Страница:
Это означает, что Соединенные Штаты должны импортировать все больше и больше нефти. Это склоняет торговый баланс во все более неблагоприятном направлении, оказывает невыносимое давление на доллар, ведет к повышению инфляции и в общем неуклонно подрывает американскую экономику.
Сбережение поэтому для нас не только желательно, но и необходимо.
А сберегать энергию есть где, начиная с устранения величайших расточителей энергии – различных военных машин мира. С тех пор как война стала невозможна без самоубийства, обеспечение конкуренции военных машин при астрономических ценах на энергию, в условиях, когда основной мировой запас ее быстро сокращается, – явно неразумно.
Помимо прямого сбережения нефти, существуют прямые возможности увеличения эффективности добычи, при которых нефть может продолжать извлекаться из существующих скважин, так что «сухие» скважины смогут продолжать выдавать нефть.
Кроме того, может быть увеличена эффективность, с которой энергия извлекается из сжигаемой нефти (или в общем из сжигаемого топлива). В настоящее время тепло от горящего топлива производит взрывы, которые приводят в движение части двигателя внутреннего сгорания, или оно преобразует воду в пар, давление которого вращает турбину, вырабатывающую электричество. В таких устройствах только 25—40 процентов энергии сжигаемого топлива превращается в полезную работу, остальное теряется как неиспользованное тепло. И мало надежды значительно повысить эффективность.
Существует, однако, другая стратегия. Горящим топливом можно нагревать газы, пока атомы и молекулы не расщепятся на электрически заряженные частицы, которые можно пропускать через магнитное поле, создавая таким образом электрический ток. Такие процессы «магнитогидродинамики» (МГД) будут действовать с существенно более высокой эффективностью, чем обычные технологии.
Теоретически возможны технологии выработки электричества и накопления его в электрических батареях путем прямого соединения топлива с кислородом, минуя промежуточное производство тепла. Здесь достижима эффективность 75 процентов, а то и все 100 процентов. До сих пор такие «топливные батареи» не разработаны, хотя трудности, которые стоят на этом пути, можно преодолеть.
Если уж на то пошло, могут быть найдены новые нефтяные источники. История последнего полувека – это история последовательных предсказаний истощения нефтяных ресурсов, которые не оправдывались. Перед Второй мировой войной представлялось, что добыча нефти достигнет пика и пойдет на убыль в 40-е годы; после войны дата была отложена на 60-е, сейчас – на 90-е. Так она и будет откладываться.
Ясно, что мы не можем на это рассчитывать. Что больше всего влияло на перенесение расчетного дня, это открытие время от времени новых нефтяных ресурсов. Самое крупное из этих открытий – это довольно удивительная находка в годы после Второй мировой войны: было обнаружено, что нефтяные резервы Среднего Востока неожиданно огромны. В настоящее время 60 процентов известных нефтяных резервов сконцентрировано в маленьком районе около Персидского залива (который был также главным местонахождением – вот любопытное совпадение, – самой ранней цивилизации человечества).
Маловероятно, чтобы мы еще раз столкнулись с такой богатой находкой. С каждым десятилетием все большие площади Земли прочесываются в поисках нефти посредством все более сложной техники. Мы нашли некоторое количество нефти на Аляске, некоторое количество в Северном море, мы все более тщательно проводим разведку на континентальном шельфе, но наступит день, когда уже больше нечего будет находить, не останется больше запасов нефти.
Мы можем заниматься сбережением, увеличивать эффективность старых скважин и строить новые, но представляется неизбежным, что пройдет немного времени, и не успеет закончиться двадцатый век, как все нефтяные скважины окажутся почти иссякнувшими. Что же тогда?
Когда это произойдет, нефть смогут получать из других источников, помимо нефтяных скважин, где нефть находится в пустотах подземных пород и откуда она сравнительно легко извлекается. Существует еще сланец, горная порода, которая содержит смолистое органическое вещество, называемое «кероген». Если сланец нагреть, то молекулы керогена расщепляются, и получается вещество, очень похожее на сырую нефть. Количество такой сланцевой нефти в земной коре должно быть примерно в 3000 раз больше обычной нефти. Одно месторождение нефтяного сланца в Соединенных Штатах может содержать нефти в семь раз больше всей нефти на Среднем Востоке.
Проблема в том, что сланец надо добывать шахтным способом, его необходимо нагревать и произведенную нефть (даже самый богатый сланец дает лишь два барреля на тонну породы) придется рафинировать не совсем теми методами, которые сейчас применяются. После этого еще придется как-то избавляться от отработанного сланца. Трудности и расходы очень велики, а обычная нефть еще слишком доступна, чтобы заставить людей делать капитальные вложения. Однако в будущем, когда нефти станет меньше, сланцевая нефть может послужить для того, чтобы приостановить спад (разумеется, цена ее будет выше).
Затем, конечно, существует каменный уголь. Уголь был основным источником энергии до того, как его заменила нефть, и он все еще есть, его можно добывать. Обычно считают, что в земле угля достаточно для того, чтобы мир был в движении при существующем темпе потребления энергии на протяжении тысяч лет. Однако в настоящий момент не всякий уголь можно добыть практикующимися шахтными методами. Даже по самой скромной оценке уголь будет существовать еще несколько сотен лет, и к тому времени технологии шахтных работ могут усовершенствоваться.
С другой стороны, шахтная добыча опасна. Происходят взрывы, обрушения, случаются удушья. Работа физически тяжелая, шахтеры умирают от заболеваний легких. Процесс работы в шахтах имеет тенденцию загрязнять землю вокруг шахты, громоздить горы шлака и пустой породы. После того как уголь извлечен из шахты, его надо транспортировать, это гораздо более трудная задача, чем качать нефть по трубопроводу. С углем гораздо труднее обращаться, чем с нефтью, он оставляет тяжелую золу, а также (если не принимаются меры по очистке угля перед использованием) загрязняющий воздух дым.
