Характерный пример – различные однокомпонентные и многокомпонентные липосомы – особые мембранные структуры, способные при определенных условиях формироваться из жира или жироподобных веществ (липидов). Уже сейчас различные вирусы эффективно используются в генной трансфекции (модифицировании) клеток. Например, установлено, что аденовирусы (представитель группы ДНК-вирусов) с разрушенной способностью к размножению (саморепликации) имеют потенциальную возможность для использования в местной неинвазивной (без инъекций) вакцинации через кожу (рис. 7). Для направленной доставки лекарственных средств также подходят следующие искусственные биогенные структуры: циклические пептиды, хитозаны, липидные нанотрубки, наночастицы и наноэмульсии, наночастицы на основе нуклеиновых кислот.
   Существуют предположения, что на базе вирусной частицы можно создать подвижный металлизированный электрический проводник. Для подобных экспериментов наиболее подходит вирус табачной мозаики (длина 120 нм), содержащийся в соке пораженных им растений. При этом листья больных растений покрываются специфическими табачными пятнами. По мнению академика Иосифа Григорьевича Атабекова[6], этот вирус можно использовать как средство доставки внутрь клетки нового гена, несущего на себе специальную вакцину. Ученый предлагает осуществлять сборку вирусоподобных частиц из химерных субъединиц вирусного белка, а затем применять их в лечебных целях в качестве наноконтейнеров для доставки лекарственных средств к пораженным клеткам организма.
 
   Рис. 7. Внешний вид и строение аденовируса: 1 – капсомеры; 2 – геном
 
   Структура дезоксирибонуклеиновой кислоты (ДНК) представляет собой двойную упакованную наноцепь, в которой две нуклеотидные наноцепи закручены одна вокруг другой с периодом 3,4 нм и диаметром 2 нм (рис. 8).
 
