Страница:
Например, когда вы смотрите на собаку, набор сигналов поступает по волокнам зрительного нерва в зрительную зону коры головного мозга. Когда вы слышите лай собаки, другой набор сигналов посредством слухового нерва поступает в слуховые зоны коры головного мозга. Когда вы гладите собаку, набор осязательных сигналов проходит от вашей руки по волокнам спинного мозга и поступает в зоны коры головного мозга, отвечающие за осязание. Каждый набор сигналов – увидеть собаку, услышать собаку, почувствовать собаку – воспринимается по-разному, потому что передается в соответствующие зоны коры головного мозга по разным каналам. Однако на абстрактном уровне все сенсорные сигналы одинаковы, потому что перерабатываются шестислойной корой головного мозга по одному и тому же алгоритму. Вы слышите звук, видите изображение, чувствуете давление, но для вашего мозга не существует принципиальных различий между типами подачи информации. Нервный импульс – это нервный импульс. Он одинаков независимо от того, что послужило его причиной. Все, чем оперирует ваш мозг, – это сигналы.
На этих сигналах и основано ваше восприятие и знание мира. В вашей голове нет света. Там темно. Звук не попадает в ваш мозг. Там тихо. В действительности мозг – это единственная часть вашего тела, не обладающая чувствительностью. В нем нет болевых рецепторов. Хирург мог бы засунуть палец вам в мозг, и вы бы даже не почувствовали этого. Вся информация, поступающая в ваш мозг, попадает туда в виде пространственных или временных сигналов и передается по аксонам.
Что я подразумеваю под пространственными и временными сигналами? Рассмотрим поочередно каждое из наших основных ощущений. Зрительное восприятие включает как пространственную, так и временную информацию. Пространственные сигналы – это сигналы, совпадающие по времени. Они возникают, когда несколько рецепторов одного органа чувств стимулируются одновременно. Для зрительного восприятия органом чувств является сетчатка глаза, в которой формируется пространственный сигнал. Через зрительный нерв и проводящие пути центральной нервной системы этот сигнал передается в зрительные центры головного мозга, где возникает зрительное ощущение. Люди склонны считать, что в зрительные зоны попадает немного искаженная картинка мира, но на самом деле это совсем не так. Нет никакой картинки и нет никакого изображения. Есть только электрические разряды, вспыхивающие в сигналах. Визуальные качества быстро исчезают, как только кора головного мозга начинает перерабатывать полученную информацию, передавая сигналы вверх-вниз от зоны к зоне, фильтруя и просеивая их.
Не следует забывать, что визуальные сигналы постоянно меняются. Если пространственный аспект зрительного восприятия интуитивно понятен, то разобраться в его временном аспекте немного труднее. Порядка трех раз в секунду ваши глаза делают быстрое скачкообразное движение – саккаду[9]. При каждой саккаде изображение на сетчатке ваших глаз меняется. В свою очередь, это означает, что сигналы, поступающие в ваш мозг, полностью меняются при каждом скачкообразном движении глаз. Даже когда вы полагаете, что недвижимо сидите и наблюдаете одну и ту же сцену, ваше тело пребывает в непрерывном движении, а внешняя среда вокруг вас тоже постоянно меняется. В вашем сознании существует впечатление, что мир неизменен, а уследить за людьми и объектами, находящимися вокруг вас, не так уж и сложно. Однако такое впечатление возникает только благодаря тому, что ваш мозг обладает поразительной способностью обрабатывать стремительный поток поступающих из органа зрения изображений, сигналы о которых практически никогда не повторяются. Естественное зрительное восприятие, передаваемое как поток сигналов в мозг, напоминает реку. Можно также провести аналогию с песней, но не картиной.
Скачкообразные движения, совершаемые глазами, мало интересу-' ют исследователей зрительного восприятия. Зато весьма популярны эксперименты над животными, которых подвергают наркозу, а затем изучают особенности зрительного восприятия при фиксации на одной точке. Так устраняется переменная времени. Разумеется, исключение переменных положено в основу большинства научных исследований. Однако в описанном случае не принимается в расчет главный компонент зрительного восприятия, собственно то, из чего оно и состоит. Временной фактор должен занимать центральное место в нейробиологических исследованиях зрительного восприятия.
Что касается способности слышать, то мы привыкли рассматривать ее во временных рамках. Очевидно, что любые звуки, будь то разговорная речь или музыка, меняются с течением времени. Так, песня «существует» определенный промежуток времени, но воспринимать ее как набор пространственных сигналов мы не привыкли. Этот пример является обратным ситуации со зрительным восприятием – акцент ставится на временной аспект. Но в способности слушать трудно найти пространственный компонент.