И все же мы можем ожидать, что к углю подойдут с новыми, более сложными технологиями. Поверхность земли можно восстановить. (Конечно, потребуются время, труд и деньги, чтобы это сделать.) Затем, чтобы избежать огромных расходов и трудностей по перевозке навалом, многое можно сделать на шахтной площадке.
Например, на шахтной площадке можно сжечь уголь, чтобы произвести электричество по технологии магнитогидродинамики. В таком случае придется транспортировать именно электричество, а не уголь.
Уголь также можно нагревать в угольной шахте, чтобы получить газы, включая окись углерода, метан и водород. Их можно так обработать, чтобы получить эквиваленты природного газа, бензин и другие нефтепродукты. И тогда надо будет транспортировать нефть и газ, а не уголь, и угольные шахты станут нашими новыми нефтяными скважинами.
Даже тот уголь, который должен использоваться как уголь (например, при производстве железа и стали), может использоваться более эффективно. Его можно превратить в тонкую пыль, которую, возможно, удастся перевозить, воспламенять и сжигать с ненамного большими трудностями, чем нефть.
Наряду со сланцевой нефтью и угольными шахтами, мы вполне могли бы тогда использовать нашу нефть до того, как окончательно иссякнут нефтяные скважины, и принципиально не менять технологию еще несколько веков.
Существует, однако, серьезная опасность, связанная с зависимостью от нефти и угля и не зависящая от того, насколько развиты наши технологии. Эти «ископаемые виды топлива» залегли под землю за сотни миллионов лет, они представляют много триллионов тонн углерода, который все это время не был в атмосфере ни в какой форме.
Сейчас мы сжигаем эти виды топлива все большими и большими темпами, превращая углерод в двуокись углерода и выбрасывая ее в атмосферу. Часть ее растворится в океане, часть ее может быть поглощена более интенсивным ростом растений, который может быть ускорен ее наличием. Часть ее, однако, останется в воздухе и повысит содержание двуокиси углерода в атмосфере.
Например, в 1900 году содержание двуокиси углерода в атмосфере составляло 0,029 процента, а теперь достигло 0,032 процента. По предварительной оценке к 2000 году концентрация двуокиси углерода достигнет 0,038 процента, то есть увеличение за век примерно на 30 процентов. Это, должно быть, результат, во всяком случае частично, сгорания ископаемых видов топлива, хотя это, также частично, может быть следствием отступления лесов, более эффективных поглотителей углерода, чем другие виды растительности.
Увеличение содержания в атмосфере двуокиси углерода, конечно, невелико. Даже если процесс сгорания ископаемых видов топлива продолжится и ускорится, оценено, что самая высокая концентрация, которой мы, вероятно, достигнем, будет 0,115 процента. Но даже это не отразится на нашем дыхании.
Однако нам надо беспокоиться не о дыхании. Не требуется большого увеличения концентрации двуокиси углерода в атмосфере, чтобы значительно усилить парниковый эффект. Средняя температура Земли могла бы быть в 2000 году на один градус по Цельсию выше, чем в 1900 году из-за добавившейся двуокиси углерода (Конечно, парниковому эффекту противодействует тот факт, что в результате деятельности промышленности в воздух выбрасывается также и больше пыли. Это повышает уровень отражения атмосферой солнечного света в космос, и это может охлаждать Землю. Действительно, у нас были необычно холодные зимы в 70-е годы. Однако в конце концов согревающий эффект двуокиси углерода безусловно выиграет эту гонку, особенно если мы не примем меры по очистке атмосферы, когда ее загрязнение достигнет опасного уровня). Я взял бы больший период, чтобы достичь точки, когда климат Земли будет испытывать серьезное воздействие и когда ледовые шапки Земли могут начать таять с гибельными последствиями для континентальных низин.
Собственно, существует и такое мнение, что если содержание двуокиси углерода увеличится выше определенной точки, небольшое увеличение средней температуры океана высвободит двуокись углерода из раствора ее в океанской воде, что соответственно усилит парниковый эффект и поднимет температуру океана еще выше, высвобождая еще больше двуокиси углерода, и так далее. Подобный «неудержимый парниковый эффект» в конце концов может поднять температуру выше точки кипения и сделать Землю необитаемой, и это будет, безусловно, катастрофическим последствием сжигания ископаемых видов топлива.
Некоторые полагают, что период мягкого парникового эффекта в прошлом оказал на Землю радикальное воздействие. Около 75 миллионов лет назад тектонические процессы произвели изменения земной коры таким образом, что вызвали усыхание ряда мелких морей. Эти моря были особенно богаты водорослями, которые абсорбировали двуокись углерода из воздуха. Содержание атмосферной двуокиси поэтому увеличилось, и Земля стала теплее.
Крупные животные имеют меньшую способность понижать температуру тела, чем мелкие, и им гораздо труднее сохранять свою относительно невысокую температуру, не давая ей повышаться. В особенности клетки спермы, которые особенно чувствительны к теплу, могли быть повреждены в это время, так что крупные животные потеряли способность к воспроизведению потомства. Может быть, таким образом и вымерли динозавры.
Не ожидает ли и нас похожая и даже худшая судьба, которую мы уготовим сами себе?
В других подобных случаях я полагался на наши достижения в будущем, которые могли бы нам помочь противостоять катастрофе или избежать ее, и мы можем представить себе человечество способным обработать атмосферу таким образом, чтобы извлечь избыточную двуокись углерода. Однако если начнет свое действие «неудержимый парниковый эффект», он (в отличие от катастрофы наступления ледникового периода или расширяющегося Солнца), вероятно, обрушится столь стремительно, что трудно представить нашу технику, продвигающуюся вперед настолько быстро, чтобы она могла нас спасти.
Тогда вполне может статься, что проекты поиска новых нефтяных скважин или замены нефти сланцем или углем, являются вопросом, не имеющим практического значения, что существует критический уровень темпа, которым мы можем сжигать ископаемое топливо любого рода и из любого источника без риска парниковой катастрофы. Оставляет ли это нам какие-нибудь альтернативы, или же нам надо в отчаянии ждать, что цивилизация так или иначе потерпит крах в течение следующего века?
