Поскольку «ломиться» сквозь пространство с помощью звездолетов и прочих механических конструкций, как уже говорилось, бессмысленно — полученная информация все равно успеет безнадежно устареть, пока звездолет обернется туда-обратно, стоит, наверное, обратить внимание на другие способы, в частности, на путешествие разумных существ в виде пакетов информации. Говоря иначе, в космическое пространство отправляется «информационный двойник человека», отделяемый от него примерно так же, как сегодня отделяют информационное обеспечение, пакет программ от работающей с ними ЭВМ.
   Если пакет информации — аналог личности передать по эфиру с одной станции на другую и на последней переписать заново в материальный носитель, то на далекой планете, в окрестностях дальней звезды появится этакий интеллектуальный «двойник» оставшегося на Земле исследователя. Он сможет действовать и удовлетворять человеческое любопытство точно так же, как это делал бы сам исследователь.
   Принцип принципу рознь! Можно ли осуществить такой проект на практике? Доктор Самюэль Бронштейн, работающий в одном из подразделений всемирно известной корпорации IBM, полагает, что законы физики не препятствуют такому воссозданию на практике. Во всяком случае, к передаче первых атомов и субатомных частиц он и его коллеги намерены приступить уже через несколько лет.
   «Как же так, — возможно, скажете вы. — Ведь еще недавно, согласно принципу неопределенности Вернера Гейзенберга, считалось, что нельзя с одинаковой четкостью определить и местоположение частицы, и ее заряд. А коли так, значит, копия на том конце линии связи будет весьма приблизительной, нечто вроде карикатуры на оригинал…»
   Да, все это верно. Но специалисты ныне больше уповают на другой принцип — принцип корреляции Эйнштейна-Подольского-Розена. Свяжите вместе две субатомные частицы, гласит он, а потом разнесите на сколь угодно большое расстояние, и вы обнаружите, что частицы все равно копируют движения друг друга. Вот это явление и является ключом к телепортации.
   Возьмем три субатомные частицы: А, В и С — в разных фазовых состояниях. Попробуем перенести на С состояние А, используя частицы В в качестве посредника. Для этого сначала сблизим В и С. Породнившись, они получат некую общность. Переправим частицу В отправителю, и он транслирует ее в пункт назначения. Здесь частица будет просканирована, получены все ее характеристики. Сама она при этом будет разрушена, но информация о ней полностью перейдет к получателю. И если он ознакомит с нею частицу А, имеющуюся у него, то вполне может получиться, что она станет идентичной частице С.
   «Итак, — говорит доктор Бронштейн, — телепортация человека — всего лишь инженерная проблема. Принципиальных трудностей тут нет».
   Эффект «спутывания» существует. Именно это подтвердила недавно в своем опыте группа австрийских физиков под руководством Антона Зайлингера. Воспользовавшись теоретической разработкой исследовательской группы американца Чарлза Беннета, опубликованной еще 5 лет тому назад, исследователи попытались воспроизвести все вышеописанные манипуляции на практике.
   Итак, передача информации от частицы к частице возможна за счет так называемого эффекта «спутывания» (entanglement), стали рассуждать экспериментаторы. При этом не так уж важно, что мы до сих пор не понимаем, каким образом частицы, образующие пару, мгновенно узнают о перемене состояния друг друга. Ведь бывает порой и в нашей обыденной жизни, что близкие друг другу люди, например влюбленные, узнают о произошедшем с другим несчастье даже без помощи радио или телефонного провода. Посему давайте попросту постараемся изолировать эту пару частиц от постороннего воздействия и посмотрим, как они реагируют на перемену состояний друг друга…
   В своей статье, помещенной в декабрьском выпуске 1997 года всемирно известного журнала «Нейчур», Зайлингер с коллегами пишут, что пара «спутанных» квантов света — фотонов — была создана ими за счет так называемой параметрической конверсии. Суть работы, занявшей 4 года, в общих чертах такова.
   Австрийские физики пропустили частицу света фотон — через специальный кристалл. При этом фотон расщепился на два фотона, обладавших меньшими энергиями. Дочерние фотоны помчались дальше, но уже в разных направлениях. Несмотря на это, связь между ними сохранилась.
