Страница:
Зрительное восприятие – зависимый от фактора времени информационный поток, действующий по тому же принципу, что и звуковое восприятие или осязание. Но у зрения есть особенность, которая вносит некоторую путаницу: мы все-таки способны распознавать отдельные объекты с одной фиксации. Это умение распознавать пространственные паттерны «с первого взгляда» долгие годы вводило в заблуждение ученых, занимающихся исследованиями зрительного восприятия животных. Они, как правило, не принимали в расчет фактор времени. Действительно, в лабораторных условиях как люди, так и животные способны распознавать объекты таким образом, однако это не является нормой. Нормальное зрительное восприятие, как, например, чтение этой книги, предполагает постоянные движения глазных яблок.
Интеграция разных видов сенсорного восприятия
Новый взгляд на зону V1
Модель окружающего мира
Интеграция разных видов сенсорного восприятия
А как же ассоциативные зоны? Мы уже подробно рассмотрели закономерности прохождения информационных потоков в пределах одной сенсорной зоны коры головного мозга. Сигналы обратной связи дополняют текущие сигналы и дают возможность прогнозировать будущие события. Подобные процессы происходят перекрестно и между разными сенсорными каналами восприятия, т. е. между зрением, слухом и осязанием. Например, на основе услышанного я составляю прогноз о том, что сейчас увижу или почувствую. Сейчас, печатая эти строки, я нахожусь в своей спальне. На ошейнике моей кошки Кео есть бубенчик, который позванивает, когда она ходит. И вот я слышу приближающийся звук бубенчика. На основании этого звукового сигнала я догадываюсь, что сейчас увижу свою кошку. И действительно, повернув голову в направлении двери, я вижу Кео. Я ожидал ее увидеть на основе услышанных звуков. Если бы Кео не вошла или вошло бы какое-то другое животное, я бы очень удивился. В приведенном примере звуковой сигнал вызвал звуковое распознавание Кео. Информационный поток прошел все уровни иерархии слуховых зон неокортекса и поступил в ассоциативную зону, связывающую слуховое и зрительное восприятие. На основании инвариантного представления сформировался прогноз, который по каналу обратной связи поступил назад – в зрительную и слуховую зоны. Этот процесс схематически изображен на рис. 6.4.
Мозг постоянно продуцирует полисенсорные прогнозы такого типа. Я отгибаю скрепку на ручке и ожидаю, что, стоит мне отпустить пальцы, прозвучит характерный щелчок, вызванный ударом скрепки по корпусу ручки. Не услышав этого щелчка, я бы очень удивился. Мой мозг точно прогнозирует, когда я услышу звук и каким именно он будет. Для того чтобы такой прогноз осуществился, информация пересекает по иерархии все соматосенсорные зоны коры головного мозга и по обратной связи поступает назад по иерархии и слуховой зон. В результате описанного процесса возникает ожидание услышать и почувствовать щелчок.
Приведу другой пример: несколько раз в неделю я добираюсь на работу велосипедом. В такие дни я иду утром в гараж, беру свой велосипед, разворачиваю его и вывожу через калитку. Пока я проделываю все указанные манипуляции, в мой мозг поступает множество зрительных и слуховых сигналов. Ежесекундно формируются полисенсорные прогнозы – предположения неокортекса относительно того, что я услышу и почувствую в следующее мгновение. Я вижу, как велосипед переезжает порог, и это вызывает у меня ожидание характерного звука. Задев ногой педаль, я наклоняю голову и ожидаю увидеть ее именно около моей ноги. Прогнозы настолько точны, что в случае возникновения малейших отклонений от ожидаемого сценария развития событий я бы тотчас заметил эти отклонения. Информационный поток движется в сенсорной иерархии одновременно в двух направлениях, таким образом формируется унифицированное восприятие, неотъемлемой частью которого является прогнозирование.
Рис. 6.4. Потоки информационных сигналов передвигаются вверх по иерархически организованным сенсорным зонам, а затем возвращаются к низшим зонам. Таким образом формируется объединенный сенсорный опыт и осуществляется прогностическая функция
Предлагаю вам провести следующий опыт: оторвитесь от чтения и что-нибудь сделайте. Что угодно, лишь бы вы двигались и манипулировали каким-то предметом. Можете, например, подойти к раковине и повернуть ручку крана. Делая это, попробуйте обратить внимание на каждый звук, каждое осязательное ощущение, каждое изменение визуальной «картинки». Будьте внимательны, помните, что каждое движение тесно связано с созерцанием, слухом и осязательными ощущениями. Покрутите ручку крана вперед-назад. Ваш мозг ожидает почувствовать давление на кожу и сопротивление ваших мускулов. Вы ожидаете увидеть и почувствовать прокручивание крана, вы ожидаете увидеть и почувствовать воду. Когда вода долетит до раковины, вы ожидаете услышать другой звук – звук падающей воды, увидеть и почувствовать на своей коже обжигающе горячие (или ледяные – в зависимости от того, какой кран включаете) брызги.
При ходьбе вы всегда – осознанно или нет – ожидаете услышать звук каждого шага. Даже то, что вы просто держите эту книгу в руках, тоже вызывает множество сенсорных прогнозов. Представьте себе, что вы почувствовали, будто книга закрывается, хотя зрение подсказывает вам совершенно другое: книга остается раскрытой. Наверняка вы испытали бы полное замешательство, вплоть до шока. Помните наш воображаемый эксперимент с изменением двери, описанный в главе 5? Тогда мы убедились, что мозг постоянно занят прогнозированием, причем это касается абсолютно всех сенсорных модальностей. Каждый раз, сосредоточиваясь на всех своих текущих ощущениях, вплоть до самых незначительных, я просто поражаюсь, насколько интегрированными являются все наши перцепционные прогнозы. Хотя они могут казаться простыми, даже тривиальными, надо помнить, насколько они всеобъемлющи. Они могут формироваться только на основе мощных скоординированных потоков информации, непрерывно циркулирующих в двух противоположных направлениях по иерархии зон коры головного мозга.