Альтернатива есть. Существуют старые источники энергии, которые человечество знало до того, как на сцене появились ископаемые виды топлива. Существуют наши мускулы и мускулы животных. Существует ветер, движущая сила воды, приливы и отливы, внутреннее тепло Земли, дерево (Источники энергии могут быть очень неожиданными. Так, 13 января 1998 года программой развития нетрадиционных источников энергии ЕС Thermie в Нортгемптоне в Англии намечено строительство электростанции, действующей на курином помете. Предполагается, что она будет сжигать в топках 120 тысяч тонн куриного помета в год). Все они производят энергию и не имеют в качестве последствия загрязнения, и все они возобновляемы и неиссякаемы. Более того, их можно использовать более сложным образом, чем ранее.
Например, нам не нужно как сумасшедшим рубить деревья, чтобы жечь их ради тепла или, чтобы выжечь древесный уголь для сталелитейной промышленности. Мы можем выращивать специальные культуры, разводимые за их высокую скорость поглощения двуокиси углерода, и приготовить из них биомассу. Мы можем сжечь эти специально выращенные культуры прямо или все же лучше вырастить определенные разновидности, из которых можно выделить горючее масло или из которых мы сможем получить спирт. Такие естественно произведенные виды топлива могут помочь нашим будущим автомобилям и фабрикам.
Большим преимуществом топлива, произведенного из растений, является то, что оно не добавляет двуокиси углерода в воздух. Топливо это включает в себя двуокись углерода, которая поглощалась месяцами или годами до этого и которая возвращается в атмосферу, откуда недавно поступила.
Опять же ветряные мельницы или их эквивалент могли бы быть построены гораздо более эффективно, чем их средневековые предшественники, и могли бы извлекать гораздо больше энергии, используя силу ветра.
В прежние времена приливы и отливы использовали для того, чтобы просто выводить корабли из гаваней. Теперь они могут быть использованы для того, чтобы при высоком приливе наполнять резервуары и при низком отливе за счет падения воды вращать турбины и производить электричество. Были предложения и о том, чтобы для получения электричества использовать разницу температур в глубине и на поверхности океана в тропиках, использовать непрекращающееся движение океанских волн.
Все эти виды энергии, вообще говоря, безопасны и вечны. Они не дают опасного загрязнения и всегда будут возобновляться, пока существуют Земля и Солнце.
Однако все эти источники энергии маломощны. Вот в том-то и дело, что они ни по отдельности, ни даже все вместе не могут обеспечить потребности человечества в энергии, как последние два столетия делают уголь и нефть. Это не означает, что они не важны. С одной стороны, каждый из этих видов энергии в каком-то одном определенном месте и по какой-то определенной причине может быть наиболее удобным видом энергии. А все они вместе могут служить для продления времени использования ископаемых видов топлива. При всех этих других видах доступной энергии сжигание ископаемых видов топлива может продолжаться в темпе, достаточно невысоком, чтобы не подвергать опасности климат, и поддерживать этот темп надо в течение длительного времени. В течение этого времени, возможно, найдется какой-нибудь источник энергии – безопасный, вечный и обильный.
И первый вопрос тут: существует ли вид энергии с подобными характеристиками?
Ответ: да, существует.
Почти сразу же люди стали размышлять о возможности освоить эту энергию. Почти сразу после открытия Кюри английский писатель-фантаст Г. Д. Уэллс даже писал о возможности существования, как он назвал, «атомной бомбы».
Однако стало очевидно, что для того, чтобы высвободить эту атомную энергию (или, говоря точнее, «ядерную энергию», потому что это энергия, которая удерживает атом как целое и не включает внешние электроны, являющиеся базой химических реакций), сначала нужно было внести энергию в атом. Атом нужно было бомбардировать энергетичными субатомными частицами, которые были бы положительно заряженными. Не многие из них ударили бы в ядро, и из тех, которые ударили, не многие смогли бы преодолеть отталкивание положительно заряженного ядра и достаточно зарядили бы его, достаточно потревожили его содержание, чтобы вызвать высвобождение энергии. В результате оказалось, что нужно затратить гораздо больше энергии, чем удается извлечь. Казалось, овладеть ядерной энергией – несбыточная мечта.
Однако в 1932 году Джеймс Чедвик (1891—1974) открыл новую субатомную частицу. Из-за того, что она не имеет электрического заряда, он назвал ее «нейтроном». А из-за того, что у нее нет электрического заряда, она может подойти к несущему электрический заряд ядру, не претерпевая отталкивания. Поэтому здесь уже не понадобилось много энергии для того, чтобы нейтрон вошел в атомное ядро.
Нейтрон быстро стал излюбленной субатомной «пулей», и в 1934 году итальянский физик Энрико Ферми (1901—1954) бомбардировал атомы нейтронами таким образом, чтобы превратить эти атомы в атомы элемента, следующего за ним по порядку. Уран был элементом с порядковым номером 92, он был самым последним в таблице. Никакого элемента под номером 93 еще не было, и Ферми бомбардировал уран также и в надежде получить новый неизвестный элемент.
Результат привел в замешательство. Другие физики стали повторять эксперимент, пытаясь сделать из него какие-то выводы, особенно много уделили этому внимания немецкий физик Отто Хан (1879—1968) и его австрийская коллега Лиз Майтнер (1878—1968). Именно Майтнер в конце 1938 года поняла, что атом урана, будучи ударен нейтроном, расщепляется на два («распад урана»).
В то время она была в изгнании в Швеции, потому что как еврейке ей пришлось оставить нацистскую Германию. Она изложила свои идеи датскому физику Нильсу Бору (1885—1962), и тот в начале 1939 года привез их в Соединенные Штаты.