   Для человека, незнакомого с квантовой механикой, такая взаимосвязь кажется чисто мистической. Однако эффект действительно существует на практике и выражается, например, так. Если бы физики измерили один фотон и обнаружили, что он коллапсировал, скажем, в состоянии вертикальной поляризованности, то о его партнере можно с уверенностью сказать, что он в тот же миг стал бы поляризованным горизонтально.
   Взаимный коллапс происходит мгновенно и скоростью света — это-то и есть самое удивительное! — не ограничен. Но один коллапс для передачи информации использовать нельзя. Информация может быть извлечена только при декодировании квантового канала, дополненного неквантовым. Таким образом, получается, что система прививает какое-то определенное состояние частице-реципиенту практически без измерения, а значит, и без разрушения. Неизмеренное, оно тем не менее в закодированной форме отражается на второй частице, где бы она ни находилась.
   Эйнштейн был не прав? Если у Зайлингера расстояние между двумя дочерними фотонами было невелико — эксперимент не выходил за рамки лаборатории, у физиков из Женевского университета, работавших в группе Николаса Гайзина, мы видим иную картину. Расстояние между двумя дочерними фотонами тут составило 10 с лишним километров — именно столько разделяет две деревушки в окрестностях Женевы — Делью и Берне. Одна находится на севере от Женевы, а другая — на юго-западе. С городом и между собой они связаны телефонной линией, сделанной из волоконной оптики. По волокну-световоду и помчались дочерние фотоны, образовавшиеся из расщепленного луча, пропущенного через кристалл ниобата калия, и достигли каждый своего детектора.
   Как мы помним, согласно принципу неопределенности, невозможно одновременно узнать, какова энергия фотона и время, когда он вылетел из кристалла в Женеве. Более того, пока его не измерили, его состояние — смесь разных состояний.
   Эйнштейн, которому претила всякая неопределенность, считал это абсурдом и в 1935 году предложил мысленный эксперимент, который ныне — спустя более 60 лет — удалось воспроизвести на практике.
   Великому теоретику показалось, что принцип неопределенности отражает не истинное положение вещей, а всего лишь неправильно сделанные измерения. В терминах сегодняшних экспериментов его мысль должна выглядеть так: «Вы можете узнать энергию фотона, измерив энергию его партнера, а измерив время, когда партнер прибыл к месту своего назначения, вы узнаете, когда он покинул кристалл. Оба фотона вылетели из кристалла в один какой-то миг, и, хотя их энергия может быть неодинаковой, в сумме она составляет энергию родительского фотона. Никакой неопределенности, все можно узнать, если измерять, руководствуясь здравым смыслом, а не фантазиями. Измерения не могут внести в реальность никаких перемен. Она от них не зависит».
   Эксперименты австрийских и швейцарских физиков опять-таки показали правоту квантовой механики. «То было торжество неопределенности над здравым смыслом и призраков над привычными представлениями о причинно-следственных связях», говорит Гайзин.
   Теперь мы знаем: Алиса ревнует справедливо. Вообще-то говоря, опыты с фотонами начались еще в 1981 году, когда физик Аллен Аспек из Парижского университета впервые поразил своих коллег подобным фокусом. Но у него, как и у Зайлингера, фотоны разлетались всего на несколько метров. Теперь это расстояние увеличилось до 10 км, и результат остался неизменным. Посмотрим, каким он будет в 2005 году, когда Гайзин собирается довести расстояние между фотонами до 100 км — именно такова дистанция между Женевой и Берном, где когда-то в патентном бюро работал Эйнштейн.
   Но уже сегодня, продолжая аналогию с влюбленной парой, мы можем перевести полученные результаты с языка физики на обыденный таким образом. Представим себе, что один из полученных фотонов экспериментаторы мысленно приписали к отправителю информации, Алисе, а второй — к получателю, Бобу. И наконец, существует третий участник эксперимента — некая Кэрол (в данном конкретном случае тоже замаскированная под частицу).
   Как вы думаете, изменится ли состояние Алисы, если Кэрол сообщит ей, что видела вчера на дискотеке Боба, лихо плясавшего с какой-то блондинкой? Безусловно, да. Как и то, что, скорее всего, Алиса тут же всеми мыслимыми и немыслимыми способами даст знать Бобу, что она по этому поводу думает.
