде считался персоной "нон-грата".
Ни один реактор не мог бы работать без регулирующих стержней, которые, будучи нейтрононепроницаемыми, позволяют управлять ходом ядерной реакции. Когда регулирующие стержни выведены из активной зоны реактора, нейтроны обретают простор, они начинают быстро "размножаться", реакция протекает все энергичнее. Но за нейтронами нужен глаз да глаз. Если не сдерживать их "порывы", реактор превратится в... атомную бомбу со всеми вытекающими отсюда последствиями. Чтобы этого не произошло, регулирующие стержни поглощают избыточные нейтроны. Ну, а попробуйте найти лучший поглотитель нейтронов, чем гафний, да еще с такой отличной механической прочностью, с таким умением сопротивляться коррозии и высоким температурам?
Если к началу 50-х годов в США было получено менее 50 килограммов гафния, то уже спустя примерно 10 лет ежегодное производство его достигало 60 тонн, причем на повестке дня уже стоял вопрос о получении ультрачистого гафния - без губительных примесей циркония, мешающего ему работать в ядерной энергетике.
Как и большинство других новых материалов, гафний пока еще очень дорог: по американским данным, гафниевый прокат в несколько раз дороже серебра. Это, с одной стороны, сдерживает его применение, а с другой - предъявляет химикам и металлургам законное требование: создать такие способы получения этого металла, которые позволили бы резко снизить его стоимость.
Весьма перспективно для этой цели применение так называемых ионообменных смол. Если через колонку, содержащую эти смолы, пропустить раствор циркония и гафния, то на выходе в растворе не окажется гафния-он "застрянет" в смолах, а в результате последующей промывки колонки кислотой предстанет очищенным от циркония.
На гафний начинают претендовать различные области техники. Металлурги, например, не без основания считают, что он может благотворно влиять на механические свойства других металлов, принимать участие в создании специальных жаростойких сталей. Тугоплавкость гафния (температура плавления свыше 2200°С!) в сочетании со способностью быстро поглощать и отдавать тепло делают его подходящим конструкционным материалом для деталей реактивных двигателей (турбинных лопаток, клапанов, сопел и т. д.). Правда, есть одно "но": гафний несколько тяжеловат-вдвое тяжелее, чем цирконий, и втрое, чем титан, а уж с таким легковесом, как бериллий, и сравнивать не приходится! В химическом машиностроении этот недостаток проявляется в меньшей мере, зато здесь высокие антикоррозионные свойства гафния могут быть оценены по достоинству.
Нельзя не сказать об использовании гафния в электротехнической и радиотехнической промышленности. Его применяют при изготовлении радиоламп, рентгеновских и телевизионных трубок. Добавки двуокиси гафния к вольфраму резко увеличивают срок службы нитей накаливания. Другие соединения гафния нитрид и особенно карбид, который плавится почти при 4000°С, несомненно займут почетное место в списке особо заслуженных огнеупорных материалов.
Несколько лет назад на страницах газет и журналов появилось новое слово "фианиты". Так ученые Физического института имени П. Н. Лебедева Академии наук СССР (ФИАН) решили назвать полученные ими рукотворные драгоценные камни синтетические монокристаллы двуокисей циркония и гафния. Играющие всеми цветами радуги (незначительные добавки различных элементов позволяют получать кристаллы практически любой окраски), фианиты не уступают по красоте сапфиру, топазу, аквамарину, гранату и другим чудесным природным камням. Но красивая внешность - не главное достоинство фианитов. Они сочетают в себе многие уникальные свойства: высокий коэффициент преломления (почти такой же, как у алмазов), твердость, тугоплавкость, химическую стойкость. Если учесть к тому же, что фианиты сравнительно недороги, то станет понятной та популярность, которую они быстро завоевали в мире науки и техники. Из них изготовляют оптические линзы, призмы, "окна", способные работать при высоких температурах даже в химически агрессивных средах. В "послужном списке" фианитов почетное место занимает их работа в качестве лазерных материалов.
И все же ядерная энергетика, потребляющая сегодня свыше 90% производимого в мире гафния, видимо, долгие годы еще будет монополистом в расходовании этого металла. Что ж: быть одним из важнейших материалов в одной из важнейших областей современной техники - этому, пожалуй, могут позавидовать многие другие металлы.
СЕКРЕТ СТАРЫХ ОТВАЛОВ (РЕНИЙ)
Где собака зарыта? - Есть вакансии. - Химические "лжедмитрии". - Поиски неуловимых. - Позвольте усомниться! - "Апартамент" занят. - Последний из могикан. - Уникальная река. - На вершине пирамиды. - Копнем-ка недра! - Почем фунт рения? - Раз, два и обчелся. - Необычный октет. - Чудеса старика Хоттабыча - События на границах. - Волшебные нити. - Контакты нужно наладить. - С помощью ЭВМ. - Защитная "рубашка". - Увлечение катализом. - Шлагбаум на пути. - Знатные гости.
В конце 20-х годов нашего века крупная зарубежная фирма обратилась к директору одного из заводов цветных металлов в Сибири с выгодным, казалось бы, предложением: продать ей за довольно солидную сумму отвалы пустой породы, скопившиеся около заводской территории.