Американский физик венгерского происхождения Лео Сциллард (1898—1964) понял значение этого факта. Атом урана, подвергаясь расщеплению, выделяет большое количество энергии, один-единственный атом – гораздо большее, чем то малое количество энергии медленно двигающегося нейтрона, который его ударил. Более того, атом урана, когда он расщепляется, выделяет два или три нейтрона, каждый из которых мог бы ударить другой атом урана, и так далее.
Получающаяся в результате «цепная реакция» в считанные доли секунды могла бы произвести огромный взрыв, и все за счет одного первоначального нейтрона, который блуждал бы сам по себе, если бы никто не направил его сюда.
Сциллард убедил американских ученых сохранить исследование в тайне (потому что Германия готова была начать войну против цивилизованного мира), он также, поручив Альберту Эйнштейну подготовить записку по этому предмету, убедил президента Рузвельта поддержать эту работу. До окончания Второй мировой войны были созданы три бомбы на основе расщепления урана. Одна была испытана в Аламогордо, штат Нью-Мексико, 16 июля 1945 года. Две другие были сброшены на Японию.
Между тем ученые разработали и способ управлять расщеплением урана. Темп расщепления доводился до определенного безопасного уровня и мог продолжаться на этом уровне нескончаемо. При этом вырабатывалось достаточно тепла, чтобы заменить сжигание угля или нефти для выработки электричества.
В 50-е годы электростанции, работающие на расщеплении урана, были построены в Соединенных Штатах, Великобритании и Советском Союзе. С тех пор такие реакторы «расщепления ядра» распространились по многим странам и вносят значительный вклад в удовлетворение потребностей мира в энергии.
Подобные реакторы имеют ряд преимуществ. Во-первых – вес: по сравнению со своим весом уран производит гораздо больше энергии, чем уголь или нефть. Собственно, хотя уран и не очень распространенный металл, считают, что мировой запас его таков, что может произвести в десять или даже в сто раз больше энергии, чем все запасы ископаемого топлива.
Один из недостатков тут в том, что существуют два вида урана, и только один из них подвержен расщеплению ядра. Есть уран-235 и уран-238, и только уран-235 претерпевает расщепление при его бомбардировке медленными нейтронами. И случилось так, что уран-235 составляет только 0,7 процента от урана, находящегося в природе.
Однако возможно сконструировать реактор таким образом, что расщепляющийся сердечник окружается обычным ураном-238 или похожим металлом – тори-ем-232. Нейтроны, утекающие из сердечника, ударяя в атомы урана или тория, хотя и не заставят их расщепляться, но изменят в них атомы на другой тип, которые при соответствующих условиях станут расщепляться. Такой реактор создает «топливо» в виде расщепляющегося плутония-239 или урана-233, даже когда его первоначальное топливо уран-235 потребляется медленно. Собственно, он производит топлива больше, чем потребляет, и как следствие называется «реактором-размножителем».
До сих пор почти все использующиеся реакторы расщепления не являются реакторами-размножителями, но несколько реакторов-размножителей было построено еще в 1951 году и могут быть построены еще в любое время. При использовании реакторов-размножителей весь уран и торий в мире можно расщепить и заставить производить энергию. Таким образом, человечеству будет доступен источник энергии по крайней мере в 3000 раз больший, чем все запасы ископаемого топлива.
Используя обычные реакторы ядерного расщепления, человечество при существующем темпе потребления будет иметь запас энергии на века. При реакторахразмножителях запаса энергии хватит на сотни тысяч лет – огромное количество времени для того, чтобы выработать еще лучшую стратегию, прежде чем иссякнет этот запас. Более того, реакторы ядерного расщепления, будь это обычные реакторы или размножители, не вырабатывают двуокиси углерода или какого-либо другого химического загрязнителя воздуха.
При данных преимуществах какие могут быть недостатки? Прежде всего, уран и торий довольно сильно разбросаны по коре Земли, их трудно найти и сконцентрировать. Возможно, из всего существующего урана и тория может быть использована только небольшая доля. Во-вторых, реакторы ядерного расщепления – крупные и дорогостоящие устройства, за которыми нелегко следить и которые трудно ремонтировать. В-третьих, самое важное, реакторы ядерного расщепления вводят новый и особенно смертоносный вид загрязнения – проникающую радиацию.
Когда атомы урана расщепляются, они производят целые серии более мелких атомов, гораздо более интенсивных по радиоактивности, чем сам уран. Эта радиоактивность снижается очень медленно, у некоторых видов только спустя тысячи лет. Эти радиоактивные отходы чрезвычайно опасны, поскольку их радиация может убить так же верно, как и ядерная бомба, только более коварно. Если человеческие нужды будут покрываться исключительно реакторами расщепления, величина присутствующей радиации будет равна миллионам взрывов бомб расщепления.
Радиоактивные отходы необходимо сохранять в каком-либо безопасном месте таким образом, чтобы они тысячами лет не попадали в окружающую среду. Они могут храниться в нержавеющих стальных контейнерах или могут быть перемешаны с расплавленным стеклом, которому потом дают застыть. Контейнеры или стекло могут храниться в подземных солевых шахтах, в Антарктиде, в осадочных породах океанского дна и так далее. Пока что ни один из предложенных способов их размещения, каждый с какими-либо частными преимуществами, не был признан достаточно безопасным, удовлетворяющим всех.
Далее, всегда возможно, что ядерный реактор может выйти из-под контроля. Реактор устроен таким образом, что невозможно, чтобы он взорвался, но используются значительные количества расщепляющегося материала, и если реакция расщепления, к несчастью, ускорится, и температура окажется выше точки плавления, сердечник расплавится, прорвется сквозь защитные оболочки, и смертоносная радиация может распространиться по большому району (Убедительным примером справедливости этих опасений является происшедшая в Советском Союзе в 1986 году Чернобыльская трагедия, когда 26 апреля как раз и произошло разрушение активной зоны установки и выброс в атмосферу радиоактивных веществ).
Сбережение поэтому для нас не только желательно, но и необходимо.
