Страница:
Другим методом обезвреживания гравия является выдерживание его в течение суток в растворе суперфосфата в кипяченой воде (750 г суперфосфата на 10 л воды). Через сутки избыток раствора сливают, а гравий промывают чистой водой, чем и заканчивается его обработка.
Во многих районах можно без труда приобрести термозит (доменный шлак), который после специальной обработки также может использоваться в качестве субстрата. Что представляет собой термозит? Он приготавливается из шлака доменных печей, жидкого побочного продукта выплавки чугуна, превращаемого действием водяного пара в гравиеподобный, высокопористый материал.
К сожалению, термозит имеет еще более высокую щелочность, чем пемза или пенистая лава (до 43% CaO). Несмотря на это, его можно подготовить так же, как и пемзу, но только в этом случае нужно быть еще более тщательным, чтобы полностью удалить известь из субстрата. Преимуществом термозита является его низкая стоимость, весьма выгодно отличающая от ранее упоминавшихся материалов. По тем же причинам следует уделить особое внимание каменноугольным шлакам, которые можно приобрести по очень низкой цене.
Для рентабельности промышленных беспочвенных установок в большинстве случаев стоимость культурального субстрата является значительным бременем. Поэтому вполне естественно, что поиски дешевых заменителей пемзы и подобных ей материалов начались уже давно. Подходящие шлаки представляют собой такие заменители, которые оказались полноценными во всех отношениях. Цветоводам-любителям повезло в том отношении, что они могут воспользоваться опытом, уже накопленным в производственных условиях.
Пригодными для использования являются хорошо прокаленные каменноугольные или коксовые шлаки; все другие сорта шлаков (например, шлак бурого угля) вообще непригодны для этой цели.
Необходимое количество шлака тщательно очищают от постороннего мусора и затем механически измельчают.
При большой потребности производственных установок в субстрате, для измельчения шлака большей частью пользуются камнедробильными машинами, но мы вполне обойдемся простой трамбовкой и кувалдой. Из измельченного субстрата нам необходимо отобрать фракции с диаметром частиц 0-15 мм, и здесь нашими помощниками будут сита с соответствующим диаметром отверстий. После этого проверяют, не нуждается ли субстрат в предварительной химической обработке.
Рис. 26. Приготовление неорганического субстрата: I – крупные агрегаты измельчаются трамбовкой и кувалдой; II – измельченный субстрат разделяют на фракции на грохоте или решетах; III – нужные фракции субстрата выдерживают в разведенной серной кислоте для удаления щелочей и стерилизуют перекисью марганца; IV – перед употреблением субстрат тщательно промывают водой.
Между двумя видами шлаков может иметься довольно большая разница, особенно в отношении их пригодности для выращивания растений без почвы. Исходный материал, температура горения и другие факторы играют важную роль. Очень часто оказывается необходимой предварительная обработка шлака для удаления из него ядовитых веществ, прежде всего соединений серы и, конечно, извести.
Испытание проводится очень просто. Из массы шлака берут примерно 1 л испытуемого материала и высыпают его в стеклянную банку для консервирования. Во вторую такую же банку наливают примерно 0,5л воды и очень осторожно доливают в эту банку равное количество концентрированной серной кислоты (Серную кислоту разводят, вливая ее в воду, но никогда нельзя лить воду в кислоту. Это очень опасно!). Этой разведенной кислотой поливают шлак пока не будет полностью покрыт раствором. Если на поверхности раствора начнет образовываться пена, появятся пузырьки газа с запахом тухлых яиц, то тогда весь шлак необходимо подвергнуть химической обработке. Однако если ничего подобного не происходит, значит нам исключительно повезло и удалось получить вполне пригодный к употреблению шлак.
Требующиеся для наших целей небольшие количества шлака лучше всего сразу же насыпать в покрытые битумной краской сосуды и залить их серной кислотой, разведенной в отношении 1:10 (10 л воды на 1 л кислоты). Выждав, когда прекратится образование пены и пузырьков газа, из промытого водой шлака снова берут небольшую пробу и подвергают ее вышеописанному испытанию кислотой в стеклянной банке. Это необходимо, поскольку весьма вероятно, что первая предварительная обработка все массы субстрата могла оказаться недостаточной для превращения всех опасных соединений в газообразный сероводород (с запахом тухлых яиц) или в водорастворимые сульфаты. Таким образом, если в стеклянной банке снова появится пена и будут подниматься пузырьки газа, то вся процедура должна быть повторена со свежеприготовленным раствором кислоты. Обычно вполне достаточно уже однократной обработки.
Перед окончательным использованием шлака его очень тщательно промывают обычной водой для удаления всех соединений, переведенных в результате обработки в растворимое состояние, а также и остатков серной кислоты. Для проверки полноты удаления кислоты в сливную воду (после многократного промывания) опускают лакмусовую бумажку (такая бумага понадобится и в последующем для проверки pH питательного раствора); в данном случае допустима лишь слабокислая реакция. После этого шлак готов для употребления.
Не скроем, что шлаки в одном отношении не совсем отвечают нашим требованиям: острые края частиц делают шлак несколько менее сыпучим и с ним приходится работать осторожнее. Однако этот недостаток в значительной степени можно устранить добавлением к шлаку (перед только что описанной обработкой) примерно 10% кварцевого песка.
Кварцевый песок, базальтовая крошка и дробленый гранит химически нейтральны, что объясняется высоким содержанием в них силикатов. К сожалению, они не поглощают влаги и их частицы имеют очень острые края (в частности, гранит и базальт). Их в лучшем случае можно использовать в качестве примесей к другим материалам, например к шлаку или пемзе.