   Так вот, экспериментаторы на квантовом уровне установили, что такая передача осуществляется мгновенно. После чего и принявшая информацию частица тут же переходит в другое состояние (Боб принимается извиняться и успокаивать Алису).
   Как именно происходит передача информации, какой беспроволочный «телефон» тут работает, французским, австрийским и швейцарским исследователям разобраться пока не удалось. Быть может, об этом больше расскажут итальянские ученые, статья об эксперименте которых должна быть опубликована в одном из ближайших номеров другого престижного научного журнала «Физикал Ревью Леттерс»?..
   Тем не менее многие научные эксперты, в том числе, например, академик РАН Виталий Гинзбург, полагают, что данные эксперименты с пересылкой квантового пакета открывают принципиальные возможности к дальнейшему исследованию телепортации на практике.
   Правда, пересылки материальных объектов, а тем более людей, из одной точки пространства в другую уже завтра никто не обещает. «Например, чтобы с разрешающей способностью до 1 мм описать в трех измерениях только внешность какого-либо человека, требуется 10 гигабайтов компьютерной памяти, — говорит уже упоминавшийся нами доктор Бронштейн. — Для описания на субатомном уровне ее нужно несоизмеримо больше. И на трансляцию последовательности с использованием имеющихся ныне линий связи на передачу особенностей любой личности может уйти порядка… 100 млн веков!»
   Таким образом, остается надеяться, что со временем ученые изобретут какие-то способы мгновенной сверхдальней связи, использующей каналы, пронизывающие пространство-время. Или возьмут на вооружение идею, опять-таки высказанную Константином Феоктистовым.
   Возможно, мы не одни размышляем над подобной проблемой, полагает он. Очень может быть, что гдето там, у чужой звезды, представители иной цивилизации ломают голову (или что там у них для этого еще есть) над подобной же проблемой. И когда-нибудь поиски, ведущиеся с двух концов, увенчаются совместным успехом — информационный мост будет установлен.
   Тогда в любой момент мы сможем послать сигнал на тот конец линии: «Ау, инопланетяне! Будьте готовы поменяться…» Отправим им информационную посылку, содержащую полное представление о каком-то землянине, а в ответ получим…
   Что именно — это уж, наверное, повод для очередного фантастического сюжета. Основанного тем не менее на последних научных данных.

СЕКРЕТЫ СОЛНЕЧНОЙ СИСТЕМЫ

   На воздушном океане,
   Без руля и без ветрил,
   Тихо плавают в тумане
   Хоры стройные светил.
Михаил Лермонтов

   Простим классика. Он был офицером и поэтом, а не ученым. Вдобавок в его время мало кто знал, что в космосе воздуха нет, а то, что светится, не обязательно должно быть звездой. Вон Луна прекрасно освещает нам дорогу по ночам…
   Зато в другом он был совершенно прав: тумана вокруг проблемы движения небесных тел «без руля и без ветрил» и на сегодняшний день предостаточно. Вот факты.

ВСЕЛЕНСКИЕ УБИЙЦЫ

   Каждому из нас приходилось хотя бы раз в жизни наблюдать в ночном небе сверкающий след от падающего метеорита. Тем не менее люди спокойно спят по ночам, а по утрам снова принимаются за повседневные хлопоты, не подозревая, что каждый день для них может стать последним. Ведь на нашу планету со всех сторон из космоса несутся убийцы — тысячи метеоритов, комет и более крупных «небесных камней». Они ежедневно пересекают орбиту Земли, а падение километрового астероида равносильно термоядерной войне…
   И все-таки, пока еще есть время, давайте попробуем разобраться, насколько велика опасность? Есть ли у нас возможность предпринять что-либо для своего спасения или, прихватив белую простыню, надо уж немедленно отправляться на кладбище?..
 
Астроблемы создают проблемы
   Метеориты праздников не признают. Рождественским утром 1926 года в швейцарской деревушке Ульмиц под Берном сын фермера Эберхард доил на лужайке корову. Вдруг в воздухе раздался пронзительный свист, и что-то рухнуло со снарядным грохотом, вздымая тучи пыли. Обезумевшая корова, опрокинув дояра и ведро, рванула галопом… Но когда дым рассеялся, а пыль осела, семья вздохнула с облегчением: все отделались лишь испугом, хотя лужайка перед домом и оказалась засеянной множеством метеоритных осколков.