Осознав столь тесную взаимосвязь чувств, мы делаем вывод, что вся кора головного мозга, все ее сенсорные и ассоциативные зоны действуют как единое целое. Да, у нас есть зрительная область коры, но она – лишь часть единой всеобъемлющей сенсорной системы, объединяющей восприятие изображения, звуков, прикосновений и многое другое. И в этой системе информационные потоки циркулируют вверх и вниз по сложной разветвленной иерархии.
Следует также отметить, что в основе всех наших предположений лежит непосредственный опыт. Я ожидаю, что отведенная скрепка ручки при отпускании ударится о корпус ручки и издаст характерный звук только потому, что так случалось в прошлом. Звук велосипеда предсказуем по той причине, что я вывожу его из гаража далеко не в первый раз. Ни один бит подобной информации не дается нам от рождения. Все эти сведения сохраняются в мозге только благодаря его невероятно огромной способности запоминать входящую информацию. Если среди информации, поступающей в мозг, встречаются постоянные последовательности сигналов, неокортекс сохраняет их, а в будущем использует для прогнозирования событий.
Хотя на рис. 6.3 и 6.4 не изображена моторная зона коры головного мозга, у нее такая же иерархическая структура, как и у описанных выше сенсорных зон. Ее можно представить как подобную сенсорную систему, но соединенную с органами чувств посредством ассоциативных зон (только с более тонкими связями с соматосенсорной зоной, что обеспечивает способность двигаться). Таким образом, моторная зона коры головного мозга функционирует подобно сенсорным зонам; кроме того, они активно взаимодействуют. Сигнал, поступающий от любого сенсорного анализатора, перемещается вверх к ассоциативной зоне, что вызывает перемещение другого импульса вниз, к моторной зоне коры головного мозга, в результате чего возникает определенное поведение. Подобно тому, как зрительный сигнал может вызвать поступление импульса в осязательную и слуховую зоны, он также может активизировать моторную зону коры головного мозга. В первом случае мы интерпретируем обратные сигналы как прогнозы, во втором – как двигательные команды. Как заметил Маунткастл, моторные зоны коры устроены так же, как и сенсорные. Кора генерирует сенсорные прогнозы так же, как моторные команды.
Вскоре мы убедимся, что в неокортексе нет «чисто сенсорных» и «чисто моторных» зон. Сенсорные потоки одновременно поступают отовсюду и, возвращаясь потом по иерархии зон, формируют прогнозы или генерируют моторные команды. Хотя у моторной зоны коры головного мозга есть свои особенности, вполне корректно считать ее частью общей иерархической запоминающе-прогностической системы. Ее можно считать еще одним органом чувств. Зрение, осязание, слух и действие тесно переплетены друг с другом.
Мозг постоянно продуцирует полисенсорные прогнозы такого типа. Я отгибаю скрепку на ручке и ожидаю, что, стоит мне отпустить пальцы, прозвучит характерный щелчок, вызванный ударом скрепки по корпусу ручки. Не услышав этого щелчка, я бы очень удивился. Мой мозг точно прогнозирует, когда я услышу звук и каким именно он будет. Для того чтобы такой прогноз осуществился, информация пересекает по иерархии все соматосенсорные зоны коры головного мозга и по обратной связи поступает назад по иерархии и слуховой зон. В результате описанного процесса возникает ожидание услышать и почувствовать щелчок.
Приведу другой пример: несколько раз в неделю я добираюсь на работу велосипедом. В такие дни я иду утром в гараж, беру свой велосипед, разворачиваю его и вывожу через калитку. Пока я проделываю все указанные манипуляции, в мой мозг поступает множество зрительных и слуховых сигналов. Ежесекундно формируются полисенсорные прогнозы – предположения неокортекса относительно того, что я услышу и почувствую в следующее мгновение. Я вижу, как велосипед переезжает порог, и это вызывает у меня ожидание характерного звука. Задев ногой педаль, я наклоняю голову и ожидаю увидеть ее именно около моей ноги. Прогнозы настолько точны, что в случае возникновения малейших отклонений от ожидаемого сценария развития событий я бы тотчас заметил эти отклонения. Информационный поток движется в сенсорной иерархии одновременно в двух направлениях, таким образом формируется унифицированное восприятие, неотъемлемой частью которого является прогнозирование.
Рис. 6.4. Потоки информационных сигналов передвигаются вверх по иерархически организованным сенсорным зонам, а затем возвращаются к низшим зонам. Таким образом формируется объединенный сенсорный опыт и осуществляется прогностическая функция
Предлагаю вам провести следующий опыт: оторвитесь от чтения и что-нибудь сделайте. Что угодно, лишь бы вы двигались и манипулировали каким-то предметом. Можете, например, подойти к раковине и повернуть ручку крана. Делая это, попробуйте обратить внимание на каждый звук, каждое осязательное ощущение, каждое изменение визуальной «картинки». Будьте внимательны, помните, что каждое движение тесно связано с созерцанием, слухом и осязательными ощущениями. Покрутите ручку крана вперед-назад. Ваш мозг ожидает почувствовать давление на кожу и сопротивление ваших мускулов. Вы ожидаете увидеть и почувствовать прокручивание крана, вы ожидаете увидеть и почувствовать воду. Когда вода долетит до раковины, вы ожидаете услышать другой звук – звук падающей воды, увидеть и почувствовать на своей коже обжигающе горячие (или ледяные – в зависимости от того, какой кран включаете) брызги.