При выращивании некоторых культур, предпочитающих умеренно влажные местообитания (например, кактусов и т.п.), очень полезно добавлять базальтовую крошку к другим хорошо поглощающим воду субстратам.
Мы воздерживаемся от использования кирпичной крошки, хотя ее часто рекомендовали в некоторых прежних публикациях. Здесь в большинстве случаев приходится считаться с очень высоким содержанием извести, которую необходимо удалить. Кроме того, кирпичная крошка обладает не особенно устойчивой структурой. Через самое непродолжительное время на дне нашей земляной выемки или сосуда образуется отложение ила, который взмучивается при спуске питательного раствора и приводит к закупорке труб и к другим помехам. Сам питательный раствор окрашивается илом в красноватый цвет, что затрудняет анализ раствора, а в некоторых случаях просто делает его невозможным. Наконец, в кирпичной крошке очень часто присутствуют многие посторонние примеси неопределенного характера (смолы, металлы и т.д.), которые, как потенциально ядовитые для растений вещества, могут представлять опасность.
Такие органические вещества, как торфяная крошка или сфагновый мох, можно не рассматривать, потому что мы познакомились с ними уже в разделе о выращивании растений не стенках их мха. Все, что о них было сказано там, конечно, относится ко всем случаям их применения.
В исследованиях последних лет удалось доказать, что присутствие гумусных веществ в культуральном субстрате установки для выращивания растений без почвы оказывает на растения непосредственное и благоприятное влияние. Это ни в коей мере не противоречит нашим прежним рассуждениям, так как гумусные вещества в данном случае не выступают в качестве источника питания растений. Действие гумусных веществ проявляется благодаря следующим их особенностям.
Они способствуют поглощению питательных веществ, потому что повышают растворимость минеральных солей и не дают им осаждаться из раствора (образование комплексов с органическими соединениями). Кроме того, оказалось, что корни растений, покрытые слоем гумусных веществ, лучше поглощают неорганические питательные вещества.
Благодаря присутствию гумусных веществ питательный раствор приобретает "буферность", то есть большую устойчивость против смещения реакции.
В гумусе содержатся различные растворимые гумусные вещества или сопутствующие им продукты вроде антибиотиков, ростовых веществ, эстрогенные вещества и т.д., которые могут поглощаться растением и способствовать его лучшему развитию.
Если учесть эти обстоятельства, то нетрудно понять, почему в настоящее время к субстрату охотно подмешивают какое-либо органическое вещество – большей частью торф. Смесь половинных объемов неорганического гравия и торфа очень оправдала себя, а в некоторых местах успешно работают и с чистым торфом. В последующем мы вернемся к этому вопросу и проследим развитие отдельных растений в чистом гравии, а также для сравнения в смеси гравия с торфом или в чистом торфе. При этом нужно тщательно отметить, какие именно виды растений особенно хорошо реагируют на присутствие гумусных веществ.
Вода, которую предполагается использовать для приготовления питательного раствора, также должна быть проанализирована, чтобы выяснить, пригодна ли она вообще. Между дистиллированной водой и водой из водопроводного крана существует большая разница. Водопроводная вода часто содержит неожиданно много растворенных веществ и прежде всего так называемых карбонатов (солей углекислоты).
В тесной связи с этим находятся "жесткость воды" и ее "pH" – термины, которые каждый, конечно, уже где-нибудь слышал.
Принципиально мы можем констатировать, что при выращивании растений без почвы можно использовать любую воду, вполне пригодную для питья. Вероятно, никому не придет в голову без раздумий брать воду из ручья, реки или пруда, если он не уверен, что эта вода пригодна. Столь же осторожно нужно быть и по отношению к растениям. На что же здесь следует обратить внимание?
Вода безусловно должна быть свободной от растительных ядов. В отношении прудов, ручьев, рек, а также колодцев и даже родников существует опасность загрязнения их воды промышленными сточными водами. Эти воды могут содержать опасные яды, уничтожающие все живое. Явное доказательство этому все новые случаи гибели рыбы. Особенно скверно то, что подобные ядовитые сточные воды не обязательно постоянно присутствуют в воде. Часто бывает, что вода какой-нибудь речушки, вчера еще пригодная для питья, сегодня уже несет сброшенные в нее ядовитые воды.
Затем мы должны установить содержание в воде растворенных веществ, из природу и значение pH. Обилие животных и растительных организмов в воде указывает на отсутствие ядов. Взяв пробу воды, лучше всего передать ее химику или биологу для определения размера сухого остатка на 1 л воды. При содержании растворенных солей до 200 мг на 1 л можно не беспокоиться. Однако, если речь идет о больших количествах, воду необходимо подвергать предварительной обработке или же учесть состав растворенных в ней солей при приготовлении питательного раствора. (Об этом подробнее говорится в разделе о питательных растворах.) В большинстве случаев речь идет о содержании карбонатов кальция и магния, определяющих также жесткость воды. Они удаляются простым процессом "смягчения воды".
Крупные предприятия имеют установки для смягчения воды, а для нас уже достаточна обычная торфяная крошка благодаря способности торфа смягчать воду. Мы используем высокое содержание в торфе ценных гумусовых кислот и связыва6ем ими содержащийся в воде кальций. Торф от этого не обесценивается, потому что его можно использовать для удобрения в открытом грунте. В данном случае просто предупреждается обычно происходящее в почве соединение гумусовой кислоты с известью. Тюк торфяной крошки весом 70 кг может связать примерно 1,5-2,0 кг окиси кальция. Соответственно при помощи одного тюка торфяной крошки можно снизить жесткость 10-13 кубометров воды с 32 до 17о. Для этого торф в проволочной сетке, мешке или в другой таре всего на одну ночь оставляют в воде. Смягченную таким образом воду можно использовать для приготовления питательного раствора.