"Неспроста, должно быть, иностранцы заинтересовались отходами производства", - подумали работники завода. О том, что фирма действовала, как говорится, не корысти ради, а лишь обуреваемая желанием улучшить финансовое положение советского предприятия, разумеется, не могло быть и речи. Значит, нужно было найти, где собака зарыта. И заводские химики принялись тщательно исследовать старые отвалы. А уже вскоре все стало ясно: оказалось, что "пустая" порода содержала редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической. И немудрено, что представители зарубежной фирма готовы были раскошелиться, лишь бы заполучить драгоценные отвалы. Но к их великому огорчению сделка по вполне понятным причинам не состоялась.
Что же представляет собой рений и чем был вызван повышенный интерес к нему?
Приоритет открытия этого металла принадлежит немецким ученым супругам Иде и Вальтеру Ноддак, однако у них было немало предшественников, стремившихся ускорить торжества по поводу нового элемента. Дело в том, что еще в 1871 году Д. И. Менделеев предсказал, что в природе "обязаны" существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки No 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем.
Претендентов на появившиеся вакансии оказалось более чем достаточно. История химии хранит множество сообщений об открытиях новых элементов, которые после тщательной проверки приходилось "закрывать". Так было и с аналогами марганца. В роли первооткрывателей этих загадочных незнакомцев не прочь были выступить многие химики разных стран, но "открытым" ими элементам (ильмению, дэвию, люцию, ниппонию) суждено было лишь попасть в историю науки, но не заполнить вакансии периодической таблицы. Правда, один из них - дэвий, открытый в 1877 году русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви, давал реакцию, которую в наше время используют в аналитической химии для определения рения. Может быть, Керну и в самом деле довелось держать в руках крупицы темно-серебристого металла, того, что спустя полвека официально появился на свет под названием рений? Но как бы то ни было в клетках No43 и 75 продолжали торчать унылые вопросительные знаки.
Период неизвестности длился до тех пор, пока в поиски неуловимых элементов не включились немецкие химики Вальтер Ноддак и Ида Такке, которые вскоре, видимо, решили, что работа пойдет успешнее, если они скрепят свой научный союз еще и брачными узами.
Первым объектом их исследований, начатых в 1922 году, стала платиновая руда, однако экспериментировать с ней было довольно накладно, и ученым пришлось переключиться на материалы "попроще". К тому же теоретические работы, которые параллельно с экспериментами вели супруги, убеждали их в том, что, вероятнее всего, искомые элементы No 43 и 75 прячутся в природе в минералах типа колумбитов. Кроме того, теория позволила ученым рассчитать и приблизительное содержание в земной коре этих не поддающихся открытию элементов: оказалось, что на каждый их атом приходятся миллиарды атомов других представителей химического мира. Стоило ли при этом удивляться, что так долго пустовали "квартиры" No 43 и 75, а их будущие обитатели тем временем водили за нос не одно поколение химиков?
Эксперименты супругов Ноддак поражали своим размахом: в течение года они, пользуясь разработанным незадолго до этого рентгеноспектральным методом, "прощупали" 1600 земных минералов и 60 пришельцев из космоса - метеоритов. Титанический труд увенчался успехом: в 1925 году ученые объявили о том, что нашли в колумбите два новых элемента - мазурий (No 43) и рений (No 75).
Но объявить об открытии - еще не все. Нужно суметь доказать свою правоту тем, кто поставит под сомнение рождение новых элементов. Одним из таких ученых, усомнившихся в том, что пришла, наконец, пора на место знаков вопроса поставить в таблицу Д. И. Менделеева символы Ма и Re, был известный немецкий химик Вильгельм Прандтль. Крупный теоретик и блестящий экспериментатор, он вступил в ожесточенную дискуссию с супругами Ноддак. Те, в свою очередь, готовы были любой ценой защищать свой престиж. В конце концов "схватка", за ходом которой с интересом следил научный мир, закончилась вничью: убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений к этому моменту существовал уже не только на рентгеноспектрограммах: в 1926 году было выделено 2 миллиграмма нового металла, а спустя год -120 миллиграммов!
Да и работы других ученых - англичанина Ф. Лоринга, чехов И. Друце, Я. Гейровского и В. Долейжека (они независимо от супругов Ноддак, но лишь на несколько месяцев позже обнаружили элемент No 75 в марганцевых рудах) свидетельствовали о том, что нашелся истинный владелец соответствующего "апартамента" периодической таблицы.
Рений оказался практически "последним из могикан" - элементов, обнаруженных в природных материалах. В дальнейшем удалось заполнить еще несколько остававшихся пустыми клеток периодической системы элементов Д. И. Менделеева, но их обитатели были уже получены искусственным путем - с помощью ядерных реакций. Первым среди них суждено было стать бывшему мазурию- элементу No 43, который открывшие его в 1937 году итальянские ученые Э. Сегре и К. Перье назвали технецием (что по-гречески означает "искусственный").