При ходьбе вы всегда – осознанно или нет – ожидаете услышать звук каждого шага. Даже то, что вы просто держите эту книгу в руках, тоже вызывает множество сенсорных прогнозов. Представьте себе, что вы почувствовали, будто книга закрывается, хотя зрение подсказывает вам совершенно другое: книга остается раскрытой. Наверняка вы испытали бы полное замешательство, вплоть до шока. Помните наш воображаемый эксперимент с изменением двери, описанный в главе 5? Тогда мы убедились, что мозг постоянно занят прогнозированием, причем это касается абсолютно всех сенсорных модальностей. Каждый раз, сосредоточиваясь на всех своих текущих ощущениях, вплоть до самых незначительных, я просто поражаюсь, насколько интегрированными являются все наши перцепционные прогнозы. Хотя они могут казаться простыми, даже тривиальными, надо помнить, насколько они всеобъемлющи. Они могут формироваться только на основе мощных скоординированных потоков информации, непрерывно циркулирующих в двух противоположных направлениях по иерархии зон коры головного мозга.
Осознав столь тесную взаимосвязь чувств, мы делаем вывод, что вся кора головного мозга, все ее сенсорные и ассоциативные зоны действуют как единое целое. Да, у нас есть зрительная область коры, но она – лишь часть единой всеобъемлющей сенсорной системы, объединяющей восприятие изображения, звуков, прикосновений и многое другое. И в этой системе информационные потоки циркулируют вверх и вниз по сложной разветвленной иерархии.
Следует также отметить, что в основе всех наших предположений лежит непосредственный опыт. Я ожидаю, что отведенная скрепка ручки при отпускании ударится о корпус ручки и издаст характерный звук только потому, что так случалось в прошлом. Звук велосипеда предсказуем по той причине, что я вывожу его из гаража далеко не в первый раз. Ни один бит подобной информации не дается нам от рождения. Все эти сведения сохраняются в мозге только благодаря его невероятно огромной способности запоминать входящую информацию. Если среди информации, поступающей в мозг, встречаются постоянные последовательности сигналов, неокортекс сохраняет их, а в будущем использует для прогнозирования событий.
Хотя на рис. 6.3 и 6.4 не изображена моторная зона коры головного мозга, у нее такая же иерархическая структура, как и у описанных выше сенсорных зон. Ее можно представить как подобную сенсорную систему, но соединенную с органами чувств посредством ассоциативных зон (только с более тонкими связями с соматосенсорной зоной, что обеспечивает способность двигаться). Таким образом, моторная зона коры головного мозга функционирует подобно сенсорным зонам; кроме того, они активно взаимодействуют. Сигнал, поступающий от любого сенсорного анализатора, перемещается вверх к ассоциативной зоне, что вызывает перемещение другого импульса вниз, к моторной зоне коры головного мозга, в результате чего возникает определенное поведение. Подобно тому, как зрительный сигнал может вызвать поступление импульса в осязательную и слуховую зоны, он также может активизировать моторную зону коры головного мозга. В первом случае мы интерпретируем обратные сигналы как прогнозы, во втором – как двигательные команды. Как заметил Маунткастл, моторные зоны коры устроены так же, как и сенсорные. Кора генерирует сенсорные прогнозы так же, как моторные команды.
Вскоре мы убедимся, что в неокортексе нет «чисто сенсорных» и «чисто моторных» зон. Сенсорные потоки одновременно поступают отовсюду и, возвращаясь потом по иерархии зон, формируют прогнозы или генерируют моторные команды. Хотя у моторной зоны коры головного мозга есть свои особенности, вполне корректно считать ее частью общей иерархической запоминающе-прогностической системы. Ее можно считать еще одним органом чувств. Зрение, осязание, слух и действие тесно переплетены друг с другом.
Новый взгляд на зону V1
Продолжая разбираться в запутанной архитектуре коры головного мозга, попробуем по-новому взглянуть на зоны неокортекса. Нам уже известно, что высшие зоны коры головного мозга формируют инвариантные представления, но почему столь важная функция должна осуществляться только в высших зонах? Не забывая о понятии симметрии, сформулированном Маунткастлом, я занялся изучением различных способов связи между зонами коры головного мозга.
На рис. 6.1 показаны четыре зоны зрительного восприятия: V1, V2, V4 и IT. Как правило, каждая из них считается отдельной и непрерывной: все клетки зоны V1, обрабатывая каждая свою область зрительного поля, делают одно и то же, все клетки зоны V2 выполняют одинаковые задачи, все клетки из V4 одинаково специализированы.
Как же выглядит распознавание лица с точки зрения традиционного подхода? Когда изображение лица фиксируется клетками, образующими зону V1, вначале создается грубый «эскиз» лица, состоящий из линий и других простейших элементов. Затем «набросок» поступает в зону V2, где происходит более сложный анализ черт лица. Модифицированная информация передается в зону V4 и так далее. Распознавание объекта осуществляется только в зоне IT, которой свойственна инвариантность представлений.
К сожалению, при таком подходе возникает масса вопросов. Почему инвариантные репрезентации действуют только в зоне IT? Если все зоны коры головного мозга выполняют сходные функции, чем именно примечательна эта? И еще: лицо может быть воспринято правой или левой частью зоны V1, и в обоих случаях мозг его распознает. В то же время экспериментальным путем было установлено, что между этими частями зоны V1 нет непосредственного взаимодействия. Левая часть зоны V1 не знает, что видит правая. Давайте подумаем, какой вывод можно сделать. Судя по всему, разные части зоны V1 выполняют сходные функции, поскольку участвуют в распознавании лица. И в то же время физически они независимы друг от друга. Подзоны, или кластеры зоны V1, физически не связаны, однако выполняют одну и ту же функцию.