   Куда большую панику вызвал метеорит, обрушившийся на китайскую коммуну Хуа Пи Ханг аккурат 8 марта 1976 года. Пыль и дым вознеслись на 50-метровую высоту, ударная волна высадила не только двери в коммуне, но и окна в соседней деревне. А сам метеорит весом 1176 кг оставил в земле воронку глубиной 6 м.
   Еще один подарок получило американское семейство Донахью из штата Коннектикут 8 ноября 1982 года. Хотя они вовсе не собирались отмечать пролетарский праздник, а тихо-мирно смотрели телевизор, в гостиной вдруг что-то грохнуло. Будучи приучены в любых нестандартных ситуациях вызывать полицию, супруги тут же позвонили в участок, и прибывшие «копы» вскоре отыскали нарушителя спокойствия — 3-килограммовый камень, лежавший под столом в гостиной.
   Что говорит статистика? И хотя подобные случаи можно перечислять десятками, ученые с удивлением отмечают, что достоверных случаев смерти от удара метеоритом не отмечено за все время цивилизации. Лишь однажды в Древнем Египте на глазах у изумленного жреца прихлопнуло собаку, о чем он не преминул упомянуть в папирусе.
   Подобная статистика, конечно, должна ободрить агентов страховых компаний: значит, они смело могут выписывать полисы на возмещение ущерба хозяйству или компенсацию в случае смерти или ранения его владельца — подобные инциденты исключительно редки.
   Однако астрономы выяснили, что наша сравнительно небольшая планета непрерывно вздрагивает от обрушивающихся на нее космических ударов. Ежегодно на Землю падает около 30 т метеоритов. Если учесть, что процесс этот начался сразу после образования Солнечной системы — 6-8 млрд лет тому назад, то старушка Земля должна была не только изрядно потяжелеть с возрастом, но и сплошь покрыться шрамами кратеров, как это произошло, например, с нашей ближайшей соседкой — Луной.
   Большая часть «небесных камней», правда, относится к космическим объектам I класса. То есть таким, которые имеют размеры не более 10 м в диаметре. Невзирая на то что они влетают в атмосферу ежечасно, большая часть их без следа сгорает, а остатки самых крупных метеоритов достигают поверхности планеты лишь раз в несколько лет, не причиняя заметного вреда.
   Объекты II класса — диаметром от 10 до 100 м посещают нашу планету значительно реже: самые мелкие — раз в десятилетие, самые крупные — однажды в несколько столетий. К этому классу относился, по всей вероятности, и Тунгусский метеорит. Несмотря на все разговоры об «ужасной катастрофе», последствия его падения довольно скромны — даже кратера не осталось.
   Класс III — это 300 тыс. малых тел от 100 до 1000 м в поперечнике, которые падают на Землю примерно раз в 5 тыс. лет. Как правило, они достигают поверхности в целости и взрываются с силой, эквивалентной энергии сотен, а то и тысяч ядерных бомб, образуя обширные кратеры диаметром 1-2 км и более.
   И наконец, объектов IV класса (диаметром более 1 км) зарегистрировано более 2 тыс. штук. Это полноценные астероиды. Приблизительно раз в 0,5-1 млн лет такая громадина плюхается на нашу планету с такой силой, что может уничтожить большинство живой материи на Земле.
   Так говорит теория. Однако для того чтобы получить подтверждение, что время от времени на нашу Землю падают не только мелкие метеориты, но и огромные астероиды, надо было найти хотя бы одну астроблему — «звездную рану»; именно так называют исследователи кратеры, остающиеся после падения небесного тела на поверхность той или иной планеты.
   Испарившееся железо. Один из первых таких кратеров был обнаружен на территории США, в Аризоне. С ним, кстати, связана такая любопытная история.
   Переселенцы из Европы, попавшие на Дикий Запад в конце прошлого века, были поражены, обнаружив у местных индейцев большое количество чистого железа. Откуда оно у племен, не знавших металлургии? «С неба», — последовал лаконичный ответ.
