То, что люди делают целенаправленно, слепые силы естественного отбора делают очень медленно, в течение веков. В каждом поколении отпрыски определенных особей из-за незначительных мутаций частично изменяются, изменения передаются от особи к особи. Те, чьи мутации позволяют участвовать в игре жизни более эффективно, имеют больше шансов выжить и передать эти мутации более многочисленным потомкам. Одна особь заменяет другую, и понемногу за миллионы лет из видов особей создаются новые.
   Это – основная мысль теории эволюции путем естественного отбора, выдвинутая в 1858 году английским натуралистом Чарлзом Дарвином и Альфредом Расселом Уоллесом.
   На молекулярном уровне мутации являются результатом несовершенного копирования ДНК. Оно может иметь место от клетки к клетке в процессе деления клеток. В этом случае в пределах организма может быть произведена клетка, которая непохожа на другие клетки. Это – «соматические мутации».
   Обычно мутация неблагоприятна. В конце концов, если мы обратимся к сложной молекуле ДНК, которая повторяет себя и ставит в соответствующее место неправильный строительный блок, то нам станет ясно, что вряд ли из-за ошибки результат будет лучше. В итоге клетка кожи или, скажем, печени, подвергнувшаяся мутации, может работать настолько плохо, что по существу не будет производить нужного действия, и очень вероятно, что будет не способна делиться. Другие, нормальные клетки будут, когда необходимо, продолжать деление и будут вытеснять ее из жизни. Таким образом ткань в целом остается нормальной, несмотря на случайные мутации.
   Главное исключение – мутация, направленная на процесс роста. Нормальные клетки в ткани растут и делятся, только когда это необходимо, чтобы заменить пропавшие или поврежденные клетки, но у мутировавшей клетки может не хватать механизма, предназначенного для прекращения роста в соответствующее время. Она может только расти и беспомощно множиться, хотя в этом нет необходимости для существования. Подобный анархический рост – это рак, он является наиболее серьезным результатом соматической мутации.
   Иногда молекула ДНК мутирует таким образом, что при определенных условиях может работать лучше. Это происходит не часто, но клетки, содержащие ее, будут выживать и процветать, так что естественный отбор Действует не только в отношении целых организмов, но и в отношении программы ДНК. Так, должно быть, и образовались первые молекулы ДНК из простых строительных блоков, благодаря случайным факторам, пока не сформировалась одна, способная к копированию, а эволюция довершила остальное.
   Время от времени клетки спермы или яйцеклетки образуются с несовершенно повторенной ДНК. Это приводит к мутации в потомстве. Опять же большинство мутаций неблагоприятны, так что претерпевший мутацию приплод либо не способен развиваться, либо умирает молодым, либо, если даже остается жить и имеет потомство, то оно постепенно вытесняется более эффективными особями. Благоприятная мутация происходит исключительно случайно, такая мутация утверждает себя и передается потомству.
   Хотя благоприятные мутации происходят значительно реже, чем неблагоприятные, именно первые имеют тенденцию выживать и вытеснять последние. По этой причине любой, кто наблюдает за ходом эволюции, может увидеть, что за этим как бы стоит цель: организм как бы сознательно пытается усовершенствовать себя.
   Трудно поверить, что случайные процессы, успехи и неудачи могут дать такие результаты, которые мы сегодня видим вокруг себя. Но при наличии достаточного количества времени и при наличии системы естественного отбора, которая допускает гибель миллионов особей, так, что могут утвердиться немногие улучшения, случайные процессы делают свою работу.
Генетический груз
   Но почему молекулы ДНК то и дело копируют себя несовершенно? Копирование – случайный процесс. Когда нуклеотидные строительные блоки выстраиваются против пряди ДНК, только один-единственный определенный нуклеотид должен идеально соответствовать по строению каждому расположенному против него определенному нуклеотиду уже существующей пряди. Только этот должен, так сказать, приклеиться. Нуклеотиды остальных трех разновидностей не должны делать этого.