И наконец, результаты исследований показывают, что все высшие зоны коры головного мозга получают объединенные сигналы от двух и более сенсорных зон, расположенных ниже в иерархии (рис. 6.3). Данный рисунок является схематическим, в действительности каждая ассоциативная зона может получать сигналы из десятка и более низших зон. Согласно традиционным представлениям, взаимосвязь между низшими зонами (например, V1, V2, V4) иная. Каждая из них якобы имеет единственный источник входящей информации, единственный поток, поступающий из низшей зоны, который не имеет отношения к потокам информации, поступающим из других зон. (Например, принято считать, что зона V2 получает информационный поток от V1, и ее работа состоит только в этом.) Но почему тогда одни зоны коры головного мозга получают объединенную информацию, а другие – нет? Это еще одно несоответствие с гипотезой универсального алгоритма неокортекса, сформулированной Маунткастлом.
По этой и другим причинам я пришел к выводу, что не следует рассматривать области V1, V2, V4 как цельные зоны. Каждая из них образована более мелкими подзонами. Давайте вернемся к воображаемой обеденной салфетке (аналогии с распластанной корой головного мозга). Допустим, мы решили отметить ручкой различные функциональные зоны. Самой большой будет зона V1 – первичная зрительная зона. Следующей по размеру – зона V2. По сравнению со всеми остальными зонами эти две просто огромны. Я веду к тому, что V1 нужно рассматривать как эквивалент многих малых зон. Вместо того чтобы обвести большую зону на нашей салфетке, мы нарисуем множество маленьких зон, которые и займут территорию, принадлежащую V1. Другими словами, V1 состоит из многих малых зон коры головного мозга, которые связаны друг с другом лишь опосредованно, через более высокие зоны иерархии. В V1 входит наибольшее количество подзон по сравнению с другими зонами зрительного восприятия. V2 состоит из меньшего количества зон, но они имеют большие размеры, чем подзоны V1. То же самое утверждение действительно и для V4. Вот когда вы доберетесь до IT, она действительно окажется однородной и унифицированной. Этим объясняется тот факт, что именно клетки зоны IT формируют общую картину всего визуального восприятия окружающего мира.
Рис. 6.5. Альтернативный подход к рассмотрению иерархии коры головного мозга
Взгляните на рис. 6.5. Не правда ли, занятная симметрия? Здесь изображена та же иерархия, что и на рис. 6.3, но с учетом только что приведенной информации. Обратите внимание, что кора головного мозга везде устроена одинаково. Любая из зон получает информацию от многих других зон низшего уровня. Эта же получающая зона направляет вниз по иерархии сигналы о предполагаемых событиях. Высшие ассоциативные центры интегрируют информацию, полученную от нескольких органов чувств, например, зрительную и осязательную. Зоны низшего уровня, например, подзоны, входящие в зону V2, интегрируют информацию, воспринимаемую несколькими отдельными подзонами, входящими в V1. Зона в целом не интерпретирует – она и не может этого делать – каждый из отдельно взятых сигналов. Подзоне, входящей в V2, совершенно необязательно знать, что она получает входные сигналы из нескольких частей зоны V1. Ассоциативной зоне совершенно необязательно различать входящие в нее сигналы от зрительного и слухового анализаторов. Задача каждой зоны коры головного мозга состоит, скорее, в том, чтобы выяснить, как связаны между собой входящие сигналы, запомнить последовательность взаимосвязей между ними и в будущем использовать эту информацию для прогнозирования. Кора головного мозга всегда остается корой головного мозга. Это универсальный алгоритм функционирования неокортекса: во всех зонах происходят одни и те же процессы.
Новая иерархическая схема поможет нам понять, как формируются инвариантные представления. На низшем уровне обработки визуальных сигналов левая часть зрительного поля отличается от правой части зрительного пространства так же сильно, как зрительное восприятие отличается от слухового. Левая и правая части зоны V1 формируют похожие репрезентации только потому, что получили сходный предшествующий «жизненный опыт». Их можно рассматривать как два независимых сенсорных потока, такие же, как слуховое и зрительное восприятие, которые объединяются в зонах более высокого порядка.
Подобно этому, более мелкие зоны в составе V2 и V4 являются ассоциативными зонами зрительного восприятия. (Подзоны могут пересекаться, но это не меняет функционирование зон радикально.) Рассмотрение коры головного мозга под таким углом никоим образом не противоречит нашим знаниям о ее анатомическом строений. Информационные потоки передвигаются по всем восходящим и нисходящим ветвям иерархического древа системы памяти. Сигнал, поступивший в левую часть зрительного поля, может привести к формированию прогнозов для правой части зрительного поля, как звук колокольчика на шее кошки стал причиной визуального прогноза о том, что она войдет в спальню.