Водопроводная вода, предназначаемая для питья, вполне подходит для наших целей. Тем не менее, если это возможно, следует получить не соответствующей станции водоснабжения полный анализ, чтобы знать состав солей, растворенных в воде. Если вода очень жесткая, ее в случае необходимости можно смягчить уже описанным способом.
Идеальным для нас являются дождевая и дистиллированная вода. Для научных опытов можно пользоваться только дистиллированной водой, совершенно свободной от каких-либо растворенных составных частей. Тогда можно быть уверенным, что результаты опыта не будет искажены. Мы можем спокойно отказаться от дистиллированной воды, но попробуем покрыть свою не очень большую потребность путем сбора дождевой воды. Здесь следует предупредить против сбора дождевой воды с пропитанных смолами крыш или с других видов кровли, которые могут отдавать стекающей с них воде ядовитые для растений вещества. Любая старая крыша может быть без опасений использована в качестве поставщика дождевой воды.
Запасы воды, которые у нас могут создаться, следует держать по возможности в прохладном месте и без доступа света, чтобы предотвратить порчу или, что часто случается на свету, возможное образование водорослей.
Проверенные методы выращивания растений в сосудах
Уточнение понятний
Батареи цветочных ящиков с автоматическим поливом
Отдельные ящики для цветов, витрины и террариумы
Во многих районах можно без труда приобрести термозит (доменный шлак), который после специальной обработки также может использоваться в качестве субстрата. Что представляет собой термозит? Он приготавливается из шлака доменных печей, жидкого побочного продукта выплавки чугуна, превращаемого действием водяного пара в гравиеподобный, высокопористый материал.
К сожалению, термозит имеет еще более высокую щелочность, чем пемза или пенистая лава (до 43% CaO). Несмотря на это, его можно подготовить так же, как и пемзу, но только в этом случае нужно быть еще более тщательным, чтобы полностью удалить известь из субстрата. Преимуществом термозита является его низкая стоимость, весьма выгодно отличающая от ранее упоминавшихся материалов. По тем же причинам следует уделить особое внимание каменноугольным шлакам, которые можно приобрести по очень низкой цене.
Для рентабельности промышленных беспочвенных установок в большинстве случаев стоимость культурального субстрата является значительным бременем. Поэтому вполне естественно, что поиски дешевых заменителей пемзы и подобных ей материалов начались уже давно. Подходящие шлаки представляют собой такие заменители, которые оказались полноценными во всех отношениях. Цветоводам-любителям повезло в том отношении, что они могут воспользоваться опытом, уже накопленным в производственных условиях.
Пригодными для использования являются хорошо прокаленные каменноугольные или коксовые шлаки; все другие сорта шлаков (например, шлак бурого угля) вообще непригодны для этой цели.
Необходимое количество шлака тщательно очищают от постороннего мусора и затем механически измельчают.
При большой потребности производственных установок в субстрате, для измельчения шлака большей частью пользуются камнедробильными машинами, но мы вполне обойдемся простой трамбовкой и кувалдой. Из измельченного субстрата нам необходимо отобрать фракции с диаметром частиц 0-15 мм, и здесь нашими помощниками будут сита с соответствующим диаметром отверстий. После этого проверяют, не нуждается ли субстрат в предварительной химической обработке.
Рис. 26. Приготовление неорганического субстрата: I – крупные агрегаты измельчаются трамбовкой и кувалдой; II – измельченный субстрат разделяют на фракции на грохоте или решетах; III – нужные фракции субстрата выдерживают в разведенной серной кислоте для удаления щелочей и стерилизуют перекисью марганца; IV – перед употреблением субстрат тщательно промывают водой.
Между двумя видами шлаков может иметься довольно большая разница, особенно в отношении их пригодности для выращивания растений без почвы. Исходный материал, температура горения и другие факторы играют важную роль. Очень часто оказывается необходимой предварительная обработка шлака для удаления из него ядовитых веществ, прежде всего соединений серы и, конечно, извести.
Испытание проводится очень просто. Из массы шлака берут примерно 1 л испытуемого материала и высыпают его в стеклянную банку для консервирования. Во вторую такую же банку наливают примерно 0,5л воды и очень осторожно доливают в эту банку равное количество концентрированной серной кислоты (Серную кислоту разводят, вливая ее в воду, но никогда нельзя лить воду в кислоту. Это очень опасно!). Этой разведенной кислотой поливают шлак пока не будет полностью покрыт раствором. Если на поверхности раствора начнет образовываться пена, появятся пузырьки газа с запахом тухлых яиц, то тогда весь шлак необходимо подвергнуть химической обработке. Однако если ничего подобного не происходит, значит нам исключительно повезло и удалось получить вполне пригодный к употреблению шлак.
Требующиеся для наших целей небольшие количества шлака лучше всего сразу же насыпать в покрытые битумной краской сосуды и залить их серной кислотой, разведенной в отношении 1:10 (10 л воды на 1 л кислоты). Выждав, когда прекратится образование пены и пузырьков газа, из промытого водой шлака снова берут небольшую пробу и подвергают ее вышеописанному испытанию кислотой в стеклянной банке. Это необходимо, поскольку весьма вероятно, что первая предварительная обработка все массы субстрата могла оказаться недостаточной для превращения всех опасных соединений в газообразный сероводород (с запахом тухлых яиц) или в водорастворимые сульфаты. Таким образом, если в стеклянной банке снова появится пена и будут подниматься пузырьки газа, то вся процедура должна быть повторена со свежеприготовленным раствором кислоты. Обычно вполне достаточно уже однократной обработки.