У звукового восприятия тоже есть пространственный компонент. Звуки превращаются в нервные импульсы, проходя через улитку, или переднюю часть ушного лабиринта. Крошечная светонепроницаемая спиралевидная улитка, помещенная в наиболее твердую кость человеческого тела, была открыта более полусотни лет тому назад венгерским физиком Джорджем ван Бекси. Создавая модели внутренней части уха, исследователь выявил, что разные типы воспринимаемых человеком звуков продуцируют колебания разных частей улитки. Высокочастотные звуки вызывают вибрацию твердой основы улитки, а низкочастотные – вибрацию в более гибкой и широкой наружной части. Звуки средней частоты вызывают вибрацию промежуточных сегментов улитки. Каждая часть улитки буквально усеяна нейронами, которые активизируются при колебаниях. В повседневной жизни, когда вы непрерывно подвергаетесь одновременному действию самых различных частот, улитка пребывает в постоянном движении. Таким образом, по всей длине улитки постоянно возникают сигналы стимуляции иного типа, а именно – пространственные. Каждую секунду в зрительный нерв поступает новый пространственный сигнал. Итак, мы снова убедились, что сенсорная информация передается пространственно-временными сигналами.
Мы не привыкли считать осязание временным феноменом, тем не менее и это сенсорное ощущение включает как пространственный, так и временной компонент. Чтобы убедится в этом, проведите простой опыт. Попросите своего друга протянуть руку вперед (ладонью кверху) и закрыть глаза. Положите ему на ладонь какой-нибудь небольшой предмет (например, кольцо или ластик) и попросите опознать его, не шевеля при этом ни одной частью руки. Располагая лишь приблизительной информацией о массе и размере предмета, ваш друг, скорее всего, не сможет дать правильный ответ. Но предложите ему, не открывая глаз, провести пальцем по предмету, и он тотчас его опознает! Разрешив шевелить пальцами, вы добавили составляющую времени к сенсорному восприятию осязания. Чувствительность клетчатки сравнима с чувствительностью подушечек пальцев. Значит, осязание тоже подобно песне. Постоянно меняющиеся во времени сигналы обретают особое значение в случаях, когда не обойтись без тонкого осязания (например, при застегивании рубашки или открывании двери в потемках).
Детей учат тому, что у человека есть пять органов чувств: зрение, слух, осязание, обоняние и вкус. Но их подвидов намного больше. Зрение, например, состоит из трех компонентов – восприятия движения объектов, их цвета и контрастности. Осязание включает регистрацию корой головного мозга давления, температуры, вибрации и боли. У нас также имеется целая сенсорная система, контролирующая положение тела, – проприоцептивная система[10]. Чувствительные окончания органов проприоцептивной системы рассеяны повсеместно в составе мышечных пучков, в сухожилиях и суставных сумках. Эти рецепторы сигнализируют мозгу о положениях звеньев тела, о суставных углах, о напряжениях в тех или иных мышцах и т. д. У нас также есть вестибулярная система. Расположенная во внутренней части уха, она обеспечивает нам ощущение равновесия.
Есть ощущения более или менее яркие, неуловимые или очевидные, но все они передвигаются по аксонам нейронов и попадают в мозг в виде потоков временно-пространственных сигналов. Кора головного мозга не познает и не чувствует окружающий мир непосредственно. Единственное, чем она оперирует, – это сигналы, передвигающиеся по входным и выходным аксонам. Ваше видение мира и себя возникает на основе сигналов.
Нейробиологи, изучавшие закономерности формирования образа тела, выявили, что наше восприятие самих себя является куда более гибким, чем это может показаться на первый взгляд. Например, я вам дам маленькую кочергу, чтобы вы использовали ее для хватательных функций вместо руки. Вскоре вы почувствуете, что кочерга словно стала частью вашего тела. Мозг приспособился к новым входным сигналам тактильного ощущения. Кочерга фактически стала частью образа вашего тела.