   Однако при слепом движении молекул нуклеотид, которому вообще говоря, здесь не место, не успев отскочить, может быть зажат с обеих сторон другими нуклеогидами, которые преждевременно заняли соответствующие распорядку свои места. Теперь у нас новая прядь ДНК, которая не точно соответствует тому, что требовалось, а отличается одним нуклеотидом и поэтому будет производить фермент, отличающийся одной аминокислотой. Несмотря на это, несовершенная прядь оформилась в новую модель и в новых копированиях будет воспроизводить себя, а не первоначальный оригинал.
   При естественных обстоятельствах шанс несовершенного копирования пряди ДНК только 1 на 50000-100 000 случаев, но в живых организмах существует так много генов и происходит так много копирований, что шанс мутации становится непреложным фактом.
   У людей примерно 2 из 5 оплодотворенных яйцеклеток содержат по крайней мере один мутировавший ген. Это означает, что около 40 процентов людей так или иначе являются мутантами в отношении своих родителей. Поскольку мутировавший ген передается по наследству, покуда не «вымрет», по некоторым оценкам каждый человек несет в себе примерно восемь мутировавших генов – и почти во всех случаях мутация генов является неблагоприятной. (Тем обстоятельством, что мы почти не ощущаем этого, мы обязаны тому, что гены формируются парами, и если один ненормален, то нас поддерживает другой.) Вероятность мутаций зависит лишь от слепой случайности. Существуют факторы, которые увеличивают вероятность несовершенного копирования, например, различные химикаты, которые вмешиваются в четкую работу ДНК и затрудняют ее стремление работать только с соответствующими нуклеотидами. Поскольку молекула ДНК очень сложна, в нее способны внедряться многие химикаты. Такие химикаты называют «мутагенами».
   Существуют также субатомные частицы с их выходками. Молекулы ДНК спрятаны в хромосомах, которые сами погребены в ядрах, в центре клеток, и химикатам не так-то просто добраться до них. Субатомные частицы, однако, легко пробиваются в клетки, и, ударяя в молекулы ДНК, способны выбить из их структуры какие-либо атомы или изменить их физически.
   Работа молекул ДНК в этом случае будет нарушена настолько, что они вообще потеряют способность копироваться, и клетка может погибнуть. Если большое число жизненно важных клеток убито, индивидуум может погибнуть от «лучевой болезни».
   При менее сильном воздействии клетка может выжить, а произойдет лишь мутация. (Мутация может вызывать заболевание раком, и известно, что энергетическое излучение канцерогенно точно так же, как и мутагенно. Собственно, одно подразумевает другое.) Конечно, если яйцеклетки или клетки спермы испытывают такое воздействие, образуются отпрыски с мутациями, иногда настолько радикальными, что наблюдаются серьезные врожденные дефекты. (Это может быть вызвано также и химическими мутагенами.) Мутагенный эффект радиации был впервые продемонстрирован в 1926 году американским биологом Германом Джозефом Мюллером (1890—1967), когда он исследовал мутации на плодовых мушках; для удобства он размножал их и подставлял под рентгеновские лучи.
   Рентгеновские лучи и радиоактивное излучение были недоступны до двадцатого века, но это не означает, что тогда не было мутагенных форм радиации. На протяжении жизни солнечный свет существовал всегда, а солнечный свет – тоже слабый мутаген, так как содержит излучение (поэтому слишком длительное пребывание на солнце увеличивает вероятность заболевания раком кожи).
   Кроме того, существуют космические лучи, которым жизнь подвергается постоянно. Нет сомнения (хотя кое-кто может не согласиться), что космические лучи вследствие мутаций, которые они вызывают, были главной движущей силой эволюции в течение последних нескольких миллиардов лет. Так что восемь мутировавших генов на индивидуум – почти все вредоносные – это, так сказать, цена, которую мы платим за кое-какие благоприобретения, от которых зависит будущее.