Главная польза нашего нового схематического изображения заключается в том, что теперь мы можем быть уверены: в формировании инвариантных репрезентаций участвует каждая зона коры головного мозга. Согласно традиционным взглядам, о полных инвариантных представлениях речь не шла до тех пор, пока сигнал не попадал в высшие зоны неокортекса (такую, например, как зрительная зона IT, в которой формируется представление об общей наблюдаемой визуальной картине). Теперь мы установили, что на самом деле инвариантные репрезентации вездесущи – они формируются каждой зоной коры головного мозга. Инвариантность – не чудо, возникающее в высших зонах. Каждая зона формирует инвариантные репрезентации на основе данных, получаемых из зон, расположенных ниже по иерархической лестнице (каждая из которых «видит» лишь небольшую часть окружающего мира). Можно сказать, что уровень восприятия в низших зонах значительно беднее такового в высшей зоне IT, однако все они выполняют сходные функции: V4, V2, V1 выполняют ту же работу, что и IT Ассоциативные зоны, расположенные выше IT, формируют инвариантные представления, основанные на информации, полученной от нескольких сенсорных анализаторов. Следовательно, каждая из зон коры головного мозга создает инвариантные представления исходя из того, что находится ниже в иерархии. Это красиво.
Наша головоломка изменилась. Нам больше не нужно выяснять, каким образом за четыре шага формируются инвариантные представления. Но теперь мы должны разобраться, как формируются инвариантные репрезентации во всех зонах коры головного мозга. Если мы признаем существование универсального алгоритма коры головного мозга, то такая постановка вопроса обоснованна. Если в одной зоне хранятся последовательности сигналов, то и в остальных зонах тоже. Если одна зона создает инвариантные репрезентации, то и остальные зоны тоже. Новая схема иерархии коры головного мозга, представленная на рис. 6.5, поможет нам глубже понять суть данного подхода.
На рис. 6.1 показаны четыре зоны зрительного восприятия: V1, V2, V4 и IT. Как правило, каждая из них считается отдельной и непрерывной: все клетки зоны V1, обрабатывая каждая свою область зрительного поля, делают одно и то же, все клетки зоны V2 выполняют одинаковые задачи, все клетки из V4 одинаково специализированы.
Как же выглядит распознавание лица с точки зрения традиционного подхода? Когда изображение лица фиксируется клетками, образующими зону V1, вначале создается грубый «эскиз» лица, состоящий из линий и других простейших элементов. Затем «набросок» поступает в зону V2, где происходит более сложный анализ черт лица. Модифицированная информация передается в зону V4 и так далее. Распознавание объекта осуществляется только в зоне IT, которой свойственна инвариантность представлений.
К сожалению, при таком подходе возникает масса вопросов. Почему инвариантные репрезентации действуют только в зоне IT? Если все зоны коры головного мозга выполняют сходные функции, чем именно примечательна эта? И еще: лицо может быть воспринято правой или левой частью зоны V1, и в обоих случаях мозг его распознает. В то же время экспериментальным путем было установлено, что между этими частями зоны V1 нет непосредственного взаимодействия. Левая часть зоны V1 не знает, что видит правая. Давайте подумаем, какой вывод можно сделать. Судя по всему, разные части зоны V1 выполняют сходные функции, поскольку участвуют в распознавании лица. И в то же время физически они независимы друг от друга. Подзоны, или кластеры зоны V1, физически не связаны, однако выполняют одну и ту же функцию.
И наконец, результаты исследований показывают, что все высшие зоны коры головного мозга получают объединенные сигналы от двух и более сенсорных зон, расположенных ниже в иерархии (рис. 6.3). Данный рисунок является схематическим, в действительности каждая ассоциативная зона может получать сигналы из десятка и более низших зон. Согласно традиционным представлениям, взаимосвязь между низшими зонами (например, V1, V2, V4) иная. Каждая из них якобы имеет единственный источник входящей информации, единственный поток, поступающий из низшей зоны, который не имеет отношения к потокам информации, поступающим из других зон. (Например, принято считать, что зона V2 получает информационный поток от V1, и ее работа состоит только в этом.) Но почему тогда одни зоны коры головного мозга получают объединенную информацию, а другие – нет? Это еще одно несоответствие с гипотезой универсального алгоритма неокортекса, сформулированной Маунткастлом.
По этой и другим причинам я пришел к выводу, что не следует рассматривать области V1, V2, V4 как цельные зоны. Каждая из них образована более мелкими подзонами. Давайте вернемся к воображаемой обеденной салфетке (аналогии с распластанной корой головного мозга). Допустим, мы решили отметить ручкой различные функциональные зоны. Самой большой будет зона V1 – первичная зрительная зона. Следующей по размеру – зона V2. По сравнению со всеми остальными зонами эти две просто огромны. Я веду к тому, что V1 нужно рассматривать как эквивалент многих малых зон. Вместо того чтобы обвести большую зону на нашей салфетке, мы нарисуем множество маленьких зон, которые и займут территорию, принадлежащую V1. Другими словами, V1 состоит из многих малых зон коры головного мозга, которые связаны друг с другом лишь опосредованно, через более высокие зоны иерархии. В V1 входит наибольшее количество подзон по сравнению с другими зонами зрительного восприятия. V2 состоит из меньшего количества зон, но они имеют большие размеры, чем подзоны V1. То же самое утверждение действительно и для V4. Вот когда вы доберетесь до IT, она действительно окажется однородной и унифицированной. Этим объясняется тот факт, что именно клетки зоны IT формируют общую картину всего визуального восприятия окружающего мира.