   Ученые, к которым попали образцы «небесного железа», подтвердили первоначальную догадку: металл оказался метеоритного происхождения. Вскоре была обнаружена и достаточно обширная впадина, в окрестностях которой находили обломки метеорита. Она находилась неподалеку от ущелья с соответствующим названием — Каньон Дьявола.
   В 1905 году кратером диаметром 1200 и глубиной 180 м заинтересовался инженер и предприниматель Даниэль Барринджер. Он решил, что после удара гигантский метеорит зарылся в землю, да так там и лежит. Мысль о нескольких миллионах тонн с включениями мелких алмазов и платины не давала покоя инженеру-дельцу. Наконец, он принял чисто американское решение: купил участок земли с кратером и организовал компанию по добыче из него полезных ископаемых.
   Однако, несмотря на многочисленные шурфы, скважины, даже шахты, никакого железа обнаружить не удалось. Вы, наверное, уже догадались почему. Аризонский астероид от удара о нашу твердую планету попросту испарился. Сохранилось лишь небольшое количество вещества с тыльной стороны. Его-то и обнаружили индейцы.
   Зачем искать «звездные раны»? «Как показывают расчеты, — рассказывал мне сотрудник Института физики Земли Борис Иванов, — тело при ударе начинает испаряться, если его скорость достигает 5 км/с. Наблюдения астрономов показывают, что скорости метеоритов в окрестностях Земли составляют от 10 до 70 км/с. Мелкие метеориты, конечно, сгорают в атмосфере. Более крупные сгореть не успевают, но тормозятся о воздух, поэтому их находят на поверхности планеты. Только самые крупные небесные тела типа Аризонского астероида, могут прорваться к поверхности, не потеряв своей космической скорости. И… испаряются, ударившись о нее».
   Железа, таким образом, в метеоритном кратере не найдешь. Так, быть может, тогда и вообще не стоит искать метеоритные следы? Ведь произошедшие некогда катастрофы нам уже не страшны. Зачем же тогда ежегодно для поисков и обследования астроблем снаряжаются специальные экспедиции?
   "Попробую ответить на этот вопрос на примере одной из экспедиций, в которой мне самому довелось принимать участие, — продолжал Иванов. — Янис Ярви — в переводе «Заячье озеро» — расположено в Карелии, неподалеку от поселка Вяртсиля. По данным геологов, на месте этого озера примерно 700 млн лет назад упал гигантский метеорит, образовав кратер диаметром около 120 км. Затем, 40 млн лет назад, ледник, двигавшийся из Скандинавии на юго-восток, прошел через кратер и, словно исполинский бульдозер, снял слой горных пород толщиной в полкилометра. Конечно, при этом был стерт и кратер. Теперь здесь только озеро с островами посредине.
   Однако даже неискушенному взгляду очевидна разница между горными породами, слагающими берега озера, и его островами. На берегах — светлосерые сланцевые скалы, а на островах — темно-коричневая порода, будто обожженная в гигантской печи. Это тот же сланец, что и на берегу, только подвергшийся обработке мощной ударной волной, которая прокатилась по земной коре в момент соударения. Интересно, какое при этом развилось давление? Чтобы получить нужные сведения, я беру геологический молоток и откалываю кусок породы. Дома, в лаборатории института, мы воспроизведем в маленьком образце при помощи взрывчатки ударную волну заданной интенсивности и сравним полученные результаты…"
   В свою очередь, это нужно вот для чего. Поверхностные слои на территории бывшего СССР разведаны геологами достаточно хорошо. Теперь их интересует, что лежит в глубинах планеты. А при соударении метеориты выбрасывают из глубины на поверхность любопытные образцы.
   Кроме того, метеоритные кратеры представляют интерес и для планетологов. Ученые предполагают, что метеориты могли сыграть решающую роль в истории Солнечной системы, как нагреватели планетарных тел. Ведь почти вся энергия при соударении переводится в тепло. И когда примерно около 4 млрд лет назад на поверхность только что родившихся планет в изобилии сыпался метеоритный «мусор», оставшийся после окончания строительства планетарной системы, интенсивность бомбардировки могла оказаться достаточной, чтобы этот источник тепла мог конкурировать с разогревом планет за счет радиоактивного распада элементов внутри них.