   Конечно, если немного – хорошо, это не означает, что много – лучше. Наиболее неблагоприятные мутации, возникшие по какой бы то ни было причине, подтачивают здоровье данной особи, поскольку в результате дают ряд индивидуумов, так сказать, «ниже нормы». Это «генетический груз» для таких особей (термин впервые применен Г. Дж. Мюллером). Однако имеется все же существенный процент индивидуумов без серьезных неблагоприятных мутаций, а также немного индивидуумов, обладающих благоприятными мутациями. Им удается последовательно перебороть и выпестовать ненормативных, так что в целом особи выживают и развиваются, несмотря на генетический груз.
   Но что, если генетический груз возрастет из-за того, что по какой-то причине возрастет частота мутаций? Это означает, что будет больше индивидуумов ниже нормы и меньше нормальных, лучших по качествам особей. При этих условиях просто может не оказаться достаточного количества нормальных или лучших по качествам индивидуумов, чтобы сохранить особи растущими, несмотря на всех ненормативных индивидуумов. Короче говоря, увеличивающийся генетический груз не ускорит эволюцию, как можно было бы предполагать, а ослабит особи, приведет к их вымиранию. Малый генетический груз – полезен, большой – смертелен.
   Но что может вызвать увеличение частоты мутаций? Случайные факторы остаются случайными, и большинство мутагенных факторов в прошлой истории – солнечный свет, химикаты, естественная радиоактивность – были более или менее постоянными в своем влиянии. А как насчет космических лучей? Что, если по какой-либо причине интенсивность космических лучей, достигающих Земли, увеличится? Не может ли это ослабить многие особи и привести к великому умиранию благодаря генетическому грузу, который станет слишком большим для того, чтобы выжить?
   Даже если согласиться с тем, что имевшие место великие умирания в истории Земли были связаны с высыханием внутренних морей, не могло ли привести к великому умиранию также и неожиданное увеличение интенсивности космических лучей? Вероятно, могло, но что в таком случае вызывало неожиданное увеличение интенсивности космических лучей?
   Одна возможная причина – расширение сферы действия сверхновых, которые, в конечном счете, являются основным источником космических лучей. Но это маловероятно. В сотнях миллиардов звезд нашей Галактики общее количество сверхновых из года в год, из века в век, остается приблизительно одним и тем же. А не могло ли быть так, что расположение сверхновых меняется, что одно время большее их число находится на другом конце Галактики, а в другое время большее число их находится на нашем конце?
   Собственно, это не воздействовало бы на интенсивность космических лучей так сильно, как можно подумать. Поскольку частицы космических лучей движутся искривленными путями благодаря большому числу обширных магнитных полей в Галактике, они имеют тенденцию, так сказать, размазываться, распределяться равномерно по Галактике, независимо от места происхождения.
   Сверхновыми постоянно образуются большие количества частиц новых космических лучей, в меньшем количестве их образуют обычные гигантские звезды, частицы эти постоянно ускоряются и становятся более энергетичными. При достаточном ускорении они вообще улетают из Галактики, к тому же большие их количества постоянно попадают в звезды и другие объекты Галактики. Возможно, за 15 миллиардов лет существования Галактики установилось равновесие, и сколько частиц космических лучей образуется, столько же и исчезает. По этой причине мы можем считать, что интенсивность космических лучей вблизи Земли будет оставаться постоянной.
   Существует, однако, одно возможное исключение. Если бы сверхновая взорвалась вблизи Земли, это могло бы вызвать бедствие. Я рассматривал ранее такие близкие сверхновые и пришел к выводу, что шансы такого происшествия в обозримом будущем очень малы. Даже в этом случае у меня речь шла только о свете и о тепле, которые мы могли бы получить от подобного объекта. А как же насчет космических лучей, которые бы мы получили, поскольку расстояние от близкой сверхновой было бы для нас слишком малым, чтобы рассчитывать на достаточное их распространение и рассеяние их магнитными полями?
   В 1968 году американские ученые К. Д. Терри и В. X. Такер обратили внимание на довольно большую сверхновую, которая излучала космические лучи в триллион раз интенсивнее, чем Солнце, и это излучение в космос продолжалось по крайней мере неделю. Если бы такая сверхновая была от нас на расстоянии хотя бы в 16 световых лет, энергия космических лучей, достигающих нас даже с такого огромного расстояния, была бы равна суммарной солнечной радиации за этот же период, и этого должно было бы хватить, чтобы каждый из нас (возможно, также и большинство других форм жизни) получил смертельную дозу радиации. Дополнительное тепло, доставляемое такой сверхновой, и тепловая волна, которая получилась бы в результате, в таком случае не имели бы уже никакого значения.