Перед окончательным использованием шлака его очень тщательно промывают обычной водой для удаления всех соединений, переведенных в результате обработки в растворимое состояние, а также и остатков серной кислоты. Для проверки полноты удаления кислоты в сливную воду (после многократного промывания) опускают лакмусовую бумажку (такая бумага понадобится и в последующем для проверки pH питательного раствора); в данном случае допустима лишь слабокислая реакция. После этого шлак готов для употребления.
Не скроем, что шлаки в одном отношении не совсем отвечают нашим требованиям: острые края частиц делают шлак несколько менее сыпучим и с ним приходится работать осторожнее. Однако этот недостаток в значительной степени можно устранить добавлением к шлаку (перед только что описанной обработкой) примерно 10% кварцевого песка.
Кварцевый песок, базальтовая крошка и дробленый гранит химически нейтральны, что объясняется высоким содержанием в них силикатов. К сожалению, они не поглощают влаги и их частицы имеют очень острые края (в частности, гранит и базальт). Их в лучшем случае можно использовать в качестве примесей к другим материалам, например к шлаку или пемзе.
При выращивании некоторых культур, предпочитающих умеренно влажные местообитания (например, кактусов и т.п.), очень полезно добавлять базальтовую крошку к другим хорошо поглощающим воду субстратам.
Мы воздерживаемся от использования кирпичной крошки, хотя ее часто рекомендовали в некоторых прежних публикациях. Здесь в большинстве случаев приходится считаться с очень высоким содержанием извести, которую необходимо удалить. Кроме того, кирпичная крошка обладает не особенно устойчивой структурой. Через самое непродолжительное время на дне нашей земляной выемки или сосуда образуется отложение ила, который взмучивается при спуске питательного раствора и приводит к закупорке труб и к другим помехам. Сам питательный раствор окрашивается илом в красноватый цвет, что затрудняет анализ раствора, а в некоторых случаях просто делает его невозможным. Наконец, в кирпичной крошке очень часто присутствуют многие посторонние примеси неопределенного характера (смолы, металлы и т.д.), которые, как потенциально ядовитые для растений вещества, могут представлять опасность.
Такие органические вещества, как торфяная крошка или сфагновый мох, можно не рассматривать, потому что мы познакомились с ними уже в разделе о выращивании растений не стенках их мха. Все, что о них было сказано там, конечно, относится ко всем случаям их применения.
В исследованиях последних лет удалось доказать, что присутствие гумусных веществ в культуральном субстрате установки для выращивания растений без почвы оказывает на растения непосредственное и благоприятное влияние. Это ни в коей мере не противоречит нашим прежним рассуждениям, так как гумусные вещества в данном случае не выступают в качестве источника питания растений. Действие гумусных веществ проявляется благодаря следующим их особенностям.
Они способствуют поглощению питательных веществ, потому что повышают растворимость минеральных солей и не дают им осаждаться из раствора (образование комплексов с органическими соединениями). Кроме того, оказалось, что корни растений, покрытые слоем гумусных веществ, лучше поглощают неорганические питательные вещества.
Благодаря присутствию гумусных веществ питательный раствор приобретает "буферность", то есть большую устойчивость против смещения реакции.
В гумусе содержатся различные растворимые гумусные вещества или сопутствующие им продукты вроде антибиотиков, ростовых веществ, эстрогенные вещества и т.д., которые могут поглощаться растением и способствовать его лучшему развитию.
Если учесть эти обстоятельства, то нетрудно понять, почему в настоящее время к субстрату охотно подмешивают какое-либо органическое вещество – большей частью торф. Смесь половинных объемов неорганического гравия и торфа очень оправдала себя, а в некоторых местах успешно работают и с чистым торфом. В последующем мы вернемся к этому вопросу и проследим развитие отдельных растений в чистом гравии, а также для сравнения в смеси гравия с торфом или в чистом торфе. При этом нужно тщательно отметить, какие именно виды растений особенно хорошо реагируют на присутствие гумусных веществ.
Вода, которую предполагается использовать для приготовления питательного раствора, также должна быть проанализирована, чтобы выяснить, пригодна ли она вообще. Между дистиллированной водой и водой из водопроводного крана существует большая разница. Водопроводная вода часто содержит неожиданно много растворенных веществ и прежде всего так называемых карбонатов (солей углекислоты).
В тесной связи с этим находятся "жесткость воды" и ее "pH" – термины, которые каждый, конечно, уже где-нибудь слышал.
Принципиально мы можем констатировать, что при выращивании растений без почвы можно использовать любую воду, вполне пригодную для питья. Вероятно, никому не придет в голову без раздумий брать воду из ручья, реки или пруда, если он не уверен, что эта вода пригодна. Столь же осторожно нужно быть и по отношению к растениям. На что же здесь следует обратить внимание?
Вода безусловно должна быть свободной от растительных ядов. В отношении прудов, ручьев, рек, а также колодцев и даже родников существует опасность загрязнения их воды промышленными сточными водами. Эти воды могут содержать опасные яды, уничтожающие все живое. Явное доказательство этому все новые случаи гибели рыбы. Особенно скверно то, что подобные ядовитые сточные воды не обязательно постоянно присутствуют в воде. Часто бывает, что вода какой-нибудь речушки, вчера еще пригодная для питья, сегодня уже несет сброшенные в нее ядовитые воды.
Затем мы должны установить содержание в воде растворенных веществ, из природу и значение pH. Обилие животных и растительных организмов в воде указывает на отсутствие ядов. Взяв пробу воды, лучше всего передать ее химику или биологу для определения размера сухого остатка на 1 л воды. При содержании растворенных солей до 200 мг на 1 л можно не беспокоиться. Однако, если речь идет о больших количествах, воду необходимо подвергать предварительной обработке или же учесть состав растворенных в ней солей при приготовлении питательного раствора. (Об этом подробнее говорится в разделе о питательных растворах.) В большинстве случаев речь идет о содержании карбонатов кальция и магния, определяющих также жесткость воды. Они удаляются простым процессом "смягчения воды".