Но вернемся к рению. Своим именем металл обязан реке Рейн. Рейнская область - родина Иды Ноддак; здесь же и сам рений впервые увидел свет. (Заметим, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести.) Промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с большим содержанием рения - 100 граммов на тонну. Всего одна щепотка на гору руды, но для рения и такую концентрацию можно считать необычайно высокой: ведь его среднее содержание в земной коре в десятки тысяч раз ниже. Немного найдется элементов, которые встречаются в природе еще реже, чем рений.
Распространенность химических элементов часто для наглядности изображают в виде пирамиды. Ее широкое основание составляют кислород, кремний, алюминий, железо, кальций, которыми богата Земля, а рений располагается в "поднебесье" на самом острие вершины.
Как полагал академик А. Е. Ферсман, для рения характерно "тяготение" к тем зонам земного шара, которые прилегают к его ядру. Возможно, со временем геологи сумеют проникнуть в самые недра нашей планеты и газеты всего мира опубликуют сенсационное сообщение об открытии там богатейшего рениевого месторождения...
В 1930 году мировое производство рения составляло всего... 3 грамма (зато каждый из этих граммов стоил ни мало, ни много-40 тысяч марок!). Но уже спустя 10 лет только в одной Германии было получено примерно 200 килограммов этого металла.
С тех пор интерес к рению растет как на дрожжах. Он оказался одним из самых тяжелых металлов - чуть ли не в три раза тяжелее железа. Только осмий, иридий и платина по плотности немного превосходят рений. Характерная его черта - необычайная тугоплавкость: по температуре плавления (3180 °С) он уступает лишь вольфраму. А температура его кипения настолько высока, что до сих пор ее не удалось определить с большой степенью точности. Можно лишь сказать, что она близка к 6000°С (только вольфрам кипит примерно при такой же температуре). Еще одно важное свойство этого металла - высокое электросопротивление.
Не менее любопытны и химические свойства рения. Ни один другой элемент периодической системы не может похвастать тем, что, подобно рению, имеет восемь различных окислов. Кроме этого "октета" окислов, где валентность рения меняется от 8 до 1, он - единственный среди всех металлов - способен образовать ионы (так называемые "ренид-ионы"), в которых металл отрицательно одновалентен.
Рений весьма устойчив на воздухе: при комнатной температуре его поверхность остается блестящей десятки лет. В этом с ним могут конкурировать, пожалуй, лишь золото, платина и другие представители "благородного семейства".
Если оценить все металлы с точки зрения их коррозионной стойкости, то в этой "табели о рангах" рению по праву должно быть предоставлено одно из самых почетных мест. Ведь самые "злые" кислоты-плавиковая, соляная, серная - не в силах с ним справиться, хотя перед азотной кислотой он пасует.
Как видите, свойства рения достаточно разнообразны. Многогранна и его деятельность в современной технике. Пожалуй, наиболее важную роль рений играет в создании различных кислотоупорных и жаропрочных сплавов. Техника XX века предъявляет к конструкционным материалам все более и более жесткие требования. Возможно, старику Хоттабычу для получения сплава с любыми заданными свойствами понадобилось бы лишь вырвать два-три волоска из своей бороды. Ученым же, не обладающим даром волшебства, приходится тратить на это долгие годы, да и "расход" волос при этом порой бывает значительно выше.
Можно с полным основанием сказать, что с тех пор, как создатели сплавов взяли на вооружение рений, им удалось добиться немалых успехов. Во всяком случае жаропрочные сплавы этого металла с вольфрамом и танталом уже успели завоевать признание конструкторов. Еще бы: мало какому материалу по плечу сохранять при "адских" температурах- до 3000°С!-ценные механические свойства, а для рениевых сплавов - это не проблема.
Особый интерес металловедов вызывает "рениевый эффект"-благотворное влияние рения на свойства вольфрама и молибдена. Дело в том, что эти тугоплавкие металлы, которые не только не боятся высоких температур, но и стойко переносят при этом значительные нагрузки, в обычных условиях (не говоря даже о легком морозе) ведут себя весьма капризно: они хрупки и от удара могут разлететься на кусочки, как стекло. Но оказалось, что в сочетании с рением вольфрам и молибден образуют прочные сплавы, сохраняющие пластичность даже при низких температурах.
Природа "рениевого эффекта" еще недостаточно изучена. Как полагают ученые, суть его в следующем. В процессе производства в вольфрам и молибден иногда проникает "инфекция"-углерод. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким. У рения же с углеродом иные "взаимоотношения": если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден. Теперь уже для хрупкости у металла нет оснований и он становится вполне пластичным. Вот почему из сплавов вольфрама и молибдена с рением можно изготовить фольгу или проволоку в несколько раз тоньше человеческого волоса.
Для сверхточных навигационных приборов, которыми пользуются космонавты, летчики, моряки, необходимы так называемые торсионы-тончайшие (диаметром всего несколько десятков микрон!), но удивительно прочные металлические нити. Лучшим материалом для них считается молибденорениевый сплав (50% рения). Оценить его прочность можно по такому факту: проволочка из него сечением в 1 квадратный миллиметр способна выдержать нагрузку в несколько сот килограммов!