   Конечно, нет настолько близких к нам звезд, способных взорваться в гигантскую сверхновую, такой ситуации не было в прошлом и, насколько нам известно, не ожидается и в обозримом будущем. Однако сверхновая, находящаяся гораздо дальше, могла бы тоже причинить значительный вред.
   В настоящее время интенсивность космических лучей, достигающих атмосферы Земли, составляет около 0,03 рентгена в год, и потребовалось бы в 500 раз больше, или 15 рентген в год, чтобы причинить вред. И все же по частоте сверхновых, по их случайным позициям и размерам Терри и Такер рассчитали, что вследствие взрывов сверхновых Земля могла бы получать концентрированную дозу излучения в 200 рентген, примерно каждые 10 миллионов лет, и значительные дозы, соответственно, в более длительные интервалы. За 600 миллионов лет, со времени, до которого добирается изучение окаменелостей, существует реальный шанс, что по крайней мере одна вспышка в 25 000 рентген достигла нас. Безусловно, это могло бы привести к бедствию, но существуют естественные механизмы, снижающие эффективность бомбардировки космическими лучами.
   Например, я только что говорил об интенсивности космических лучей, достигающих атмосферы Земли. Это было сказано намеренно, потому что атмосфера не вполне прозрачна для космических лучей. Когда космические частицы несутся мимо атомов и молекул, составляющих атмосферу, рано или поздно происходят столкновения. Атомы и молекулы разбиваются вдребезги, и частицы вылетают из них уже как «вторичная радиация».
   Вторичная радиация менее энергетична, чем «основная радиация», состоящая из частиц космических лучей в открытом космосе, но она все еще достаточно энергетична, чтобы принести немало вреда. Однако и вторичная радиация претерпевает дальнейшие столкновения с атомами и молекулами в атмосфере Земли, и к тому времени, когда летящие частицы достигают поверхности Земли, атмосфера поглощает существенную часть энергии.
   Короче говоря, атмосфера действует, как защитное одеяло, не до конца эффективное, но не такое уж и неэффективное. Астронавты на околоземной орбите или на Луне подвергаются более интенсивной бомбардировке космическими лучами, чем мы на поверхности Земли, и это приходится учитывать.
   Астронавты во время сравнительно коротких выходов в космос могут получить дополнительную дозу радиации, но обитателям космических поселений такая опасность не грозит. Ведь поселения можно спроектировать со стенами, достаточно толстыми, чтобы обеспечить по крайней мере такую же защиту от космических лучей, какую дает атмосфера Земли.
   Правда, если наступит время, когда основная часть человечества разместится в космических поселениях и сочтет себя свободной от перипетий Солнца – она будет безразлично относиться к тому, что Солнце превратится сначала в красного гиганта, а потом станет белым карликом, – прилив и отлив потока космических лучей может оказаться его главной заботой и главной угрозой катастрофы.
   Возвращаясь снова к Земле, замечу: пока атмосфера сохраняет свою настоящую структуру и состав, нет причин полагать, что ее защитное действие ослабнет и сделает нас более уязвимыми при увеличении интенсивности космических лучей. Существует, однако, и другой вид защиты, который нам предоставляет Земля. Он более эффективен, но зато менее долговечен, и чтобы это объяснить, понадобится небольшое отступление.
Магнитное поле Земли
   Уже за 600 лет до н. э. греческий философ Фалес (624—546 до н. э.) впервые проводил опыты с естественными магнитными минералами и открыл, что они могут притягивать железо. Со временем узнали, что минерал магнитный железняк (который известен нам, как окись железа) можно использовать для притягивания тонких кусочков стали, которые потом проявляют это свойство более интенсивно, чем сам магнитный железняк.