   Конец света однажды уже был? Мы уже говорили о положительной роли метеоритов и астероидов. Но они ведь могут играть и роль отрицательную.
   «…Около 65 млн лет назад гигантское небесное тело — астероид или комета диаметром около километра — низринулось с небес, столкнувшись с Землей на скорости более 10 км/с. Огромное количество энергии, выделившееся при ударе, породило кошмарную цепь катастроф — бури, цунами, холод и тьму, парниковое потепление, кислотные дожди и всемирные пожары. Когда же восстановилось спокойствие, оказалось, что более половины видов существовавшей флоры и фауны исчезли. История Земли пошла по-новому, непредвиденному пути».
   Так считают американские исследователи Уолтер Альварес и Фрэнк Азаро, воссоздавшие сценарий подобной катастрофы. Американцев поддержал швейцарский астроном Андрэ Медер, подсчитавший, что столкновение должно было привести к поднятию огромного количества пыли и мельчайших частиц, которые способны затмить земную атмосферу на несколько месяцев или даже лет. Наступившая «полярная ночь» с резким понижением температуры и привела к вымерзанию большинства ранее существовавших видов флоры и фауны.
   По следам иридия. Свою гипотезу специалисты построили не на пустом месте. Отец одного из авторов «сценария катастрофы», лауреат Нобелевской премии Луис Альварес и его коллега Элен Мишель из Беркли более четверти века тому назад нашли фактическое подтверждение такого столкновения. Они обнаружили необычайно большое количество очень редкого металла иридия в осадочных породах слоев, соответствующих времени гибели динозавров в конце мелового периода. «Он мог попасть на Землю разве что в результате столкновения с нашей планетой астероида диаметром около 10 км», — решили эксперты.
   Их метод основан на следующем соображении. Обычное содержание иридия в земной коре — около 0,003 части на миллиард. Однако анализ «небесных гостинцев» — метеоритов — показывает, что содержание металла в них достигает 500 частей на миллиард. Если в доисторические времена Земля действительно подверглась атаке из космоса, рассудили исследователи, то в донных осадках должна содержаться прослойка, имеющая в своем составе аномально большое количество иридия. Ведь некоторое количество его при ударе должно было испариться, а затем тонким слоем рассеяться по всей планете, зафиксировавшись в осадочных породах.
   Прослойка была обнаружена, теперь оставалось расследовать механизм атаки из космоса. Компьютерное моделирование показало, что астероид должен был пробить гигантскую дыру в атмосфере. В нее, вполне возможно, и были выброшены испарившиеся остатки астероида, а также частицы земных пород.
   Далее компьютерная модель продемонстрировала, что удар по Земле тела диаметром 1-2 км и более не только привел бы к образованию кратера около 150 км в поперечнике, но и уничтожил все живое в пределах видимости огненного шара. Пыль, поднятая в верхние слои атмосферы и даже за ее пределы, способна задержать свет, без которого прекращается фотосинтез в растениях.
   Если же падение астероида пришлось на океан, то в атмосферу поднялась не только пыль со дна и берегов, но и водяной пар. Он должен был оставаться в воздухе еще дольше, чем пыль, окутывая Землю подобно ватному одеялу. Поэтому вслед за «полярной ночью» и «зимой» должен был последовать период парникового потепления. И многие виды животных и растений, которые сумели пережить холода, погибли потом от теплового удара.
   Оставалось уточнить место действия — найти кратер диаметром 150, а возможно, 200 или даже 300 км! Однако долгое время поиски оставались безуспешными; хотя в ходе их были обнаружены десятки кратеров, однако все они не подходили к данному случаю либо по времени, либо по диаметру. Разгорались споры, постепенно стали накапливаться противоречивые данные, указывающие на разные места и даты предполагаемой катастрофы.
   Более того, в 1981 году профессор Иельского университета Лью Хики опубликовал в британском научном журнале «Нейчур» статью, в которой утверждал, что апокалиптические изменения флоры и фауны происходили в конце мелового периода постепенно и не обязательно были результатом катастрофы.