А сберегать энергию есть где, начиная с устранения величайших расточителей энергии – различных военных машин мира. С тех пор как война стала невозможна без самоубийства, обеспечение конкуренции военных машин при астрономических ценах на энергию, в условиях, когда основной мировой запас ее быстро сокращается, – явно неразумно.
Помимо прямого сбережения нефти, существуют прямые возможности увеличения эффективности добычи, при которых нефть может продолжать извлекаться из существующих скважин, так что «сухие» скважины смогут продолжать выдавать нефть.
Кроме того, может быть увеличена эффективность, с которой энергия извлекается из сжигаемой нефти (или в общем из сжигаемого топлива). В настоящее время тепло от горящего топлива производит взрывы, которые приводят в движение части двигателя внутреннего сгорания, или оно преобразует воду в пар, давление которого вращает турбину, вырабатывающую электричество. В таких устройствах только 25—40 процентов энергии сжигаемого топлива превращается в полезную работу, остальное теряется как неиспользованное тепло. И мало надежды значительно повысить эффективность.
Существует, однако, другая стратегия. Горящим топливом можно нагревать газы, пока атомы и молекулы не расщепятся на электрически заряженные частицы, которые можно пропускать через магнитное поле, создавая таким образом электрический ток. Такие процессы «магнитогидродинамики» (МГД) будут действовать с существенно более высокой эффективностью, чем обычные технологии.
Теоретически возможны технологии выработки электричества и накопления его в электрических батареях путем прямого соединения топлива с кислородом, минуя промежуточное производство тепла. Здесь достижима эффективность 75 процентов, а то и все 100 процентов. До сих пор такие «топливные батареи» не разработаны, хотя трудности, которые стоят на этом пути, можно преодолеть.
Если уж на то пошло, могут быть найдены новые нефтяные источники. История последнего полувека – это история последовательных предсказаний истощения нефтяных ресурсов, которые не оправдывались. Перед Второй мировой войной представлялось, что добыча нефти достигнет пика и пойдет на убыль в 40-е годы; после войны дата была отложена на 60-е, сейчас – на 90-е. Так она и будет откладываться.
Ясно, что мы не можем на это рассчитывать. Что больше всего влияло на перенесение расчетного дня, это открытие время от времени новых нефтяных ресурсов. Самое крупное из этих открытий – это довольно удивительная находка в годы после Второй мировой войны: было обнаружено, что нефтяные резервы Среднего Востока неожиданно огромны. В настоящее время 60 процентов известных нефтяных резервов сконцентрировано в маленьком районе около Персидского залива (который был также главным местонахождением – вот любопытное совпадение, – самой ранней цивилизации человечества).
Маловероятно, чтобы мы еще раз столкнулись с такой богатой находкой. С каждым десятилетием все большие площади Земли прочесываются в поисках нефти посредством все более сложной техники. Мы нашли некоторое количество нефти на Аляске, некоторое количество в Северном море, мы все более тщательно проводим разведку на континентальном шельфе, но наступит день, когда уже больше нечего будет находить, не останется больше запасов нефти.
Мы можем заниматься сбережением, увеличивать эффективность старых скважин и строить новые, но представляется неизбежным, что пройдет немного времени, и не успеет закончиться двадцатый век, как все нефтяные скважины окажутся почти иссякнувшими. Что же тогда?
Когда это произойдет, нефть смогут получать из других источников, помимо нефтяных скважин, где нефть находится в пустотах подземных пород и откуда она сравнительно легко извлекается. Существует еще сланец, горная порода, которая содержит смолистое органическое вещество, называемое «кероген». Если сланец нагреть, то молекулы керогена расщепляются, и получается вещество, очень похожее на сырую нефть. Количество такой сланцевой нефти в земной коре должно быть примерно в 3000 раз больше обычной нефти. Одно месторождение нефтяного сланца в Соединенных Штатах может содержать нефти в семь раз больше всей нефти на Среднем Востоке.
Проблема в том, что сланец надо добывать шахтным способом, его необходимо нагревать и произведенную нефть (даже самый богатый сланец дает лишь два барреля на тонну породы) придется рафинировать не совсем теми методами, которые сейчас применяются. После этого еще придется как-то избавляться от отработанного сланца. Трудности и расходы очень велики, а обычная нефть еще слишком доступна, чтобы заставить людей делать капитальные вложения. Однако в будущем, когда нефти станет меньше, сланцевая нефть может послужить для того, чтобы приостановить спад (разумеется, цена ее будет выше).
Затем, конечно, существует каменный уголь. Уголь был основным источником энергии до того, как его заменила нефть, и он все еще есть, его можно добывать. Обычно считают, что в земле угля достаточно для того, чтобы мир был в движении при существующем темпе потребления энергии на протяжении тысяч лет. Однако в настоящий момент не всякий уголь можно добыть практикующимися шахтными методами. Даже по самой скромной оценке уголь будет существовать еще несколько сотен лет, и к тому времени технологии шахтных работ могут усовершенствоваться.
С другой стороны, шахтная добыча опасна. Происходят взрывы, обрушения, случаются удушья. Работа физически тяжелая, шахтеры умирают от заболеваний легких. Процесс работы в шахтах имеет тенденцию загрязнять землю вокруг шахты, громоздить горы шлака и пустой породы. После того как уголь извлечен из шахты, его надо транспортировать, это гораздо более трудная задача, чем качать нефть по трубопроводу. С углем гораздо труднее обращаться, чем с нефтью, он оставляет тяжелую золу, а также (если не принимаются меры по очистке угля перед использованием) загрязняющий воздух дым.
И все же мы можем ожидать, что к углю подойдут с новыми, более сложными технологиями. Поверхность земли можно восстановить. (Конечно, потребуются время, труд и деньги, чтобы это сделать.) Затем, чтобы избежать огромных расходов и трудностей по перевозке навалом, многое можно сделать на шахтной площадке.