   В средние века открыли, что если намагниченную иголку поместить на легкий плавающий предмет, то эта иголка непременно остановится в направлении север-юг. Один конец иголки был поэтому назван северным магнитным полюсом, а другой – южным. Первыми, заметившими этот факт незадолго до 1100 года, были китайцы, приблизительно век спустя он стал известен и европейцам.
   Именно использование намагниченной иголки в качестве «морского компаса» обезопасило европейских штурманов в море и позволило совершать дальние путешествия, а вскоре после 1400 года привело к великим географическим открытиям, которые дали Европе мировое господство почти на пять веков. (Финикийцы, викинги и полинезийцы совершали замечательные морские путешествия без компасов, но подвергались большому риску.) Способность иглы компаса казалась поначалу весьма загадочной, и наименее мистическое объяснение состояло в том, что на дальнем севере находится гора из магнитной руды и она притягивает иголки. Естественно, рождались рассказы о кораблях, рискнувших приблизиться к этому огромному магниту. В этом случае магнит вытаскивал гвозди из кораблей, корабли распадались на части и тонули. Одна из таких историй содержится в «Тысяче и одной ночи».
   Английский врач Уильям Гильберт (1544—1603) дал в 1600 году гораздо более интересное объяснение. Он придал куску магнитного железняка форму шара и исследовал направления, которые указывала игла компаса рядом с этим шаром. Он установил, что она вела себя в отношении магнитного шара точно так же, как и в отношении Земли. Он заключил из этого, что Земля представляет собой огромный магнит с северным магнитным полюсом в Арктике и южным магнитным полюсом в Антарктике.
   В 1831 году шотландским исследователем Джеймсом Кларком Россом (1800—1862) было определено местоположение северного магнитного полюса, он оказался на западном берегу полуострова Бутия на крайнем севере Северной Америки. На этом месте северный конец иглы компаса указал прямо вниз. Местоположение южного магнитного полюса было определено в 1909 году австралийским геологом Эджвортом Дэвидом (1858—1934) и британским исследователем Дугласом Моусоном (1882—1958), он оказался на краю Антарктиды.
   Но почему Земля – магнит? С тех пор как английский ученый Генри Кавендиш (1731—1810) измерил в 1798 году массу Земли, стало ясно, что плотность Земли слишком высока, чтобы она состояла только из камня. Родилась идея, что центр ее состоит из металла. Так как уже было известно, что большинство метеоритов состоит из железа и никеля в соотношении примерно 10:1, возникла мысль, что и центр Земли может состоять из подобной же смеси металлов. Об этом впервые заявил в 1866 году французский геолог Габриэль Август Дебре (1814—1896).
   В конце девятнадцатого века были детально изучены волны землетрясений, распространяющиеся по Земле. Было доказано, что эти волны, проникая на глубину до 2900 километров, резко изменяют направление.
   В 1906 году предположили, что на этой глубине происходит резкое изменение химического состава, что волны здесь, пройдя каменную мантию, достигают металлического ядра. Теперь это подтвердилось. Земля имеет железо-никелевое ядро, то есть сферу приблизительно 6900 километров в диаметре. Это ядро составляет одну шестую объема Земли, а из-за своей высокой плотности – одну треть ее массы.
   Есть искушение предположить, что это-то железное ядро и является магнитом, и что это объясняет поведение стрелки компаса. Однако это не так. В 1896 году Французский физик Пьер Кюри (1859—1906) доказал, что магнитная субстанция теряет магнетизм, если ее нагреть до достаточно высокой температуры. Железо теряет свои магнитные свойства в точке Кюри – 760°С. Для никеля точка Кюри составляет 356°С.
   Возможно, температура железо-никелевого ядра выше точки Кюри? Действительно, волны некоторых типов землетрясений никогда не проникают в ядро из мантии. Они относятся к таким волнам, которые не могут двигаться по жидкостному телу, и выходит, что ядро – жидкое, и оно достаточно горячо, чтобы состоять из жидкого никелевого железа. Точка плавления железа 1535°С при обычных условиях и должна быть еще выше при большом давлении на границе ядра, уже только из этого следует, что ядро не может быть таким же магнитом, каким был кусок обычного железа.