Крупные предприятия имеют установки для смягчения воды, а для нас уже достаточна обычная торфяная крошка благодаря способности торфа смягчать воду. Мы используем высокое содержание в торфе ценных гумусовых кислот и связыва6ем ими содержащийся в воде кальций. Торф от этого не обесценивается, потому что его можно использовать для удобрения в открытом грунте. В данном случае просто предупреждается обычно происходящее в почве соединение гумусовой кислоты с известью. Тюк торфяной крошки весом 70 кг может связать примерно 1,5-2,0 кг окиси кальция. Соответственно при помощи одного тюка торфяной крошки можно снизить жесткость 10-13 кубометров воды с 32 до 17о. Для этого торф в проволочной сетке, мешке или в другой таре всего на одну ночь оставляют в воде. Смягченную таким образом воду можно использовать для приготовления питательного раствора.
Водопроводная вода, предназначаемая для питья, вполне подходит для наших целей. Тем не менее, если это возможно, следует получить не соответствующей станции водоснабжения полный анализ, чтобы знать состав солей, растворенных в воде. Если вода очень жесткая, ее в случае необходимости можно смягчить уже описанным способом.
Идеальным для нас являются дождевая и дистиллированная вода. Для научных опытов можно пользоваться только дистиллированной водой, совершенно свободной от каких-либо растворенных составных частей. Тогда можно быть уверенным, что результаты опыта не будет искажены. Мы можем спокойно отказаться от дистиллированной воды, но попробуем покрыть свою не очень большую потребность путем сбора дождевой воды. Здесь следует предупредить против сбора дождевой воды с пропитанных смолами крыш или с других видов кровли, которые могут отдавать стекающей с них воде ядовитые для растений вещества. Любая старая крыша может быть без опасений использована в качестве поставщика дождевой воды.
Запасы воды, которые у нас могут создаться, следует держать по возможности в прохладном месте и без доступа света, чтобы предотвратить порчу или, что часто случается на свету, возможное образование водорослей.
Проверенные методы выращивания растений в сосудах
После того как мы получили необходимые основные знания, можно приступить к сооружению конструкций. Однако перед этим ознакомимся со значением некоторых терминов, для того чтобы совершенно ясно понимать всю относящуюся к этому вопросу литературу.
Уточнение понятний
Гидропоника – сборное понятие для всех методов выращивания, при которых растение укореняются в относительно тонком слое большей частью органического субстрата. Сам субстрат уложен на перфорированную основу, которая, в свою очередь, опущена в корыто (или поддон), наполненное питательным раствором. Корни растений проникают сквозь слой субстрата и отверстия основы в раствор и таким образом удовлетворяют потребность растений в пище и воде.
Мы увидим, что, используя этот принцип, можно сооружать как очень маленькие, так и гигантские по размерам установки. Часто их называют водными культурами в резервуарах, сосудах, стеллажах и т.п.
Однако в дальнейшем, встречаясь с описанным здесь принципом, мы будем всегда обозначать его как гидропонный метод.
Термин гидрокультура мы можем, если не буквально, то по смыслу, перевести как гравийная культура. Этот метод отличается прежде всего тем, что при нем растения укореняются в солидных слоях гравия (толщиной до 40 см). Обеспечение питательным раствором в этом случае может происходить в соответствие в двумя основными принципами.
При способе подпора нижняя часть гравия постоянно находится в питательном растворе, который может подниматься по капиллярам. Корни растений, конечно, могут беспрепятственно расти вниз до уровня питательного раствора, и эту возможность они очень активно используют.
При способе периодического затопления (или увлажнения) питательный раствор подается в резервуар или корыто через определенные промежутки времени. При этом большая часть слоя гравия буквально затопляется и может полностью насытиться раствором (благодаря пористости субстрата). Если затем раствор будет снова удален (спущен или отсосан) и в пористое пространство слоя субстрата поступает совершенно свежий воздух, то снабжение корней растений кислородом становится действительно оптимальным.
Последнее предложение четко обрисовывает наивыгоднейшую особенность гидрокультуры, безразлично, идет ли речь о подпоре или о затоплении, а именно самое благоприятное обеспечение воздухом подземных частей растений. В этом отношении гидрокультура, несомненно превосходит гидропонный метод. Вероятно, этим объясняется гораздо большее распространение гидрокультур в наше время по сравнению с гидропонным методом, и если гидропоника в этом перечне и поставлена на первое место, то только потому, что это очень древний метод.
Хемокеультура, или культура сухих солей, – общий термин для всех методов, при которых растения укореняются в органическом субстрате, периодически увлажняемом питательном раствором. При этом не имеет значения, уложен ли субстрат на горизонтальной или вертикальной плоскости. Поэтому уже знакомое нам выращивание растений на стенках из мха или торфа представляет собой один из вариантов культуры сухих солей.
Теперь перейдем к работе. Познакомимся для начала с несколькими видами гидрокультур, уже получивших большую популярность.
Мы увидим, что, используя этот принцип, можно сооружать как очень маленькие, так и гигантские по размерам установки. Часто их называют водными культурами в резервуарах, сосудах, стеллажах и т.п.
Однако в дальнейшем, встречаясь с описанным здесь принципом, мы будем всегда обозначать его как гидропонный метод.
Термин гидрокультура мы можем, если не буквально, то по смыслу, перевести как гравийная культура. Этот метод отличается прежде всего тем, что при нем растения укореняются в солидных слоях гравия (толщиной до 40 см). Обеспечение питательным раствором в этом случае может происходить в соответствие в двумя основными принципами.