Например, на шахтной площадке можно сжечь уголь, чтобы произвести электричество по технологии магнитогидродинамики. В таком случае придется транспортировать именно электричество, а не уголь.
Уголь также можно нагревать в угольной шахте, чтобы получить газы, включая окись углерода, метан и водород. Их можно так обработать, чтобы получить эквиваленты природного газа, бензин и другие нефтепродукты. И тогда надо будет транспортировать нефть и газ, а не уголь, и угольные шахты станут нашими новыми нефтяными скважинами.
Даже тот уголь, который должен использоваться как уголь (например, при производстве железа и стали), может использоваться более эффективно. Его можно превратить в тонкую пыль, которую, возможно, удастся перевозить, воспламенять и сжигать с ненамного большими трудностями, чем нефть.
Наряду со сланцевой нефтью и угольными шахтами, мы вполне могли бы тогда использовать нашу нефть до того, как окончательно иссякнут нефтяные скважины, и принципиально не менять технологию еще несколько веков.
Существует, однако, серьезная опасность, связанная с зависимостью от нефти и угля и не зависящая от того, насколько развиты наши технологии. Эти «ископаемые виды топлива» залегли под землю за сотни миллионов лет, они представляют много триллионов тонн углерода, который все это время не был в атмосфере ни в какой форме.
Сейчас мы сжигаем эти виды топлива все большими и большими темпами, превращая углерод в двуокись углерода и выбрасывая ее в атмосферу. Часть ее растворится в океане, часть ее может быть поглощена более интенсивным ростом растений, который может быть ускорен ее наличием. Часть ее, однако, останется в воздухе и повысит содержание двуокиси углерода в атмосфере.
Например, в 1900 году содержание двуокиси углерода в атмосфере составляло 0,029 процента, а теперь достигло 0,032 процента. По предварительной оценке к 2000 году концентрация двуокиси углерода достигнет 0,038 процента, то есть увеличение за век примерно на 30 процентов. Это, должно быть, результат, во всяком случае частично, сгорания ископаемых видов топлива, хотя это, также частично, может быть следствием отступления лесов, более эффективных поглотителей углерода, чем другие виды растительности.
Увеличение содержания в атмосфере двуокиси углерода, конечно, невелико. Даже если процесс сгорания ископаемых видов топлива продолжится и ускорится, оценено, что самая высокая концентрация, которой мы, вероятно, достигнем, будет 0,115 процента. Но даже это не отразится на нашем дыхании.
Однако нам надо беспокоиться не о дыхании. Не требуется большого увеличения концентрации двуокиси углерода в атмосфере, чтобы значительно усилить парниковый эффект. Средняя температура Земли могла бы быть в 2000 году на один градус по Цельсию выше, чем в 1900 году из-за добавившейся двуокиси углерода (Конечно, парниковому эффекту противодействует тот факт, что в результате деятельности промышленности в воздух выбрасывается также и больше пыли. Это повышает уровень отражения атмосферой солнечного света в космос, и это может охлаждать Землю. Действительно, у нас были необычно холодные зимы в 70-е годы. Однако в конце концов согревающий эффект двуокиси углерода безусловно выиграет эту гонку, особенно если мы не примем меры по очистке атмосферы, когда ее загрязнение достигнет опасного уровня). Я взял бы больший период, чтобы достичь точки, когда климат Земли будет испытывать серьезное воздействие и когда ледовые шапки Земли могут начать таять с гибельными последствиями для континентальных низин.
Собственно, существует и такое мнение, что если содержание двуокиси углерода увеличится выше определенной точки, небольшое увеличение средней температуры океана высвободит двуокись углерода из раствора ее в океанской воде, что соответственно усилит парниковый эффект и поднимет температуру океана еще выше, высвобождая еще больше двуокиси углерода, и так далее. Подобный «неудержимый парниковый эффект» в конце концов может поднять температуру выше точки кипения и сделать Землю необитаемой, и это будет, безусловно, катастрофическим последствием сжигания ископаемых видов топлива.
Некоторые полагают, что период мягкого парникового эффекта в прошлом оказал на Землю радикальное воздействие. Около 75 миллионов лет назад тектонические процессы произвели изменения земной коры таким образом, что вызвали усыхание ряда мелких морей. Эти моря были особенно богаты водорослями, которые абсорбировали двуокись углерода из воздуха. Содержание атмосферной двуокиси поэтому увеличилось, и Земля стала теплее.
Крупные животные имеют меньшую способность понижать температуру тела, чем мелкие, и им гораздо труднее сохранять свою относительно невысокую температуру, не давая ей повышаться. В особенности клетки спермы, которые особенно чувствительны к теплу, могли быть повреждены в это время, так что крупные животные потеряли способность к воспроизведению потомства. Может быть, таким образом и вымерли динозавры.
Не ожидает ли и нас похожая и даже худшая судьба, которую мы уготовим сами себе?
В других подобных случаях я полагался на наши достижения в будущем, которые могли бы нам помочь противостоять катастрофе или избежать ее, и мы можем представить себе человечество способным обработать атмосферу таким образом, чтобы извлечь избыточную двуокись углерода. Однако если начнет свое действие «неудержимый парниковый эффект», он (в отличие от катастрофы наступления ледникового периода или расширяющегося Солнца), вероятно, обрушится столь стремительно, что трудно представить нашу технику, продвигающуюся вперед настолько быстро, чтобы она могла нас спасти.
Тогда вполне может статься, что проекты поиска новых нефтяных скважин или замены нефти сланцем или углем, являются вопросом, не имеющим практического значения, что существует критический уровень темпа, которым мы можем сжигать ископаемое топливо любого рода и из любого источника без риска парниковой катастрофы. Оставляет ли это нам какие-нибудь альтернативы, или же нам надо в отчаянии ждать, что цивилизация так или иначе потерпит крах в течение следующего века?