   Однако наличие жидкого ядра открыло новые возможности. В 1820 году датский физик Ганс Христиан Эрстед (1777—1851) открыл возможность производить магнитные эффекты с помощью электричества (электромагнетизм). Если электрический ток проходит по проволочной спирали, возникает магнитный эффект, очень похожий на тот, который производил бы обычный брусочный магнит, если бы мы мысленно разместили его вдоль оси спирали.
   Основываясь на этом, американский геофизик немецкого происхождения Вальтер Мориц Эльзассер (р. 1904) в 1939 году высказал предположение, что вращение Земли может образовывать в ее жидком ядре завихрения, своего рода обширные, медленные водовороты расплавленного никелевого железа. Атомы состоят из электрически заряженных субатомных частиц, и из-за определенной структуры атома железа такие водовороты могли бы создавать эффект электрического тока, текущего по кругу.
   Поскольку водовороты образуются благодаря вращению с запада на восток, они бы тоже восприняли движение с запада на восток, и железо-никелевое ядро тогда бы действовало как брусок магнита, поставленный по вертикали север-юг.
   Магнитное поле Земли, однако, не всегда постоянно. Магнитные полюса с годами меняют свое положение и по какой-то причине, которую мы пока не можем объяснить, находятся примерно в 1600 километрах от географических полюсов. К тому же магнитные полюса расположены не точно на противоположных сторонах Земли. Линия, опущенная от северного магнитного полюса к южному, пройдет приблизительно в 1100 километрах в стороне от центра Земли. Вдобавок магнитное поле изменяется из года в год по напряженности.
   Сопоставив все эти вещи, можно задуматься над тем, что же произошло с магнитным полем в прошлом и что может произойти с ним в далеком будущем. К счастью, есть способ разобраться по крайней мере с прошлым.
   Среди компонентов лавы, извергаемой вулканами, обнаруживаются различные слабо магнитные минералы. Молекулы этих минералов имеют свойство ориентироваться вдоль магнитных силовых линий. Пока минералы в жидком виде, это свойство преодолевается беспорядочным движением молекул, связанным с высокой температурой. Однако, когда вулканическая порода медленно остывает, беспорядочное движение молекул замедляется, и в конечном счете молекулы ориентируются на север и юг. Когда лава застывает, эта ориентация фиксируется. Молекула за молекулой застывают, и наконец образуются целые кристаллы, в которых мы можем обнаружить их магнитные полюса: северный полюс, указывающий на север, и южный полюс, указывающий на юг, точно так же как и магнитный компас. (Мы можем установить, где северный полюс кристалла или любого другого магнита, так как он отталкивает северный полюс стрелки компаса.) В 1906 году французский физик Бернар Брюнес обнаружил, что некоторые вулканические кристаллы намагничены в направлении, противоположном нормальному. Их северные магнитные полюса (как установлено стрелкой компаса) указывали в южном направлении. Спустя годы после оригинального открытия Брюнеса было изучено огромное количество вулканических пород и установлено, что хотя во многих случаях у кристаллов северные магнитные полюса указывают на север, как и обычно, во многих других случаях у кристаллов их северные магнитные полюса указывают на юг. Очевидно, магнитное поле Земли периодически меняется на противоположное.
   Измеряя возраст изучаемых горных пород (всеми известными методами), установили, что последние 700 000 лет магнитное поле находилось в его настоящем положении, которое мы назовем «нормальным». До этого в течение примерно миллиона лет оно было в «противоположном» положении, за исключением двух периодов по 100 000 лет, в течение которых оно было нормальным.
   В общем, за последние 76 миллионов лет установлено не менее 171 перемены расположения магнитного поля. Средняя продолжительность периода полной перемены положения составляет около 450 000 лет, а два возможных положения, нормальное и противоположное, занимают в конечном счете такое же количество времени. Однако время между переменами положения сильно изменяется. Самое продолжительное время между переменами положения составляет 3 миллиона лет, самое короткое – 50 000 лет.