При способе подпора нижняя часть гравия постоянно находится в питательном растворе, который может подниматься по капиллярам. Корни растений, конечно, могут беспрепятственно расти вниз до уровня питательного раствора, и эту возможность они очень активно используют.
При способе периодического затопления (или увлажнения) питательный раствор подается в резервуар или корыто через определенные промежутки времени. При этом большая часть слоя гравия буквально затопляется и может полностью насытиться раствором (благодаря пористости субстрата). Если затем раствор будет снова удален (спущен или отсосан) и в пористое пространство слоя субстрата поступает совершенно свежий воздух, то снабжение корней растений кислородом становится действительно оптимальным.
Последнее предложение четко обрисовывает наивыгоднейшую особенность гидрокультуры, безразлично, идет ли речь о подпоре или о затоплении, а именно самое благоприятное обеспечение воздухом подземных частей растений. В этом отношении гидрокультура, несомненно превосходит гидропонный метод. Вероятно, этим объясняется гораздо большее распространение гидрокультур в наше время по сравнению с гидропонным методом, и если гидропоника в этом перечне и поставлена на первое место, то только потому, что это очень древний метод.
Хемокеультура, или культура сухих солей, – общий термин для всех методов, при которых растения укореняются в органическом субстрате, периодически увлажняемом питательном раствором. При этом не имеет значения, уложен ли субстрат на горизонтальной или вертикальной плоскости. Поэтому уже знакомое нам выращивание растений на стенках из мха или торфа представляет собой один из вариантов культуры сухих солей.
Теперь перейдем к работе. Познакомимся для начала с несколькими видами гидрокультур, уже получивших большую популярность.
Батареи цветочных ящиков с автоматическим поливом
Такая установка работает по принципу постоянного подпора. Начнем сразу с сути дела: разве плохо было бы избавиться от необходимости ежедневно поливать цветы, устранить постоянно происходящее при поливе переполнение водой горшков и ящиков, при котором пачкаются стены, подоконники и карнизы и волей-неволей возникает раздражение. Так вот: каждый деятельный любитель может осуществить это у себя. То, что будет описано ниже, в продажу не поступает и все нужно делать самому.
Рис. 28. Серия цветочных ящиков c автоматической подачей раствора: 1 – резервуар с питательным раствором; 2 – цветочные ящики; 3 – контрольная и сливная трубка; 4 – уровень раствора в ящиках; 5 – Т-образный патрубок; 6 – крупный гравий; 7 – торфяная крошка; 8 – резиновый шланг.
Для сооружения батареи цветочных ящиков с автоматическим поливом требуются водонепроницаемые ящики или короба. Лучше всего, если это будет асбоцементны или металлические ящики, но и те и другие не так легко достать, и стоимость их довольно высокая. Можно пользоваться также ящиками из дерева, которые можно превратить в водонепроницаемые при помощи не содержащих фенолов пластических пленок. Для начала возьмем в качестве исходных ящики из асбоцемента, которые можно везде приобрести, и покроем их слоем битумной краски, чтобы устранить возможность обменных реакций с питательным раствором в последующем. Затем в ящиках с обеих сторон (как показано на рис.28) нужно сделать отверстия, диаметр которых соответствует диаметру заготовленных нами заранее резиновых пробок. Эти пробки должны быть просверлены так, чтобы в них можно было вставить стеклянные трубки с просветом 12 мм. После того как пробки с трубками будут тщательно подогнаны к отверстиям в ящиках, мы соединяем трубки соседних ящиков короткими отрезками резинового шланга. В последнюю пробку вставляют отрезок изогнутой под прямым углом стеклянной трубки, которая служит контролем, указывающим высоту уровня раствора, а если ее повернуть на 180о вниз, то также и для сливания раствора. Этим заканчивается устройство системы централизованного снабжения ящиков питательным раствором.
Далее, нам нужен подходящий питающий резервуар для раствора с герметически закрывающимся горлом. Для этого вполне пригодны чистая канистра или жестяная банка с завинчивающейся пробкой и уплотняющим кольцом. Их изолируют обычной битумной краской, наливая ее внутрь и поворачивая сосуд так, чтобы краска покрыла все стенки. Естественная работа, для которой может потребоваться помощь со стороны, это припаривание у основания канистры или банки трубки для раствора (внутренний диаметр трубки 12 мм). После этого можно начинать монтаж всей установки.
Рис. 29. Для автоматической подачи раствора в отдельный цветочный ящик достаточен небольшой сосуд: 1 – питательный раствор; 2 – Т-образный патрубок.
Для начала запасемся резиновым шлангом, достаточно длинным, чтобы присоединить резервуар с питающим раствором к первому ящику. Затем на расстоянии 10-15 см от резервуара с раствором перережем шланг и вставим в отрезанные концы Т-образную стеклянную трубку (диаметром 12 мм) так, чтобы длинный ее конец был направлен вверх и слегка в сторону, как показано на рисунке 29.
Для чего это делается будет понятно из дальнейшего изложения процессов, происходящих после наполнения резервуара и подачи раствора.
При помощи зажима перекрываем шланг между резервуаром и Т-образным патрубком и заполняем резервуар питательным раствором до отказа. После того как пробка резервуара будет завинчена, можно снять зажим. Что же произойдет?
Во все ящики начнет поступать раствор, поскольку через открытый конец Т-образной трубки в резервуар может проникать замещающий его воздух. Уровень раствора во всех ящиках будет повышаться медленно и равномерно до тех пор, пока он не достигнет открытого конца Т-образного патрубка, как это бывает в любых сообщающихся сосудах. После этого подача раствора в ящики мгновенно прекращается. Это явление нетрудно объяснить: после того как воздух извне перестает поступать в резервуар через открытый конец Т-образной трубки, не может происходить и вытекания раствора. Иначе в резервуаре создавалось бы безвоздушное пространство.