Рис. 6.5. Альтернативный подход к рассмотрению иерархии коры головного мозга
Взгляните на рис. 6.5. Не правда ли, занятная симметрия? Здесь изображена та же иерархия, что и на рис. 6.3, но с учетом только что приведенной информации. Обратите внимание, что кора головного мозга везде устроена одинаково. Любая из зон получает информацию от многих других зон низшего уровня. Эта же получающая зона направляет вниз по иерархии сигналы о предполагаемых событиях. Высшие ассоциативные центры интегрируют информацию, полученную от нескольких органов чувств, например, зрительную и осязательную. Зоны низшего уровня, например, подзоны, входящие в зону V2, интегрируют информацию, воспринимаемую несколькими отдельными подзонами, входящими в V1. Зона в целом не интерпретирует – она и не может этого делать – каждый из отдельно взятых сигналов. Подзоне, входящей в V2, совершенно необязательно знать, что она получает входные сигналы из нескольких частей зоны V1. Ассоциативной зоне совершенно необязательно различать входящие в нее сигналы от зрительного и слухового анализаторов. Задача каждой зоны коры головного мозга состоит, скорее, в том, чтобы выяснить, как связаны между собой входящие сигналы, запомнить последовательность взаимосвязей между ними и в будущем использовать эту информацию для прогнозирования. Кора головного мозга всегда остается корой головного мозга. Это универсальный алгоритм функционирования неокортекса: во всех зонах происходят одни и те же процессы.
Новая иерархическая схема поможет нам понять, как формируются инвариантные представления. На низшем уровне обработки визуальных сигналов левая часть зрительного поля отличается от правой части зрительного пространства так же сильно, как зрительное восприятие отличается от слухового. Левая и правая части зоны V1 формируют похожие репрезентации только потому, что получили сходный предшествующий «жизненный опыт». Их можно рассматривать как два независимых сенсорных потока, такие же, как слуховое и зрительное восприятие, которые объединяются в зонах более высокого порядка.
Подобно этому, более мелкие зоны в составе V2 и V4 являются ассоциативными зонами зрительного восприятия. (Подзоны могут пересекаться, но это не меняет функционирование зон радикально.) Рассмотрение коры головного мозга под таким углом никоим образом не противоречит нашим знаниям о ее анатомическом строений. Информационные потоки передвигаются по всем восходящим и нисходящим ветвям иерархического древа системы памяти. Сигнал, поступивший в левую часть зрительного поля, может привести к формированию прогнозов для правой части зрительного поля, как звук колокольчика на шее кошки стал причиной визуального прогноза о том, что она войдет в спальню.
Главная польза нашего нового схематического изображения заключается в том, что теперь мы можем быть уверены: в формировании инвариантных репрезентаций участвует каждая зона коры головного мозга. Согласно традиционным взглядам, о полных инвариантных представлениях речь не шла до тех пор, пока сигнал не попадал в высшие зоны неокортекса (такую, например, как зрительная зона IT, в которой формируется представление об общей наблюдаемой визуальной картине). Теперь мы установили, что на самом деле инвариантные репрезентации вездесущи – они формируются каждой зоной коры головного мозга. Инвариантность – не чудо, возникающее в высших зонах. Каждая зона формирует инвариантные репрезентации на основе данных, получаемых из зон, расположенных ниже по иерархической лестнице (каждая из которых «видит» лишь небольшую часть окружающего мира). Можно сказать, что уровень восприятия в низших зонах значительно беднее такового в высшей зоне IT, однако все они выполняют сходные функции: V4, V2, V1 выполняют ту же работу, что и IT Ассоциативные зоны, расположенные выше IT, формируют инвариантные представления, основанные на информации, полученной от нескольких сенсорных анализаторов. Следовательно, каждая из зон коры головного мозга создает инвариантные представления исходя из того, что находится ниже в иерархии. Это красиво.
Наша головоломка изменилась. Нам больше не нужно выяснять, каким образом за четыре шага формируются инвариантные представления. Но теперь мы должны разобраться, как формируются инвариантные репрезентации во всех зонах коры головного мозга. Если мы признаем существование универсального алгоритма коры головного мозга, то такая постановка вопроса обоснованна. Если в одной зоне хранятся последовательности сигналов, то и в остальных зонах тоже. Если одна зона создает инвариантные репрезентации, то и остальные зоны тоже. Новая схема иерархии коры головного мозга, представленная на рис. 6.5, поможет нам глубже понять суть данного подхода.
Модель окружающего мира
Почему кора головного мозга устроена иерархически?
Вы обладаете способностью размышлять о мире, передвигаться в окружающем пространстве и прогнозировать будущее, потому что в вашем неокортексе сформирована модель внешнего мира. Одна из наиболее важных концепций данной книги состоит в том, что иерархическая структура коры головного мозга хранит модель иерархического строения внешнего мира. Вложенная структура реального мира отображается вложенной структурой коры вашего головного мозга.
Что я подразумеваю под вложенной, или иерархической, структурой? Обратимся к музыке. В ней ноты объединяются в группы, которые, в свою очередь, образуют мелодические фразы. Так рождается мелодия или песня. Из песен состоят альбомы. В качестве второго, не менее удачного, примера можно привести письменность. Буквы складываются в слоги, которые сочетаются в слова. Из слов состоят предложения и фразы. Хотите еще один пример? Вспомните, что у вас расположено по соседству – дороги, школы, дома? В каждом доме есть комнаты. В каждой комнате есть стены, потолок, пол, дверь, одно или больше окон. Каждая из этих составляющих, в свою очередь, состоит из более мелких частей. Окно состоит из стекла, рамы, ручки, щеколды. Щеколда состоит из еще более мелких частей, таких как винты.
Осмотритесь вокруг. Сигналы от вашей сетчатки, поступающие в первичную зону зрительного восприятия, сочетаются в линейные сегменты. Линейные сегменты объединяются в более сложные формы. Эти формы объединяются в еще более сложные образы, такие, например, как нос. Носы вкупе с глазами и ртами головной мозг объединяет в человеческие лица. Из лица, дополненного остальными частями тела, у вас складывается образ человека, сидящего напротив.