   Рис. 8. Структура молекулы ДНК
 
   Важным достижением в области эволюционных нанотехнологий являются работы ученых из Университета Брауна и Бостонского колледжа с молекулами ДНК. По сообщению сайта physorg.com, они сумели использовать возможности кодирования информации, которыми обладает молекула ДНК, для производства проводящих микроволокон из окиси цинка. Применение молекулы ДНК в качестве «сборочного устройства» и строительного материала нанотехнологий также обусловлено тем, что фосфат в ее составе несет отрицательный заряд. Нановолокна из оксида цинка формируются на поверхности углеродных нанотрубок. Поэтому впервые уникальные свойства ДНК были использованы для создания наноматериала с заданными свойствами. Уникальность свойств полученных наноструктур состоит в том, что они генерируют и обнаруживают свет, а при приложении механического усилия производят электроэнергию. Оптические и электрические свойства нановолокон можно использовать во многих областях: от медицинской диагностики до сенсоров.
   По мнению доктора Адама Лазарека (Adam Lazareck) из Университета Брауна, использование молекул ДНК для создания наноматериалов – первый шаг в применении биологических объектов в качестве средств производства.
   В ходе эксперимента молекулам ДНК была обеспечена среда для обычной работы по «производству» деталей наноконструкций. Формирование такой химической среды, молекулярный дизайн и соответствующую «механику» – светочувствительные белки или вирусные «моторы» – можно применять для создания сверхминиатюрных приборов и материалов. При этом впервые в мировой практике группа Лазарека использовала ДНК в качестве «инструкции» для систем «самосборки» наноэлементов.
   На основе одинаковых по размерам нанотрубок были произведены унифицированные структуры, состоящие из миллиардов подобных элементов, равномерно распределенных на поверхности пленки из окиси алюминия. На концах нанотрубок поместили фрагменты ДНК, несущие информацию в виде последовательности 15 «букв» генетического кода. Эти фрагменты специфически комплементарны ленте из других 15 кодонов (триплетов), соединенных с наночастицами золота и играющих роль «сборочных устройств». Создание нановолокон завершилось после введения в химическую среду арсенида цинка и ее последующего нагревания до 600 °C. В результате образовались волокна из окиси цинка длиной порядка 100–200 нм.
   В настоящее время установлено, что наночастицы из золота или полупроводников можно прикрепить практически к любым биологическим молекулам, чтобы затем с помощью электронных приборов контролировать их поведение. «Такую процедуру можно проводить на расстоянии, обратимо и точно, – заявляет Шугуан Чжан (Shuguang Zhang), заместитель директора Центра биомедицинской инженерии Массачусетского технологического института, один из авторов исследования. – Это пригодится, чтобы как следует разобраться в тонкостях взаимодействия между молекулами».
   Инициатором подобных работ был квантовый физик Джеймс Якобсон (James Jacobson). Он начал заниматься биологией, чтобы создавать машины нанометрового размера, оперирующие отдельными атомами и молекулами. Ученый поставил сложную цель, поскольку до сих пор инженеры с большим трудом делают компьютерные чипы меньше 30 нм. Вместе с тем в живом организме очень много более компактных систем: любая живая клетка – это своего рода биозавод с источниками энергии, чертежами клеточного хозяйства, средствами производства и утилизации.
   Дж. Якобсон и его коллеги из Центра биомедицинской инженерии прикрепили к молекуле ДНК особую радиоантенну, собранную примерно из сотни атомов металла. При облучении радиоволнами определенной длины молекула переходила в новое состояние.
   Управление биомолекулами с помощью радиосигналов – самое современное направление исследований, способное произвести революцию и в методах исследования живого мира, и в биотехнологиях. Можно будет во всех деталях изучать поведение отдельных живых молекул, не травмируя близлежащие клетки. Ш. Чжан привел такое сравнение: «Можно разговаривать с человеком из толпы через громкоговоритель, а можно – по мобильному телефону».
   Однако чудеса нанотехнологий не заканчиваются вирусами и бактериями. Например, ящерица геккон может удерживать вес своего тела на вертикальной плоскости, касаясь ее только одной лапой. Щетинки на лапах геккона притягиваются к поверхности благодаря силам межмолекулярного взаимодействия Вандер-Ваальса. Каждая щетинка в нижней части расщеплена на тысячи тончайших волосков с лопаткообразными кончиками, которые взаимодействуют с ровной поверхностью на молекулярном уровне. Создание аналога лапке геккона на базе нанотехнологий позволит решить проблему безопасности высотных работ, изготовить сверхнадежные тормозные системы, удобную бесшовную одежду и многое другое.
   Главной идеей, к которой пришел Р. Фейнман, размышляя о возможности создания микронных механизмов, было то, что человек должен учиться у природы, подражая ей при создании механизмов «снизу вверх». Так, в своей книге[7] ученый пишет, что его видение красоты цветка сильно отличается от видения художника. Фейнман представляет себе цветок не только в сантиметровом масштабе, но может также увидеть все его клетки и вообразить сложные процессы, которые в них происходят, и в этом тоже есть своеобразная красота. Джеймс Глейк полагал, что интерес Фейнмана к молекулярным и атомным структурам был связан с тем, что тот много размышлял над вторым началом термодинамики и связью между энтропией и информацией. По мнению Глейка, Фейнману казалась удивительной способность живых организмов хранить и воспроизводить генетическую информацию для создания подобных себе сложных механизмов, которые обусловливали их существование[8].
   Задача современной науки – заметить, правильно оценить и успешно применить на практике уникальные явления природы, основанные на нанотехнологиях (да и не только), которые природа смогла создать за миллиарды лет эволюции.
   Об одном таком открытии, нашедшем в последующем широкое применение в строительстве и технике, мы расскажем подробнее.
   В середине 70-х годов XX века ученые-ботаники Боннского университета (ФРГ) В. Бартлотт и К. Найнуйс обнаружили, что листья и цветки некоторых растений почти не загрязняются. Этот феномен был замечен в наноструктурированных поверхностных областях изучаемых растений. Впоследствии данное явление было запатентовано и названо «лотос-эффектом» (Lotus-effect®) в честь наиболее яркого представителя таких растений.
   Издревле цветок лотоса считается в буддизме символом незапятнанной чистоты: как известно, листья и нежно-розовые цветки лотоса распускаются в грязной тине водоемов безупречно чистыми (рис. 9).
 
   Рис. 9. Долина лотосов и капля влаги на поверхности листа
 
   После детального исследования этого феномена самоочистки открылись удивительные возможности природы защищаться не только от грязи, но и от различных микроорганизмов. Данный эффект наблюдается и у других растений (листья капусты, люпина (рис. 10), камыша, водосбора, тюльпана), а также у животных (крылья стрекоз и бабочек). Они наделены природным свойством защиты от различных загрязнений, в большей степени неорганического (пыль, сажа), а также биологического (споры грибков, микробов, водоросли и т. д.) происхождения.
 
   Рис. 10. Капли дождя на несмачиваемом листе люпина
 
   С помощью электронных микроскопов учеными было обнаружено, что поверхности листьев, цветков и побегов покрыты тонкой внеклеточной мембраной – поверхностным слоем (эпидермисом, кожицей). Эпидермис некоторых растений выделяет воскоподобное вещество кутин, представляющее собой смесь высших жирных кислот и их эфиров. Жиры и жироподобные вещества, входящие в состав липидов (природных органических соединений), – одни из основных компонентов биологических мембран. Липиды участвуют в обмене между растениями и окружающей средой (рис. 11).
 