Рис. 30. Гидропонные цветочные ящики для балконов: вверху – системы Герер; внизу – системы Шрофф.
Далее нам следует позаботиться о такой расстановке пока пустых ящиков, чтобы уровень раствора в них был на одинаковой высоте. Надо также отрегулировать положение Т-образной трубки (ее верхнего открытого конца) так, чтобы приток раствора прекращался, когда раствор во всех ящиках будет находиться на высоте 2,5-3,0 см. После этого можно заполнять ящики субстратом.
На самое дно слоем толщиной 2 см укладывают более крупный гравий, чтобы обеспечить свободное движение воды даже в совершенно заполненном ящике. Сверху на этот гравий укладывают тонкий слой волокнистого торфа, чтобы помешать фильтрации мелких частиц субстрата на дно ящика. Остальное пространство заполняют подготовленным гравием или чистой торфяной крошкой. Если растения намечено выращивать на гравии, то их необходимо снабжать питательным раствором с самого начала. Если же в качестве субстрата выбран торф, то тогда при заполнении ящиков на каждые 10 л торфа нужно подмешивать 30 г стандартного полного удобрения. Этого основного удобрения хватит на первые 3-4 недели, и в этот период из резервуара в ящики подается только вода, но в дальнейшем переходят на подачу питательного раствора нормальной концентрации.
Тот, кто будет строго следовать всем этим предписаниям, получит большое удовлетворение, наблюдая развитие растений в своих ящиках. Цветы растут в них исключительно хорошо, поскольку они получают воду и питание в требуемом количестве. Ведь как только уровень раствора в ящиках в результате испарения и использования растениями понизится настолько, что полностью освободится открытый конец Т-образной трубки, воздух проникнет в резервуар и вытекающая из него жидкость снова поднимет уровень раствора во всех ящиках, причем это будет повторяться до тех пор, пока в резервуаре будет оставаться раствор. Практика показывает, что в зависимости от времени года, экспозиции и от вида растений расход раствора составляет 0,5-2,0 л в сутки на 1 погонный метр длины балконных ящиков. Исходя из этой величины, мы можем легко рассчитать, насколько часто (в зависимости от емкости резервуара) нужно производить замену раствора. Один резервуар может без затруднений снабжать раствором 5-6 цветочных ящиков нормальной величины (рис.30)
Рис. 28. Серия цветочных ящиков c автоматической подачей раствора: 1 – резервуар с питательным раствором; 2 – цветочные ящики; 3 – контрольная и сливная трубка; 4 – уровень раствора в ящиках; 5 – Т-образный патрубок; 6 – крупный гравий; 7 – торфяная крошка; 8 – резиновый шланг.
Для сооружения батареи цветочных ящиков с автоматическим поливом требуются водонепроницаемые ящики или короба. Лучше всего, если это будет асбоцементны или металлические ящики, но и те и другие не так легко достать, и стоимость их довольно высокая. Можно пользоваться также ящиками из дерева, которые можно превратить в водонепроницаемые при помощи не содержащих фенолов пластических пленок. Для начала возьмем в качестве исходных ящики из асбоцемента, которые можно везде приобрести, и покроем их слоем битумной краски, чтобы устранить возможность обменных реакций с питательным раствором в последующем. Затем в ящиках с обеих сторон (как показано на рис.28) нужно сделать отверстия, диаметр которых соответствует диаметру заготовленных нами заранее резиновых пробок. Эти пробки должны быть просверлены так, чтобы в них можно было вставить стеклянные трубки с просветом 12 мм. После того как пробки с трубками будут тщательно подогнаны к отверстиям в ящиках, мы соединяем трубки соседних ящиков короткими отрезками резинового шланга. В последнюю пробку вставляют отрезок изогнутой под прямым углом стеклянной трубки, которая служит контролем, указывающим высоту уровня раствора, а если ее повернуть на 180о вниз, то также и для сливания раствора. Этим заканчивается устройство системы централизованного снабжения ящиков питательным раствором.
Далее, нам нужен подходящий питающий резервуар для раствора с герметически закрывающимся горлом. Для этого вполне пригодны чистая канистра или жестяная банка с завинчивающейся пробкой и уплотняющим кольцом. Их изолируют обычной битумной краской, наливая ее внутрь и поворачивая сосуд так, чтобы краска покрыла все стенки. Естественная работа, для которой может потребоваться помощь со стороны, это припаривание у основания канистры или банки трубки для раствора (внутренний диаметр трубки 12 мм). После этого можно начинать монтаж всей установки.
Рис. 29. Для автоматической подачи раствора в отдельный цветочный ящик достаточен небольшой сосуд: 1 – питательный раствор; 2 – Т-образный патрубок.
Для начала запасемся резиновым шлангом, достаточно длинным, чтобы присоединить резервуар с питающим раствором к первому ящику. Затем на расстоянии 10-15 см от резервуара с раствором перережем шланг и вставим в отрезанные концы Т-образную стеклянную трубку (диаметром 12 мм) так, чтобы длинный ее конец был направлен вверх и слегка в сторону, как показано на рисунке 29.
Для чего это делается будет понятно из дальнейшего изложения процессов, происходящих после наполнения резервуара и подачи раствора.
При помощи зажима перекрываем шланг между резервуаром и Т-образным патрубком и заполняем резервуар питательным раствором до отказа. После того как пробка резервуара будет завинчена, можно снять зажим. Что же произойдет?