Все объекты окружающего мира состоят из подобъектов, составляющих одно целое. Эти составляющие отдельных образов и являются их определениями. Называя что-либо определенным словом, мы подразумеваем, что существует набор характеристик, связанных с этим определением. Лицо называется лицом, потому что на нем всегда присутствуют глаза, рот, нос. Глаз является глазом, потому что в нем всегда присутствуют зрачок, радужная оболочка, ресницы, веки и так далее. То же самое можно сказать и о стульях, машинах, деревьях, парках, странах. Песня называется песней благодаря определенной последовательности звуков.
Весь мир, окружающий нас, – это своего рода песня. Каждый объект в нем состоит из множества более мелких, а большинство малых объектов являются частью больших. Именно это я и подразумеваю под вложенной структурой, характерной практически для всех объектов окружающей среды. Аналогичным образом, информация об объектах и способы их представления сохраняются в иерархической структуре коры головного мозга. Информация о том, что такое здание, хранится не в единственной зоне неокортекса, а в иерархии зон. Соответственно, эта информация отражает иерархическую структуру понятия «здание». Фундаментальные взаимосвязи сохраняются в верхней части иерархии зон, а более специфичные – ближе к «подножию» иерархической лестницы. Иерархические связи внешнего мира подтверждаются в ходе процесса обучения. Никому из нас не даются от природы знание языка, образов окружающего мира, музыки. Но в кору нашего головного мозга встроен разумный самообучающийся алгоритм, который естественным образом выявляет иерархические структуры и запоминает их. Если никакой структуры нет, мы испытываем смятение и считаем сложившуюся ситуацию хаотичной.
В каждый отдельно взятый момент времени вы можете воспринимать только определенную часть внешнего мира. Вы можете находиться только в одной комнате вашего дома и смотреть только в одном направлении. Благодаря иерархическому строению коры головного мозга вы в состоянии осознавать, что находитесь дома, в своей гостиной, и что вы смотрите в окно, даже если в данный момент ваш взгляд остановился на щеколде. Высшие зоны коры головного мозга поддерживают инвариантную репрезентацию вашего дома, более низкие – репрезентацию комнаты, а первичные – анализируют непосредственные визуальные символы, в данном случае – происходящее за окном. Точно так же иерархическое строение неокортекса позволяет вам осознавать, что вы прослушиваете отдельную песню из определенного музыкального альбома, несмотря на то что в каждый отдельно взятый момент вы слышите только одну ноту, которая сама по себе ничего для вас не значит. Благодаря иерархическому строению неокортекса вы понимаете, что беседуете со своим лучшим другом, хотя в данный конкретный момент вы смотрите только на его ладонь. Высшие зоны коры головного мозга выполняют стратегическую функцию – следят за ходом развития событий в крупных масштабах, в то время как более низкие зоны сосредоточены на восприятии скоротечных аспектов каждой конкретной ситуации.
Поскольку в некий отдельно взятый момент времени вы можете видеть, слышать и ощущать только очень небольшую часть внешнего мира, информация поступает в мозг в виде последовательностей сигналов. Кора головного мозга особенно чувствительна к тем последовательностям, которые постоянно повторяются, и стремится их запомнить. В некоторых случаях, таких как, например, звучание мелодии, последовательность сигналов, поступающая в ваш головной мозг, определенным образом организована. Надеюсь, что концепция последовательностей сигналов понятна любому из вас. Но я собираюсь использовать термин последовательность в более широком смысле, приближающемся к математическому термину ряд. Последовательность – это ряд сигналов, которые следуют друг за другом, но не всегда в строгом порядке.
Для большей наглядности предлагаю вам рассмотреть примеры. Когда я смотрю на ваше лицо, последовательность входных сигналов, поступающих в кору головного мозга, не остается неизменной, она определяется саккадами моих глаз. Один раз мой взгляд движется по пути «глаз-глаз-нос-рот», а через мгновение порядок изменяется: «рот-глаз-нос-глаз». Части лица – это последовательности. Они статистически связаны и встречаются близко во времени, хотя их порядок может меняться. Если вы воспринимаете «лицо», фиксируя взгляд на «носу», наиболее вероятным следующим паттерном будет «глаз» или «рот», а не «ручка» или машина".
В каждую область коры поступает поток таких паттернов. Если зона коры может предсказать, какой из паттернов последовательности будет следующим, она формирует постоянное представление этой последовательности – запоминает ее. Запоминание последовательностей это самый главный компонент формирования инвариантных репрезентаций объектов реального мира. Эти объекты могут быть конкретными, как ящерица, лицо или дверь, или абстрактными, как слово или теория. Мозг рассматривает абстрактные и конкретные объекты одинаково. И те, и другие – всего лишь предсказуемые последовательности паттернов, которые время от времени повторяются. Именно благодаря повторяемости зона коры головного мозга определяет, что она имеет дело с объектом реального мира.
Вы обладаете способностью размышлять о мире, передвигаться в окружающем пространстве и прогнозировать будущее, потому что в вашем неокортексе сформирована модель внешнего мира. Одна из наиболее важных концепций данной книги состоит в том, что иерархическая структура коры головного мозга хранит модель иерархического строения внешнего мира. Вложенная структура реального мира отображается вложенной структурой коры вашего головного мозга.
Что я подразумеваю под вложенной, или иерархической, структурой? Обратимся к музыке. В ней ноты объединяются в группы, которые, в свою очередь, образуют мелодические фразы. Так рождается мелодия или песня. Из песен состоят альбомы. В качестве второго, не менее удачного, примера можно привести письменность. Буквы складываются в слоги, которые сочетаются в слова. Из слов состоят предложения и фразы. Хотите еще один пример? Вспомните, что у вас расположено по соседству – дороги, школы, дома? В каждом доме есть комнаты. В каждой комнате есть стены, потолок, пол, дверь, одно или больше окон. Каждая из этих составляющих, в свою очередь, состоит из более мелких частей. Окно состоит из стекла, рамы, ручки, щеколды. Щеколда состоит из еще более мелких частей, таких как винты.