Альтернатива есть. Существуют старые источники энергии, которые человечество знало до того, как на сцене появились ископаемые виды топлива. Существуют наши мускулы и мускулы животных. Существует ветер, движущая сила воды, приливы и отливы, внутреннее тепло Земли, дерево (Источники энергии могут быть очень неожиданными. Так, 13 января 1998 года программой развития нетрадиционных источников энергии ЕС Thermie в Нортгемптоне в Англии намечено строительство электростанции, действующей на курином помете. Предполагается, что она будет сжигать в топках 120 тысяч тонн куриного помета в год). Все они производят энергию и не имеют в качестве последствия загрязнения, и все они возобновляемы и неиссякаемы. Более того, их можно использовать более сложным образом, чем ранее.
Например, нам не нужно как сумасшедшим рубить деревья, чтобы жечь их ради тепла или, чтобы выжечь древесный уголь для сталелитейной промышленности. Мы можем выращивать специальные культуры, разводимые за их высокую скорость поглощения двуокиси углерода, и приготовить из них биомассу. Мы можем сжечь эти специально выращенные культуры прямо или все же лучше вырастить определенные разновидности, из которых можно выделить горючее масло или из которых мы сможем получить спирт. Такие естественно произведенные виды топлива могут помочь нашим будущим автомобилям и фабрикам.
Большим преимуществом топлива, произведенного из растений, является то, что оно не добавляет двуокиси углерода в воздух. Топливо это включает в себя двуокись углерода, которая поглощалась месяцами или годами до этого и которая возвращается в атмосферу, откуда недавно поступила.
Опять же ветряные мельницы или их эквивалент могли бы быть построены гораздо более эффективно, чем их средневековые предшественники, и могли бы извлекать гораздо больше энергии, используя силу ветра.
В прежние времена приливы и отливы использовали для того, чтобы просто выводить корабли из гаваней. Теперь они могут быть использованы для того, чтобы при высоком приливе наполнять резервуары и при низком отливе за счет падения воды вращать турбины и производить электричество. Были предложения и о том, чтобы для получения электричества использовать разницу температур в глубине и на поверхности океана в тропиках, использовать непрекращающееся движение океанских волн.
Все эти виды энергии, вообще говоря, безопасны и вечны. Они не дают опасного загрязнения и всегда будут возобновляться, пока существуют Земля и Солнце.
Однако все эти источники энергии маломощны. Вот в том-то и дело, что они ни по отдельности, ни даже все вместе не могут обеспечить потребности человечества в энергии, как последние два столетия делают уголь и нефть. Это не означает, что они не важны. С одной стороны, каждый из этих видов энергии в каком-то одном определенном месте и по какой-то определенной причине может быть наиболее удобным видом энергии. А все они вместе могут служить для продления времени использования ископаемых видов топлива. При всех этих других видах доступной энергии сжигание ископаемых видов топлива может продолжаться в темпе, достаточно невысоком, чтобы не подвергать опасности климат, и поддерживать этот темп надо в течение длительного времени. В течение этого времени, возможно, найдется какой-нибудь источник энергии – безопасный, вечный и обильный.
И первый вопрос тут: существует ли вид энергии с подобными характеристиками?
Ответ: да, существует.
Энергия обильная
Прошло лишь пять лет после открытия в 1896 году французским физиком Антуаном Анри Беккерелем (1852—1908) радиоактивного излучения, как Пьер Кюри измерил тепло, испущенное радием при расщеплении. Это было первым свидетельством того, что где-то внутри атома есть огромная энергия, о которой до тех пор никто не подозревал.Почти сразу же люди стали размышлять о возможности освоить эту энергию. Почти сразу после открытия Кюри английский писатель-фантаст Г. Д. Уэллс даже писал о возможности существования, как он назвал, «атомной бомбы».
Однако стало очевидно, что для того, чтобы высвободить эту атомную энергию (или, говоря точнее, «ядерную энергию», потому что это энергия, которая удерживает атом как целое и не включает внешние электроны, являющиеся базой химических реакций), сначала нужно было внести энергию в атом. Атом нужно было бомбардировать энергетичными субатомными частицами, которые были бы положительно заряженными. Не многие из них ударили бы в ядро, и из тех, которые ударили, не многие смогли бы преодолеть отталкивание положительно заряженного ядра и достаточно зарядили бы его, достаточно потревожили его содержание, чтобы вызвать высвобождение энергии. В результате оказалось, что нужно затратить гораздо больше энергии, чем удается извлечь. Казалось, овладеть ядерной энергией – несбыточная мечта.
Однако в 1932 году Джеймс Чедвик (1891—1974) открыл новую субатомную частицу. Из-за того, что она не имеет электрического заряда, он назвал ее «нейтроном». А из-за того, что у нее нет электрического заряда, она может подойти к несущему электрический заряд ядру, не претерпевая отталкивания. Поэтому здесь уже не понадобилось много энергии для того, чтобы нейтрон вошел в атомное ядро.
Нейтрон быстро стал излюбленной субатомной «пулей», и в 1934 году итальянский физик Энрико Ферми (1901—1954) бомбардировал атомы нейтронами таким образом, чтобы превратить эти атомы в атомы элемента, следующего за ним по порядку. Уран был элементом с порядковым номером 92, он был самым последним в таблице. Никакого элемента под номером 93 еще не было, и Ферми бомбардировал уран также и в надежде получить новый неизвестный элемент.
Результат привел в замешательство. Другие физики стали повторять эксперимент, пытаясь сделать из него какие-то выводы, особенно много уделили этому внимания немецкий физик Отто Хан (1879—1968) и его австрийская коллега Лиз Майтнер (1878—1968). Именно Майтнер в конце 1938 года поняла, что атом урана, будучи ударен нейтроном, расщепляется на два («распад урана»).
В то время она была в изгнании в Швеции, потому что как еврейке ей пришлось оставить нацистскую Германию. Она изложила свои идеи датскому физику Нильсу Бору (1885—1962), и тот в начале 1939 года привез их в Соединенные Штаты.