   Рис. 11. Поверхность листа лотоса под электронным микроскопом
 
   Взаимодействие между твердыми телами и окружающей средой происходит почти исключительно в поверхностных (пограничных) слоях (межфазовой зоне), что справедливо и для этих биологических систем. Биологические поверхности, созданные за миллионы лет в результате эволюции, являются максимально оптимизированными мультифункциональными системами. Они обеспечивают механическую стабильность, терморегулирование, контроль водно-солевого обмена, газовое регулирование и т. д. Постоянное загрязнение листьев растений нарушает в них многие биологические процессы.
   Лотос-эффект не является случайным феноменом, он возник в результате эволюции и вызван необходимостью выживания растений. На живую ткань отрицательно воздействуют (более высокий нагрев под солнечным облучением, действие кислоты и др.) органические формы в виде спор грибков, бактерий или водорослей. Лотос-эффект предотвращает появление патогенных субстанций на таких поверхностях: споры легко смываются при каждом дожде, а в отсутствии дождя нет и влаги как условия для жизнедеятельности, размножения и паразитирования спор.
   На оптимизированных поверхностях (например цветке лотоса) проявляются супергидрофобные качества, благодаря которым мед и даже клей на водной основе не прилипают, а полностью стекают с поверхности.
   Степень увлажнения твердого тела описывается с помощью контактного угла а, входящего в формулу с поверхностной энергией а на различных межфазных границах в соответствии с законом Кассье[9]:
   cos α = (σт – г —σт – ж)/σж – г,
 
   где σт – г – напряжение на межфазной границе «твердое тело – газ», МПа;
   σт – ж – напряжение в межфазной границе «твердое тело – жидкость», МПа;
   σж – гг – напряжение в межфазной границе «жидкость – газ», МПа.
 
   Нулевой контактный угол обеспечивает полное увлажнение. Это значит, что капля воды стремится растянуться к состоянию моно-молекулярной пленки на поверхности твердого тела. Контактный угол 180° указывает на совершенную несмачиваемость, так как капля касается поверхности только в одной точке. Материалы с высоким напряжением граничных поверхностей увлажняются лучше, чем даже, например, тефлон – материал с одним из самых низких напряжений граничных поверхностей. Поведение воды зависит от состояния поверхности. Если относительно гладкая поверхность увлажняется достаточно, самоочистка улучшается (рис. 12).
 
   Рис. 12. Капля жидкости на супергидрофобной поверхности (капля касается листа только в нескольких точках, стягивается за счет поверхностного натяжения к шару и свободно скатывается при самых незначительных углах наклона)
 
   Попавшая на поверхность листа капля воды удаляет с него частицу загрязнений. При этом частицы не проникают во внутреннюю часть капли, а равномерно распределяются по ее поверхности. Замечено, что гидрофобная субстанция удаляется каплей воды с гидрофобной поверхности. При рассмотрении условий протекания лотос-эффекта на наноскопическом уровне механизм этого явления становится более понятным.
   С помощью закона Кассье можно объяснить, почему значение контактного угла для поверхности, а следовательно, условие несмачиваемости (самоочистки) можно легко изменить, придав поверхности необходимый в данном случае наноразмерный рельеф.
   Представим массажную щетку, на зубьях которой лежит клочок бумаги, изображающий частицу загрязнений. Пятно «грязи» расположено только на самых вершинах зубьев, не соприкасаясь с поверхностью щетки (рис. 13, б). Сила адгезии (прилипания) «грязи» обусловлена площадью поверхности взаимного контакта. Если бы поверхность была гладкой или макрорельефной (рис. 13, а), площадь контакта оказалась бы значительной, и «грязь» удерживалась бы достаточно прочно. Однако из-за острых концов зубьев площадь контакта минимальна, и «грязь» как бы «висит на ножке». То же происходит и с каплей воды. Она не может «растечься» по остриям и поэтому стремится свернуться в шарик (рис. 13, б).
 