Сегодня трудно найти на земле уголок, куда бы не проникло еще электричество. В промышленности и сельском хозяйстве, на транспорте и в быту постоянно трудится несчетное число электроприборов. Множество приборов - это множество выключателей, множество контактов. При работе выключателя в нем иногда проскакивает крохотная искорка, которую не следует считать безобидной: медленно, но верно она разрушает электрический контакт, а это приводит к непредусмотренной потере электроэнергии.
Какой бы мизерной ни была это потеря, но помноженная на миллиарды контактов, она становится огромной. Особенно важно обеспечить стойкость контактов в тех случаях, когда они работают в условиях повышенной температуры или влажности, где вероятность их разрушения возрастает. Вот почему ученые постоянно ищут все более стойкие - прочные и тугоплавкие - материалы для изготовления контактов. Долгое время для этой цели не без успеха применяли вольфрам. Когда же стали известны характеристики рения, выяснилось, что рениевые контакты лучше вольфрамовых. Так, например, вольфрамовые контакты выдерживали совместное "наступление" тропической коррозии и вибрации лишь несколько суток, а затем полностью выходили из строя; рениевые же контакты успешно работают в таких условиях месяцы и даже годы.
Но где же напастись столько рения, чтобы удовлетворить им электротехническую промышленность? Опыты показали, что вовсе не обязательно делать контакт из чистого рения. Достаточно добавить к вольфраму немного этого металла, и эффект будет почти тот же. Зато расходы рения сократятся во много раз: одного килограмма его хватает на десятки тысяч контактов.
Один из вольфраморениевых сплавов, выпускаемый нашей промышленностью, уже нашел применение более чем в 50 электровакуумных приборах. Использование этого материала в катодном узле электроннолучевой трубки повысило его долговечность до 16 тысяч часов. Это значит, что если экран телевизора светится в наших домах в среднем по четыре часа в день, то его катодный узел сможет безупречно работать не менее 12 лет.
Замечательные свойства продемонстрировали и другие сплавы рения - с ниобием, никелем, хромом, палладием. Даже небольшие добавки рения повышают, например, температуру плавления хромоникелевого сплава примерно на 200-250 градусов.
Широким диапазоном свойств рениевых сплавов объясняется и многообразие сфер их применения: от высокочувствительных термопар, не боящихся жарких объятий расплавленной стали, до кончиков вечных перьев, опор компасных стрелок и других деталей, которые должны долгое время сохранять большую твердость, прочность, износостойкость.
Число сплавов рения с другими металлами постоянно растет, причем сегодня в подборе "партнеров" для него значительную помощь металловедам оказывает электронная вычислительная техника. С помощью ЭВМ уже предсказаны свойства многих двойных сплавов рения.
Для борьбы с коррозией - вечным врагом металла - ученые разработали немало способов. Хромирование, никелирование, цинкование взяты на вооружение много лет назад, а вот ренирование - процесс сравнительно новый. Тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ. Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.
Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в баллоне электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах. На вольфрам эти непрошеные гости действуют разрушающе, но если покрыть нити рениевой "рубашкой", то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.
Новая, но очень важная область применения рения - катализ. Металлический рений, а также многие его сплавы и соединения (окислы, сульфиды, перренаты) оказались отличными катализаторами различных процессов - окисления аммиака и метана, превращения этилена в этан, получения альдегидов и кетонов из спиртов, крекинга нефти. Самый многообещающий катализатор - порошкообразный рений, способный поглощать большие количества водорода и других газов. По мнению специалистов, в ближайшие годы на катализационные "нужды" будет расходоваться половина рения, добываемого во всем мире.
Во всем виновата чрезвычайная рассеянность гафния: он так распылен по белу свету, что на всей земле нет ни одного месторождения этого элемента. Словно тень, он неотступно следует за цирконием: в любом минерале циркония есть хоть немного гафния. Однако лишь циркон, в котором на каждые сто атомов циркония приходится в среднем всего один атом гафния, может быть использован промышленностью как гафниевое сырье. Но между "может быть использован" и металлическим гафнием лежит длинный и сложный технологический путь. И усложняет его не кто иной, как... цирконий.
Дело в том, что цирконий и гафний - химические близнецы. "Вот так близнецы, - вправе возразить дотошный читатель.- Ведь цирконий был открыт в 1789 году и, значит, старше гафния чуть ли не на полтора столетия. Он ему в пра-пра-прадедушки годится!" И тем не менее редкая пара элементов может продемонстрировать столь поразительное сходство химических свойств, каким обладают цирконий и гафний. До сих пор не найдено реакции, в которую вступал бы один из них и не желал бы вступать другой.
Из-за этого сходства химики долго не замечали гафний, и поэтому тот оказался значительно моложе циркония. Оно же ставит на пути технологов, стремящихся разлучить близнецов, многочисленные "препоны и рогатки". Еще не так давно для разделения циркония и гафния приходилось выполнять 500 операций растворения и кристаллизации, основанных на буквально микроскопической разнице в растворимости солей этих элементов. Нетрудно представить, во что обходилась такая процедура. Поэтому всего каких-нибудь полтора десятка лет назад никто не занимался производством гафния в примышленных масштабах: нужен он был только ученым для исследовательских целей - им хватало нескольких килограммов в год. Что же касается циркония, который всегда содержал примеси гафния, то большой бедой это не считалось: "Гафний, так гафний. Разве он мешает цирконию?"