Во все ящики начнет поступать раствор, поскольку через открытый конец Т-образной трубки в резервуар может проникать замещающий его воздух. Уровень раствора во всех ящиках будет повышаться медленно и равномерно до тех пор, пока он не достигнет открытого конца Т-образного патрубка, как это бывает в любых сообщающихся сосудах. После этого подача раствора в ящики мгновенно прекращается. Это явление нетрудно объяснить: после того как воздух извне перестает поступать в резервуар через открытый конец Т-образной трубки, не может происходить и вытекания раствора. Иначе в резервуаре создавалось бы безвоздушное пространство.
Рис. 30. Гидропонные цветочные ящики для балконов: вверху – системы Герер; внизу – системы Шрофф.
Далее нам следует позаботиться о такой расстановке пока пустых ящиков, чтобы уровень раствора в них был на одинаковой высоте. Надо также отрегулировать положение Т-образной трубки (ее верхнего открытого конца) так, чтобы приток раствора прекращался, когда раствор во всех ящиках будет находиться на высоте 2,5-3,0 см. После этого можно заполнять ящики субстратом.
На самое дно слоем толщиной 2 см укладывают более крупный гравий, чтобы обеспечить свободное движение воды даже в совершенно заполненном ящике. Сверху на этот гравий укладывают тонкий слой волокнистого торфа, чтобы помешать фильтрации мелких частиц субстрата на дно ящика. Остальное пространство заполняют подготовленным гравием или чистой торфяной крошкой. Если растения намечено выращивать на гравии, то их необходимо снабжать питательным раствором с самого начала. Если же в качестве субстрата выбран торф, то тогда при заполнении ящиков на каждые 10 л торфа нужно подмешивать 30 г стандартного полного удобрения. Этого основного удобрения хватит на первые 3-4 недели, и в этот период из резервуара в ящики подается только вода, но в дальнейшем переходят на подачу питательного раствора нормальной концентрации.
Тот, кто будет строго следовать всем этим предписаниям, получит большое удовлетворение, наблюдая развитие растений в своих ящиках. Цветы растут в них исключительно хорошо, поскольку они получают воду и питание в требуемом количестве. Ведь как только уровень раствора в ящиках в результате испарения и использования растениями понизится настолько, что полностью освободится открытый конец Т-образной трубки, воздух проникнет в резервуар и вытекающая из него жидкость снова поднимет уровень раствора во всех ящиках, причем это будет повторяться до тех пор, пока в резервуаре будет оставаться раствор. Практика показывает, что в зависимости от времени года, экспозиции и от вида растений расход раствора составляет 0,5-2,0 л в сутки на 1 погонный метр длины балконных ящиков. Исходя из этой величины, мы можем легко рассчитать, насколько часто (в зависимости от емкости резервуара) нужно производить замену раствора. Один резервуар может без затруднений снабжать раствором 5-6 цветочных ящиков нормальной величины (рис.30)
Отдельные ящики для цветов, витрины и террариумы
Рис. 31. Вверху – общий вид цветочной витрины; внизу – схема. 1 – контрольная трубка; 2 – жестяная ванна; 3 – сливной кран; 4 – дренажная трубка; 5 – субстрат; 6 – деревянная обшивка.
Рис. 32. Принцип устройства террариума на гидропонике: 1 – стеклянный ящик; 2 – откидное оконце; 3 – подача корма; 4 – контрольная трубка; 5 – субстрат; 6 – дренажная трубка; 7 – сливной кран; 8 – водонепроницаемый лоток или ванна.
Такие ящики можно, конечно, использовать и без автоматического питания. Необходимо только предусмотреть отверстие в стенке у дна, в котором укрепляется в качестве контрольной или спускной изогнутая под прямым углом стеклянная трубка. Когда эта контрольная трубка покажет, что уровень раствора в ящике значительно понизился, нужное количество его подливают прямо в ящик. По этому же принципу устраиваются весьма распространенные цветочные витрины и террариумы на гидрокультуре.
Цветочные витрины на гидрокультуре представляют собой не только деталь обстановки, обеспечивающую хорошее местообитание для растений, но они могут одновременно служить книжным шкафом или винным погребком, а террариумы на гидрокультуре дают возможность любителям этих устройств украшать их пышно растущими декоративными растениями, ни в коей мере не усложняя обычного режима ухода за животными. Сами животные также не будут потревожены. Конечно, в таком террариуме нельзя содержать роющих животных. На рисунке 31 и 32 показаны внешний вид и устройство витрин и террариумов.
Рис. 32. Принцип устройства террариума на гидропонике: 1 – стеклянный ящик; 2 – откидное оконце; 3 – подача корма; 4 – контрольная трубка; 5 – субстрат; 6 – дренажная трубка; 7 – сливной кран; 8 – водонепроницаемый лоток или ванна.
Такие ящики можно, конечно, использовать и без автоматического питания. Необходимо только предусмотреть отверстие в стенке у дна, в котором укрепляется в качестве контрольной или спускной изогнутая под прямым углом стеклянная трубка. Когда эта контрольная трубка покажет, что уровень раствора в ящике значительно понизился, нужное количество его подливают прямо в ящик. По этому же принципу устраиваются весьма распространенные цветочные витрины и террариумы на гидрокультуре.
Цветочные витрины на гидрокультуре представляют собой не только деталь обстановки, обеспечивающую хорошее местообитание для растений, но они могут одновременно служить книжным шкафом или винным погребком, а террариумы на гидрокультуре дают возможность любителям этих устройств украшать их пышно растущими декоративными растениями, ни в коей мере не усложняя обычного режима ухода за животными. Сами животные также не будут потревожены. Конечно, в таком террариуме нельзя содержать роющих животных. На рисунке 31 и 32 показаны внешний вид и устройство витрин и террариумов.