   Рис. 13. Положение капли воды на а) макро– и б) наноповерхности
 
   Аналогичное явление происходит с различными видами загрязнений на восковых кристалликах, покрывающих листья лотоса. Площадь соприкосновения загрязнений с поверхностью листа крайне незначительна. При этом силы сцепления между каплей воды и частицей загрязнения оказываются значительно более высокими, чем между этой же частицей и восковым слоем листа.
   У загрязнения есть две возможности: продолжать неустойчиво балансировать на шипах или «слиться» с гладкой ровной поверхностью движущейся водной капли, вследствие чего частицы загрязнений притягиваются к поверхности водной капли и легко смываются даже небольшим количеством воды. Капли воды, обволоченные повстречавшимися на пути хлопьями грязи, скатываются вниз, оставляя за собой чистую сухую поверхность.
   В соответствии с исследованиями Кассье, защитные водоотталкивающие свойства оперения водоплавающих птиц в основном обусловлены их особой ребристой структурой, а не наличием на перьях защитных жироподобных веществ, тогда как в случае с поверхностью листа лотоса эти свойства только дополняют друг друга. Водяные клопы-водомерки (лат. Gerridae), известные своими возможностями легкого перемещения (скольжения) по поверхности воды, также используют это природное явление. Тело и кончики ног этих насекомых покрыты не смачиваемыми в воде волосками, обеспечивающими их столь удивительные возможности.
   Так как лотос-эффект основан исключительно на физикохимических явлениях и свойствах растений и не привязан только к живой системе, то самоочищающиеся поверхности можно технически воспроизвести для всевозможных материалов. Именно поэтому в последнее время проводятся интенсивные исследования по разработке и производству устойчивых к загрязнению самоочищающихся поверхностей и покрытий.
   Наиболее широкое применение нанотехнологии на основе «эффекта лотоса» получили в автомобильной промышленности, строительстве, при производстве защитных тканей и в ряде других отраслей: это специальные препараты для лакокрасочного покрытия (краски, лаки, полироли, шампуни); непромокаемые зонты, плащи, брезент; водоотталкивающие спортивные купальные костюмы, антивандальные краски и покрытия для общественного транспорта и фасадов строений; незапотевающие стекла, зеркала, керамическая плитка; малозагрязняющийся бактерицидный текстиль и др.
   Существуют и многие другие природные нанообъекты и наноэффекты, которые мы будем описывать в соответствующих разделах книги.

Искусственные наноструктуры

   Самые удивительные и полезные изобретения не принадлежат к числу тех, которые делают много чести человеческому уму.
Вольтер, французский писатель, историк, философ-просветитель

   Самым простым наноматериалом могут служить фрагменты вещества, измельченные до наноразмерного состояния или полученные каким-то другим физическим или химическим способом. Хотя бы в одном измерении они должны иметь протяженность не более 100 нм и проявлять качественно новые свойства (физико-химические, функциональные, эксплуатационные и др.).
   Реально диапазон рассматриваемых объектов гораздо шире: от отдельных атомов (размером менее 0,1 нм) до их конгломератов и органических молекул, содержащих свыше 109 атомов и имеющих размеры более 1 мкм в одном или двух измерениях. Принципиально важно, что они состоят из небольшого числа атомов и, следовательно, уже в значительной степени проявляют дискретную атомно-молекулярную структуру вещества, квантовые эффекты и энергетику развитой поверхности наноструктур.
   Наноструктуры обладают сочетанием ряда параметров и физических явлений, не свойственных традиционным моно– и поликристаллическим состояниям материалов. Уменьшение размера кристаллов (в первую очередь – в металлах и сплавах) может приводить к существенному изменению свойств материалов. Установлено, что эти изменения проявляются, когда средний размер кристаллических зерен не превышает 100 нм, а наиболее эффективны при размере зерен менее 10 нм.
   Наибольшее распространение получили наноразмерные (или ультрадисперсные) порошковые материалы. При этом частицы порошка могут иметь сферическую (равноразмерную) или цилиндрическую форму, вид нанопроволоки или нановолокна, либо представлять собой наночешуйки (пластинки). Главное, чтобы одно из измерений (диаметр шариков или толщина чешуек) не превышало 100 нм.
   На рис. 14 показаны сферические наноразмерные структуры кремния, здесь диаметр 84 % частиц – 44 нм, а 16 % – 14 нм. Этот наноразмерный кремний получен при разложении газообразного моносилана (кремневодорода) SiH4, из которого получают чистый полупроводниковый кремний в инертной среде при резонансном поглощении лазерного излучения.
 
   Рис. 14. Наноразмерные частицы кремния диаметром 14–50 нм (distance 40,7 nm – ориентировочная шкала размеров)
 
   Еще одной формой порошковых наночастиц могут быть слоистые наночешуйки толщиной до 100 нм. На рис. 15 представлены наночастицы монтмориллонита (глинистого минерала подкласса слоистых силикатов), модифицированного фторуглеродными соединениями со слоистым строением, которые применяются в качестве реологических добавок к жидким полимерным системам, например для создания препаратов автохимии.
   На рис. 16 представлены нановолокна политетрафторэтилена (ПТФЭ), полученные по электронно-лучевой технологии производства ультрадисперсного ПТФЭ. Диаметр нановолокон – 40–60 нм при длине несколько микрометров.
 