До поры до времени гафний и в самом деле не мешал своему более маститому собрату. Цирконий обычно использовали как коррозионностойкий материал, и примеси гафния, которому борьба с коррозией тоже была вполне по плечу, не становились ложкой дегтя. Но когда цирконий получил ответственное назначение стал служить "одеждой" урановых стержней в ядерных реакторах, родство с гафнием могло губительно повлиять на его "карьеру". Дело в том, что, несмотря на необыкновенное сходство этих элементов, по одному вопросу их "мнения" принципиально расходятся. "Пропускать или не пропускать нейтроны"? - эту дилемму каждый из них решает по-своему: если цирконий практически прозрачен для нейтронов, то гафний, наоборот, жадно их поглощает. Материал, в который "одевают" уран, не должен быть препятствием для инициаторов ядерной реакции. Чистый цирконий подходит для этой цели как нельзя лучше. Но присутствие всего лишь 2% гафния ухудшает "пропускную способность" циркония в 20 раз.
Ученые вынуждены были всерьез задуматься над проблемой получения циркония так называемой реакторной чистоты, т. е. практически не содержащего гафния (не более 0,01%). Полтысячи операций, разумеется, не устраивали промышленность, и наука нашла выход: вскоре был разработан достаточно эффективный и экономичный способ очистки циркония от гафния. Гафний же в виде гидроокиси, получаемой в процессе разделения, поначалу рассматривался как побочный продукт. Однако вскоре эти взгляды пришлось изменить: технике потребовался и сам гафний, причем для чего бы вы думали? Для использования в... ядерных реакторах, где он прежде считался персоной "нон-грата".
Ни один реактор не мог бы работать без регулирующих стержней, которые, будучи нейтрононепроницаемыми, позволяют управлять ходом ядерной реакции. Когда регулирующие стержни выведены из активной зоны реактора, нейтроны обретают простор, они начинают быстро "размножаться", реакция протекает все энергичнее. Но за нейтронами нужен глаз да глаз. Если не сдерживать их "порывы", реактор превратится в... атомную бомбу со всеми вытекающими отсюда последствиями. Чтобы этого не произошло, регулирующие стержни поглощают избыточные нейтроны. Ну, а попробуйте найти лучший поглотитель нейтронов, чем гафний, да еще с такой отличной механической прочностью, с таким умением сопротивляться коррозии и высоким температурам?
Если к началу 50-х годов в США было получено менее 50 килограммов гафния, то уже спустя примерно 10 лет ежегодное производство его достигало 60 тонн, причем на повестке дня уже стоял вопрос о получении ультрачистого гафния - без губительных примесей циркония, мешающего ему работать в ядерной энергетике.
Как и большинство других новых материалов, гафний пока еще очень дорог: по американским данным, гафниевый прокат в несколько раз дороже серебра. Это, с одной стороны, сдерживает его применение, а с другой - предъявляет химикам и металлургам законное требование: создать такие способы получения этого металла, которые позволили бы резко снизить его стоимость.
Весьма перспективно для этой цели применение так называемых ионообменных смол. Если через колонку, содержащую эти смолы, пропустить раствор циркония и гафния, то на выходе в растворе не окажется гафния-он "застрянет" в смолах, а в результате последующей промывки колонки кислотой предстанет очищенным от циркония.
На гафний начинают претендовать различные области техники. Металлурги, например, не без основания считают, что он может благотворно влиять на механические свойства других металлов, принимать участие в создании специальных жаростойких сталей. Тугоплавкость гафния (температура плавления свыше 2200°С!) в сочетании со способностью быстро поглощать и отдавать тепло делают его подходящим конструкционным материалом для деталей реактивных двигателей (турбинных лопаток, клапанов, сопел и т. д.). Правда, есть одно "но": гафний несколько тяжеловат-вдвое тяжелее, чем цирконий, и втрое, чем титан, а уж с таким легковесом, как бериллий, и сравнивать не приходится! В химическом машиностроении этот недостаток проявляется в меньшей мере, зато здесь высокие антикоррозионные свойства гафния могут быть оценены по достоинству.
Нельзя не сказать об использовании гафния в электротехнической и радиотехнической промышленности. Его применяют при изготовлении радиоламп, рентгеновских и телевизионных трубок. Добавки двуокиси гафния к вольфраму резко увеличивают срок службы нитей накаливания. Другие соединения гафния нитрид и особенно карбид, который плавится почти при 4000°С, несомненно займут почетное место в списке особо заслуженных огнеупорных материалов.
Несколько лет назад на страницах газет и журналов появилось новое слово "фианиты". Так ученые Физического института имени П. Н. Лебедева Академии наук СССР (ФИАН) решили назвать полученные ими рукотворные драгоценные камни синтетические монокристаллы двуокисей циркония и гафния. Играющие всеми цветами радуги (незначительные добавки различных элементов позволяют получать кристаллы практически любой окраски), фианиты не уступают по красоте сапфиру, топазу, аквамарину, гранату и другим чудесным природным камням. Но красивая внешность - не главное достоинство фианитов. Они сочетают в себе многие уникальные свойства: высокий коэффициент преломления (почти такой же, как у алмазов), твердость, тугоплавкость, химическую стойкость. Если учесть к тому же, что фианиты сравнительно недороги, то станет понятной та популярность, которую они быстро завоевали в мире науки и техники. Из них изготовляют оптические линзы, призмы, "окна", способные работать при высоких температурах даже в химически агрессивных средах. В "послужном списке" фианитов почетное место занимает их работа в качестве лазерных материалов.