Американский физик венгерского происхождения Лео Сциллард (1898—1964) понял значение этого факта. Атом урана, подвергаясь расщеплению, выделяет большое количество энергии, один-единственный атом – гораздо большее, чем то малое количество энергии медленно двигающегося нейтрона, который его ударил. Более того, атом урана, когда он расщепляется, выделяет два или три нейтрона, каждый из которых мог бы ударить другой атом урана, и так далее.
Получающаяся в результате «цепная реакция» в считанные доли секунды могла бы произвести огромный взрыв, и все за счет одного первоначального нейтрона, который блуждал бы сам по себе, если бы никто не направил его сюда.
Сциллард убедил американских ученых сохранить исследование в тайне (потому что Германия готова была начать войну против цивилизованного мира), он также, поручив Альберту Эйнштейну подготовить записку по этому предмету, убедил президента Рузвельта поддержать эту работу. До окончания Второй мировой войны были созданы три бомбы на основе расщепления урана. Одна была испытана в Аламогордо, штат Нью-Мексико, 16 июля 1945 года. Две другие были сброшены на Японию.
Между тем ученые разработали и способ управлять расщеплением урана. Темп расщепления доводился до определенного безопасного уровня и мог продолжаться на этом уровне нескончаемо. При этом вырабатывалось достаточно тепла, чтобы заменить сжигание угля или нефти для выработки электричества.
В 50-е годы электростанции, работающие на расщеплении урана, были построены в Соединенных Штатах, Великобритании и Советском Союзе. С тех пор такие реакторы «расщепления ядра» распространились по многим странам и вносят значительный вклад в удовлетворение потребностей мира в энергии.
Подобные реакторы имеют ряд преимуществ. Во-первых – вес: по сравнению со своим весом уран производит гораздо больше энергии, чем уголь или нефть. Собственно, хотя уран и не очень распространенный металл, считают, что мировой запас его таков, что может произвести в десять или даже в сто раз больше энергии, чем все запасы ископаемого топлива.
Один из недостатков тут в том, что существуют два вида урана, и только один из них подвержен расщеплению ядра. Есть уран-235 и уран-238, и только уран-235 претерпевает расщепление при его бомбардировке медленными нейтронами. И случилось так, что уран-235 составляет только 0,7 процента от урана, находящегося в природе.
Однако возможно сконструировать реактор таким образом, что расщепляющийся сердечник окружается обычным ураном-238 или похожим металлом – тори-ем-232. Нейтроны, утекающие из сердечника, ударяя в атомы урана или тория, хотя и не заставят их расщепляться, но изменят в них атомы на другой тип, которые при соответствующих условиях станут расщепляться. Такой реактор создает «топливо» в виде расщепляющегося плутония-239 или урана-233, даже когда его первоначальное топливо уран-235 потребляется медленно. Собственно, он производит топлива больше, чем потребляет, и как следствие называется «реактором-размножителем».
До сих пор почти все использующиеся реакторы расщепления не являются реакторами-размножителями, но несколько реакторов-размножителей было построено еще в 1951 году и могут быть построены еще в любое время. При использовании реакторов-размножителей весь уран и торий в мире можно расщепить и заставить производить энергию. Таким образом, человечеству будет доступен источник энергии по крайней мере в 3000 раз больший, чем все запасы ископаемого топлива.
Используя обычные реакторы ядерного расщепления, человечество при существующем темпе потребления будет иметь запас энергии на века. При реакторахразмножителях запаса энергии хватит на сотни тысяч лет – огромное количество времени для того, чтобы выработать еще лучшую стратегию, прежде чем иссякнет этот запас. Более того, реакторы ядерного расщепления, будь это обычные реакторы или размножители, не вырабатывают двуокиси углерода или какого-либо другого химического загрязнителя воздуха.
При данных преимуществах какие могут быть недостатки? Прежде всего, уран и торий довольно сильно разбросаны по коре Земли, их трудно найти и сконцентрировать. Возможно, из всего существующего урана и тория может быть использована только небольшая доля. Во-вторых, реакторы ядерного расщепления – крупные и дорогостоящие устройства, за которыми нелегко следить и которые трудно ремонтировать. В-третьих, самое важное, реакторы ядерного расщепления вводят новый и особенно смертоносный вид загрязнения – проникающую радиацию.
Когда атомы урана расщепляются, они производят целые серии более мелких атомов, гораздо более интенсивных по радиоактивности, чем сам уран. Эта радиоактивность снижается очень медленно, у некоторых видов только спустя тысячи лет. Эти радиоактивные отходы чрезвычайно опасны, поскольку их радиация может убить так же верно, как и ядерная бомба, только более коварно. Если человеческие нужды будут покрываться исключительно реакторами расщепления, величина присутствующей радиации будет равна миллионам взрывов бомб расщепления.
Радиоактивные отходы необходимо сохранять в каком-либо безопасном месте таким образом, чтобы они тысячами лет не попадали в окружающую среду. Они могут храниться в нержавеющих стальных контейнерах или могут быть перемешаны с расплавленным стеклом, которому потом дают застыть. Контейнеры или стекло могут храниться в подземных солевых шахтах, в Антарктиде, в осадочных породах океанского дна и так далее. Пока что ни один из предложенных способов их размещения, каждый с какими-либо частными преимуществами, не был признан достаточно безопасным, удовлетворяющим всех.
Далее, всегда возможно, что ядерный реактор может выйти из-под контроля. Реактор устроен таким образом, что невозможно, чтобы он взорвался, но используются значительные количества расщепляющегося материала, и если реакция расщепления, к несчастью, ускорится, и температура окажется выше точки плавления, сердечник расплавится, прорвется сквозь защитные оболочки, и смертоносная радиация может распространиться по большому району (Убедительным примером справедливости этих опасений является происшедшая в Советском Союзе в 1986 году Чернобыльская трагедия, когда 26 апреля как раз и произошло разрушение активной зоны установки и выброс в атмосферу радиоактивных веществ).