   Рис. 15. Наноразмерные слоистые частицы монтмориллонита, модифицированного фторуглеродными соединениями
 
 
   Рис. 16. Нановолокна политетрафторэтилена (диаметр нановолокон 40–60 нм)
 
   В Городском университете Гонконга группа ученых под руководством Шит-Тунг Ли (Suit-Tong Lee) создала самое миниатюрное нановолокно в мире (его диаметр равен 1,3 нм), используя методику выращивания с помощью оксида. Во время экспериментов диаметр нановолокна варьировался от нескольких единиц до нескольких десятков нанометров. Получившееся с помощью данного метода волокно состояло из монокристалличе-ской кремниевой сердцевины и оксидной оболочки размером примерно в одну треть диаметра. Для получения нановолокна, устойчивого к окислению, исследователи удалили оксидное покрытие и ограничили рост поверхности волокна с помощью водорода.
   Для определения ширины запрещенной зоны нановолокна была использована сканирующая туннельная спектроскопия. Обнаружилось, что ширина зоны растет с уменьшением диаметра волокна: от 1,1 эВ при диаметре 7 нм до 3,5 эВ при диаметре 1,3 нм. Это согласуется с существующими теоретическими моделями и служит экспериментальным подтверждением влияния квантовомеханических эффектов на плотность электронных состояний в кремниевых нановолокнах. Ученые планируют использовать новый наноматериал в светодиодах и лазерах.
   Одним из главных химических элементов, которым интересуются ученые в области нанотехнологий, является углерод и его аллотропные формы. В качестве самостоятельного химического элемента углерод был признан одним из основоположников современной химии, великим французским ученым Антуаном Лавуазье (Antoine Laurent Lavoisier), в конце XVIII века и получил название (Carboneum) от латинского слова carbo – уголь. До недавнего времени было известно, что углерод образует четыре аллотропные формы – алмаз, графит, карбин (получен искусственно) и лонсдейлит (впервые найден в метеоритах, затем получен искусственно). При этом уже на этапе перехода углерода от обыкновенного угля (балк-материала) к графиту отмечаются значительные изменения его свойств.
   В конце XIX века немецкий химик Адольф фон Байер (Adolf Johann Friedrich Wilhelm von Baeyer) пытался синтезировать одномерный (цепочечный) полимер из производных ацетилена, но потерпел неудачу. Успешный синтез карбина (carby^) был произведен в Советском Союзе Алексеем Михайловичем Сладковым, Юрием Павловичем Кудрявцевым, Владимиром Ивановичем Касаточкиным и Василием Владимировичем Коршаком в Институте элементоорганических соединений в 1960 году.
   Структура карбина представляет собой углеродные цепочки, располагающиеся параллельно друг другу и соединенные между собой связями Ван-дер-Ваальса. Установлено, что карбин может существовать в двух изомерных формах:
   1) полииновой (чередование одинарных и тройных связей):
   …-С=С-С=С-С=С-С=С… (α-карбин);
   2) поликумуленовой (все связи двойные):
   …=С=С=С=С=С=С=С=С… (β-карбин).
   В 1967 году в Аризонском кратере (США), образовавшемся от падения гигантского метеорита, вместе с микроскопическими алмазами были найдены и коричневато-желтые кристаллы ранее неизвестной гексагональной формы углерода. В честь английской женщины-кристаллографа Кэтлин Лонсдейл (Kathleen Lonsdale) эта аллотропная форма углерода получила название «лонсдейлит». Впоследствии лонсдейлит был искусственно получен посредством термического распада полигидрокарбина в среде аргона при атмосферном давлении и нагреве выше 110 °C.
   Известны и другие формы углерода, например аморфный углерод, белый углерод (чароит) и др., но они являются композитами, то есть смесью малых фрагментов графита и алмаза.
   Атомы углерода в кристаллической структуре графита (рис. 17, а) связаны между собой прочными ковалентными связями и формируют шестиугольные кольца, образующие прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями. Расстояние между атомами в вершинах правильных шестиугольников равно 0,142 нм, а между слоями – 0,335 нм. Слои слабо связаны между собой. Такая структура определяет специфические свойства графита: низкую твердость и способность легко расслаиваться на мельчайшие чешуйки, что обусловило его применение в различных смазочных материалах в качестве противозадирного и противоизносного компонента.
   
Конец бесплатного ознакомительного фрагмента