И все же ядерная энергетика, потребляющая сегодня свыше 90% производимого в мире гафния, видимо, долгие годы еще будет монополистом в расходовании этого металла. Что ж: быть одним из важнейших материалов в одной из важнейших областей современной техники - этому, пожалуй, могут позавидовать многие другие металлы.
СЕКРЕТ СТАРЫХ ОТВАЛОВ (РЕНИЙ)
Где собака зарыта? - Есть вакансии. - Химические "лжедмитрии". - Поиски неуловимых. - Позвольте усомниться! - "Апартамент" занят. - Последний из могикан. - Уникальная река. - На вершине пирамиды. - Копнем-ка недра! - Почем фунт рения? - Раз, два и обчелся. - Необычный октет. - Чудеса старика Хоттабыча - События на границах. - Волшебные нити. - Контакты нужно наладить. - С помощью ЭВМ. - Защитная "рубашка". - Увлечение катализом. - Шлагбаум на пути. - Знатные гости.
В конце 20-х годов нашего века крупная зарубежная фирма обратилась к директору одного из заводов цветных металлов в Сибири с выгодным, казалось бы, предложением: продать ей за довольно солидную сумму отвалы пустой породы, скопившиеся около заводской территории.
"Неспроста, должно быть, иностранцы заинтересовались отходами производства", - подумали работники завода. О том, что фирма действовала, как говорится, не корысти ради, а лишь обуреваемая желанием улучшить финансовое положение советского предприятия, разумеется, не могло быть и речи. Значит, нужно было найти, где собака зарыта. И заводские химики принялись тщательно исследовать старые отвалы. А уже вскоре все стало ясно: оказалось, что "пустая" порода содержала редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической. И немудрено, что представители зарубежной фирма готовы были раскошелиться, лишь бы заполучить драгоценные отвалы. Но к их великому огорчению сделка по вполне понятным причинам не состоялась.
Что же представляет собой рений и чем был вызван повышенный интерес к нему?
Приоритет открытия этого металла принадлежит немецким ученым супругам Иде и Вальтеру Ноддак, однако у них было немало предшественников, стремившихся ускорить торжества по поводу нового элемента. Дело в том, что еще в 1871 году Д. И. Менделеев предсказал, что в природе "обязаны" существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки No 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем.
Претендентов на появившиеся вакансии оказалось более чем достаточно. История химии хранит множество сообщений об открытиях новых элементов, которые после тщательной проверки приходилось "закрывать". Так было и с аналогами марганца. В роли первооткрывателей этих загадочных незнакомцев не прочь были выступить многие химики разных стран, но "открытым" ими элементам (ильмению, дэвию, люцию, ниппонию) суждено было лишь попасть в историю науки, но не заполнить вакансии периодической таблицы. Правда, один из них - дэвий, открытый в 1877 году русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви, давал реакцию, которую в наше время используют в аналитической химии для определения рения. Может быть, Керну и в самом деле довелось держать в руках крупицы темно-серебристого металла, того, что спустя полвека официально появился на свет под названием рений? Но как бы то ни было в клетках No43 и 75 продолжали торчать унылые вопросительные знаки.
Период неизвестности длился до тех пор, пока в поиски неуловимых элементов не включились немецкие химики Вальтер Ноддак и Ида Такке, которые вскоре, видимо, решили, что работа пойдет успешнее, если они скрепят свой научный союз еще и брачными узами.
Первым объектом их исследований, начатых в 1922 году, стала платиновая руда, однако экспериментировать с ней было довольно накладно, и ученым пришлось переключиться на материалы "попроще". К тому же теоретические работы, которые параллельно с экспериментами вели супруги, убеждали их в том, что, вероятнее всего, искомые элементы No 43 и 75 прячутся в природе в минералах типа колумбитов. Кроме того, теория позволила ученым рассчитать и приблизительное содержание в земной коре этих не поддающихся открытию элементов: оказалось, что на каждый их атом приходятся миллиарды атомов других представителей химического мира. Стоило ли при этом удивляться, что так долго пустовали "квартиры" No 43 и 75, а их будущие обитатели тем временем водили за нос не одно поколение химиков?
Эксперименты супругов Ноддак поражали своим размахом: в течение года они, пользуясь разработанным незадолго до этого рентгеноспектральным методом, "прощупали" 1600 земных минералов и 60 пришельцев из космоса - метеоритов. Титанический труд увенчался успехом: в 1925 году ученые объявили о том, что нашли в колумбите два новых элемента - мазурий (No 43) и рений (No 75).