Осмотритесь вокруг. Сигналы от вашей сетчатки, поступающие в первичную зону зрительного восприятия, сочетаются в линейные сегменты. Линейные сегменты объединяются в более сложные формы. Эти формы объединяются в еще более сложные образы, такие, например, как нос. Носы вкупе с глазами и ртами головной мозг объединяет в человеческие лица. Из лица, дополненного остальными частями тела, у вас складывается образ человека, сидящего напротив.
Все объекты окружающего мира состоят из подобъектов, составляющих одно целое. Эти составляющие отдельных образов и являются их определениями. Называя что-либо определенным словом, мы подразумеваем, что существует набор характеристик, связанных с этим определением. Лицо называется лицом, потому что на нем всегда присутствуют глаза, рот, нос. Глаз является глазом, потому что в нем всегда присутствуют зрачок, радужная оболочка, ресницы, веки и так далее. То же самое можно сказать и о стульях, машинах, деревьях, парках, странах. Песня называется песней благодаря определенной последовательности звуков.
Весь мир, окружающий нас, – это своего рода песня. Каждый объект в нем состоит из множества более мелких, а большинство малых объектов являются частью больших. Именно это я и подразумеваю под вложенной структурой, характерной практически для всех объектов окружающей среды. Аналогичным образом, информация об объектах и способы их представления сохраняются в иерархической структуре коры головного мозга. Информация о том, что такое здание, хранится не в единственной зоне неокортекса, а в иерархии зон. Соответственно, эта информация отражает иерархическую структуру понятия «здание». Фундаментальные взаимосвязи сохраняются в верхней части иерархии зон, а более специфичные – ближе к «подножию» иерархической лестницы. Иерархические связи внешнего мира подтверждаются в ходе процесса обучения. Никому из нас не даются от природы знание языка, образов окружающего мира, музыки. Но в кору нашего головного мозга встроен разумный самообучающийся алгоритм, который естественным образом выявляет иерархические структуры и запоминает их. Если никакой структуры нет, мы испытываем смятение и считаем сложившуюся ситуацию хаотичной.
В каждый отдельно взятый момент времени вы можете воспринимать только определенную часть внешнего мира. Вы можете находиться только в одной комнате вашего дома и смотреть только в одном направлении. Благодаря иерархическому строению коры головного мозга вы в состоянии осознавать, что находитесь дома, в своей гостиной, и что вы смотрите в окно, даже если в данный момент ваш взгляд остановился на щеколде. Высшие зоны коры головного мозга поддерживают инвариантную репрезентацию вашего дома, более низкие – репрезентацию комнаты, а первичные – анализируют непосредственные визуальные символы, в данном случае – происходящее за окном. Точно так же иерархическое строение неокортекса позволяет вам осознавать, что вы прослушиваете отдельную песню из определенного музыкального альбома, несмотря на то что в каждый отдельно взятый момент вы слышите только одну ноту, которая сама по себе ничего для вас не значит. Благодаря иерархическому строению неокортекса вы понимаете, что беседуете со своим лучшим другом, хотя в данный конкретный момент вы смотрите только на его ладонь. Высшие зоны коры головного мозга выполняют стратегическую функцию – следят за ходом развития событий в крупных масштабах, в то время как более низкие зоны сосредоточены на восприятии скоротечных аспектов каждой конкретной ситуации.
Поскольку в некий отдельно взятый момент времени вы можете видеть, слышать и ощущать только очень небольшую часть внешнего мира, информация поступает в мозг в виде последовательностей сигналов. Кора головного мозга особенно чувствительна к тем последовательностям, которые постоянно повторяются, и стремится их запомнить. В некоторых случаях, таких как, например, звучание мелодии, последовательность сигналов, поступающая в ваш головной мозг, определенным образом организована. Надеюсь, что концепция последовательностей сигналов понятна любому из вас. Но я собираюсь использовать термин последовательность в более широком смысле, приближающемся к математическому термину ряд. Последовательность – это ряд сигналов, которые следуют друг за другом, но не всегда в строгом порядке.
Для большей наглядности предлагаю вам рассмотреть примеры. Когда я смотрю на ваше лицо, последовательность входных сигналов, поступающих в кору головного мозга, не остается неизменной, она определяется саккадами моих глаз. Один раз мой взгляд движется по пути «глаз-глаз-нос-рот», а через мгновение порядок изменяется: «рот-глаз-нос-глаз». Части лица – это последовательности. Они статистически связаны и встречаются близко во времени, хотя их порядок может меняться. Если вы воспринимаете «лицо», фиксируя взгляд на «носу», наиболее вероятным следующим паттерном будет «глаз» или «рот», а не «ручка» или машина".
В каждую область коры поступает поток таких паттернов. Если зона коры может предсказать, какой из паттернов последовательности будет следующим, она формирует постоянное представление этой последовательности – запоминает ее. Запоминание последовательностей это самый главный компонент формирования инвариантных репрезентаций объектов реального мира. Эти объекты могут быть конкретными, как ящерица, лицо или дверь, или абстрактными, как слово или теория. Мозг рассматривает абстрактные и конкретные объекты одинаково. И те, и другие – всего лишь предсказуемые последовательности паттернов, которые время от времени повторяются. Именно благодаря повторяемости зона коры головного мозга определяет, что она имеет дело с объектом реального мира.