Но объявить об открытии - еще не все. Нужно суметь доказать свою правоту тем, кто поставит под сомнение рождение новых элементов. Одним из таких ученых, усомнившихся в том, что пришла, наконец, пора на место знаков вопроса поставить в таблицу Д. И. Менделеева символы Ма и Re, был известный немецкий химик Вильгельм Прандтль. Крупный теоретик и блестящий экспериментатор, он вступил в ожесточенную дискуссию с супругами Ноддак. Те, в свою очередь, готовы были любой ценой защищать свой престиж. В конце концов "схватка", за ходом которой с интересом следил научный мир, закончилась вничью: убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений к этому моменту существовал уже не только на рентгеноспектрограммах: в 1926 году было выделено 2 миллиграмма нового металла, а спустя год -120 миллиграммов!
Да и работы других ученых - англичанина Ф. Лоринга, чехов И. Друце, Я. Гейровского и В. Долейжека (они независимо от супругов Ноддак, но лишь на несколько месяцев позже обнаружили элемент No 75 в марганцевых рудах) свидетельствовали о том, что нашелся истинный владелец соответствующего "апартамента" периодической таблицы.
Рений оказался практически "последним из могикан" - элементов, обнаруженных в природных материалах. В дальнейшем удалось заполнить еще несколько остававшихся пустыми клеток периодической системы элементов Д. И. Менделеева, но их обитатели были уже получены искусственным путем - с помощью ядерных реакций. Первым среди них суждено было стать бывшему мазурию- элементу No 43, который открывшие его в 1937 году итальянские ученые Э. Сегре и К. Перье назвали технецием (что по-гречески означает "искусственный").
Но вернемся к рению. Своим именем металл обязан реке Рейн. Рейнская область - родина Иды Ноддак; здесь же и сам рений впервые увидел свет. (Заметим, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести.) Промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с большим содержанием рения - 100 граммов на тонну. Всего одна щепотка на гору руды, но для рения и такую концентрацию можно считать необычайно высокой: ведь его среднее содержание в земной коре в десятки тысяч раз ниже. Немного найдется элементов, которые встречаются в природе еще реже, чем рений.
Распространенность химических элементов часто для наглядности изображают в виде пирамиды. Ее широкое основание составляют кислород, кремний, алюминий, железо, кальций, которыми богата Земля, а рений располагается в "поднебесье" на самом острие вершины.
Как полагал академик А. Е. Ферсман, для рения характерно "тяготение" к тем зонам земного шара, которые прилегают к его ядру. Возможно, со временем геологи сумеют проникнуть в самые недра нашей планеты и газеты всего мира опубликуют сенсационное сообщение об открытии там богатейшего рениевого месторождения...
В 1930 году мировое производство рения составляло всего... 3 грамма (зато каждый из этих граммов стоил ни мало, ни много-40 тысяч марок!). Но уже спустя 10 лет только в одной Германии было получено примерно 200 килограммов этого металла.
С тех пор интерес к рению растет как на дрожжах. Он оказался одним из самых тяжелых металлов - чуть ли не в три раза тяжелее железа. Только осмий, иридий и платина по плотности немного превосходят рений. Характерная его черта - необычайная тугоплавкость: по температуре плавления (3180 °С) он уступает лишь вольфраму. А температура его кипения настолько высока, что до сих пор ее не удалось определить с большой степенью точности. Можно лишь сказать, что она близка к 6000°С (только вольфрам кипит примерно при такой же температуре). Еще одно важное свойство этого металла - высокое электросопротивление.
Не менее любопытны и химические свойства рения. Ни один другой элемент периодической системы не может похвастать тем, что, подобно рению, имеет восемь различных окислов. Кроме этого "октета" окислов, где валентность рения меняется от 8 до 1, он - единственный среди всех металлов - способен образовать ионы (так называемые "ренид-ионы"), в которых металл отрицательно одновалентен.
Рений весьма устойчив на воздухе: при комнатной температуре его поверхность остается блестящей десятки лет. В этом с ним могут конкурировать, пожалуй, лишь золото, платина и другие представители "благородного семейства".
Если оценить все металлы с точки зрения их коррозионной стойкости, то в этой "табели о рангах" рению по праву должно быть предоставлено одно из самых почетных мест. Ведь самые "злые" кислоты-плавиковая, соляная, серная - не в силах с ним справиться, хотя перед азотной кислотой он пасует.
Как видите, свойства рения достаточно разнообразны. Многогранна и его деятельность в современной технике. Пожалуй, наиболее важную роль рений играет в создании различных кислотоупорных и жаропрочных сплавов. Техника XX века предъявляет к конструкционным материалам все более и более жесткие требования. Возможно, старику Хоттабычу для получения сплава с любыми заданными свойствами понадобилось бы лишь вырвать два-три волоска из своей бороды. Ученым же, не обладающим даром волшебства, приходится тратить на это долгие годы, да и "расход" волос при этом порой бывает значительно выше.
Можно с полным основанием сказать, что с тех пор, как создатели сплавов взяли на вооружение рений, им удалось добиться немалых успехов. Во всяком случае жаропрочные сплавы этого металла с вольфрамом и танталом уже успели завоевать признание конструкторов. Еще бы: мало какому материалу по плечу сохранять при "адских" температурах- до 3000°С!-ценные механические свойства, а для рениевых сплавов - это не проблема.
Особый интерес металловедов вызывает "рениевый эффект"-благотворное влияние рения на свойства вольфрама и молибдена. Дело в том, что эти тугоплавкие металлы, которые не только не боятся высоких температур, но и стойко переносят при этом значительные нагрузки, в обычных условиях (не говоря даже о легком морозе) ведут себя весьма капризно: они хрупки и от удара могут разлететься на кусочки, как стекло. Но оказалось, что в сочетании с рением вольфрам и молибден образуют прочные сплавы, сохраняющие пластичность даже при низких температурах.
Природа "рениевого эффекта" еще недостаточно изучена. Как полагают ученые, суть его в следующем. В процессе производства в вольфрам и молибден иногда проникает "инфекция"-углерод. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким. У рения же с углеродом иные "взаимоотношения": если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден. Теперь уже для хрупкости у металла нет оснований и он становится вполне пластичным. Вот почему из сплавов вольфрама и молибдена с рением можно изготовить фольгу или проволоку в несколько раз тоньше человеческого волоса.
Для сверхточных навигационных приборов, которыми пользуются космонавты, летчики, моряки, необходимы так называемые торсионы-тончайшие (диаметром всего несколько десятков микрон!), но удивительно прочные металлические нити. Лучшим материалом для них считается молибденорениевый сплав (50% рения). Оценить его прочность можно по такому факту: проволочка из него сечением в 1 квадратный миллиметр способна выдержать нагрузку в несколько сот килограммов!
Сегодня трудно найти на земле уголок, куда бы не проникло еще электричество. В промышленности и сельском хозяйстве, на транспорте и в быту постоянно трудится несчетное число электроприборов. Множество приборов - это множество выключателей, множество контактов. При работе выключателя в нем иногда проскакивает крохотная искорка, которую не следует считать безобидной: медленно, но верно она разрушает электрический контакт, а это приводит к непредусмотренной потере электроэнергии.
Какой бы мизерной ни была это потеря, но помноженная на миллиарды контактов, она становится огромной. Особенно важно обеспечить стойкость контактов в тех случаях, когда они работают в условиях повышенной температуры или влажности, где вероятность их разрушения возрастает. Вот почему ученые постоянно ищут все более стойкие - прочные и тугоплавкие - материалы для изготовления контактов. Долгое время для этой цели не без успеха применяли вольфрам. Когда же стали известны характеристики рения, выяснилось, что рениевые контакты лучше вольфрамовых. Так, например, вольфрамовые контакты выдерживали совместное "наступление" тропической коррозии и вибрации лишь несколько суток, а затем полностью выходили из строя; рениевые же контакты успешно работают в таких условиях месяцы и даже годы.
Но где же напастись столько рения, чтобы удовлетворить им электротехническую промышленность? Опыты показали, что вовсе не обязательно делать контакт из чистого рения. Достаточно добавить к вольфраму немного этого металла, и эффект будет почти тот же. Зато расходы рения сократятся во много раз: одного килограмма его хватает на десятки тысяч контактов.
Один из вольфраморениевых сплавов, выпускаемый нашей промышленностью, уже нашел применение более чем в 50 электровакуумных приборах. Использование этого материала в катодном узле электроннолучевой трубки повысило его долговечность до 16 тысяч часов. Это значит, что если экран телевизора светится в наших домах в среднем по четыре часа в день, то его катодный узел сможет безупречно работать не менее 12 лет.
Замечательные свойства продемонстрировали и другие сплавы рения - с ниобием, никелем, хромом, палладием. Даже небольшие добавки рения повышают, например, температуру плавления хромоникелевого сплава примерно на 200-250 градусов.
Широким диапазоном свойств рениевых сплавов объясняется и многообразие сфер их применения: от высокочувствительных термопар, не боящихся жарких объятий расплавленной стали, до кончиков вечных перьев, опор компасных стрелок и других деталей, которые должны долгое время сохранять большую твердость, прочность, износостойкость.
Число сплавов рения с другими металлами постоянно растет, причем сегодня в подборе "партнеров" для него значительную помощь металловедам оказывает электронная вычислительная техника. С помощью ЭВМ уже предсказаны свойства многих двойных сплавов рения.
Для борьбы с коррозией - вечным врагом металла - ученые разработали немало способов. Хромирование, никелирование, цинкование взяты на вооружение много лет назад, а вот ренирование - процесс сравнительно новый. Тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ. Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.
Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в баллоне электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах. На вольфрам эти непрошеные гости действуют разрушающе, но если покрыть нити рениевой "рубашкой", то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.
Новая, но очень важная область применения рения - катализ. Металлический рений, а также многие его сплавы и соединения (окислы, сульфиды, перренаты) оказались отличными катализаторами различных процессов - окисления аммиака и метана, превращения этилена в этан, получения альдегидов и кетонов из спиртов, крекинга нефти. Самый многообещающий катализатор - порошкообразный рений, способный поглощать большие количества водорода и других газов. По мнению специалистов, в ближайшие годы на катализационные "нужды" будет расходоваться половина рения, добываемого во всем мире.