Гипотеза о том, что сигналы, поступающие в головной мозг от разных органов чувств, по сути одинаковы, конечно, очень неожиданна. Чтобы обосновать ее, приведу еще несколько примеров. Первый эксперимент вы сможете провести в домашних условиях с помощью друга. Вам понадобятся картонный экран и искусственная рука. Для первого раза будет неплохо, если вы сможете достать резиновую искусственную руку вроде тех, которые продают на Хэллоуин. Если такой нет, тогда обведите контур своей руки на чистом листе бумаги. Свою настоящую руку вытяните на некоторое расстояние, причем так, чтобы она повторяла положение искусственной руки (кончики пальцев должны смотреть в одном и том же направления, ладонь в обоих случаях повернута вверх либо вниз). Затем поставьте между ними картонный экран так, чтобы вы могли видеть только искусственную руку. Итак, вы смотрите на искусственную руку, а задача вашего друга состоит в том, чтобы одновременно поглаживать/прикасаться к обеим рукам в одинаковых местах. Некоторое время спустя зоны мозга, в которых встречаются зрительные и соматосенсорные сигналы, – ассоциативные зоны, о которых мы упоминали ранее, – придут в замешательство. Вы ощутите искусственную руку как свою собственную.
Другой, не менее захватывающий пример такой «сигнальной эквивалентности», называется сенсорным замещением. Это может полностью перевернуть жизнь людей, которые потеряли зрение в детском возрасте, и даже незрячих от рождения. Возможно, он поможет создать технологии нового машинного интерфейса для всех остальных, зрячих.
Понимая, что работа мозга по сути своей не что иное как передача сигналов, Пол Бачирита, профессор, специалист в области биомедицинских инженерных технологий университета штата Висконсин, задумался над тем, нельзя ли транслировать на новые участки коры головного мозга сигнал, допустим, с видеокамеры, чтобы человек, потерявший зрение, вновь начал видеть?
Теперь Бачирита знает ответ. Он воплощён в виде комплекта электроники, именуемой «Машинно-мозговой интерфейс», а конечным узлом комплекса является «языковой дисплей» (Tongue Display Unit, сокращенно TDU). Это устройство с десятками электродов, создающих слабое покалывание на языке сообразно яркости пикселей на картинке, снимаемой видеокамерой. При помощи «Языкового дисплея» незрячий человек учится «видеть» через ощущения языка.
Дисплей функционирует следующим образом.
На лоб испытуемому помещают небольшую видеокамеру. Зрительные образы попиксельно транслируются как точки давления на язык. Зрительная сцена, которая отображается сотней пикселей на телеэкране, превращается в сигналы сотен крошечных точек давления на языке человека. Мозг быстро учится правильно интерпретировать сигналы.
Эрик Вайенмайер, атлет мирового уровня, одним из первых надел «языковое устройство». Он ослеп в возрасте тринадцати лет и часто выступал с лекциями о том, что слепота не должна лишать человека полноценной жизни. В 2002 году он совершил восхождение на гору Эверест, став единственным незрячим альпинистом, взявшимся за подобное дело.
В 2003 году Вайенмайер испробовал устройство Бачириты и впервые за долгие годы увидел изображение. Он смог совершить перехват мяча, катающегося по полу, взять со стола бутылку лимонада, сыграть в игру «Камень-ножницы-бумага». Затем он спустился вниз по лестнице, прошел сквозь дверной проем, рассмотрел дверь и ее раму и заметил, что на ней висит какая-то табличка. Изображения, по сути бывшие ощущениями на языке, в скором времени стали восприниматься как пространственные.
Эти примеры еще раз показывают, что мозг очень пластичен, а входящая информация, которая поступает в него, является не чем иным, как сигналами.
Все приведенные примеры подтверждают, что на самом фундаментальном уровне работа мозга описывается языком сигналов. Независимо от того, насколько отличаются друг от друга функции зон коры головного мозга, базовый алгоритм остается одним и тем же. Коре головного мозга безразлично, какой из органов чувств посылает сигналы. Для нее не имеет никакого значения, поступают сигналы от одного органа чувств или от четырех. Ничего не изменилось бы, воспринимай вы мир через звуковые, радарные или магнитные поля, если бы у вас были щупальца вместо рук, или даже если бы вы существовали не в трехмерном, а в четырехмерном пространстве.
Все перечисленное означает, что базовой основой интеллекта не являются сенсорные каналы взаимодействия или их комбинации. Элен Келлер не могла видеть и слышать, тем не менее она выучила язык и стала знаменитой писательницей, что не под силу большинству зрячих и хорошо слышащих людей[11]. Невероятная гибкость мозга позволила Элен, лишенной двух из основных функций, обеспечивающих восприятие окружающего мира, жить такой же полноценной жизнью, как и обычные люди.
Именно эта поразительная гибкость человеческого мозга питает во мне очень большие надежды на создание искусственного интеллекта. Задумываясь о создании разумных компьютеров, я задаю себе вопрос: «А зачем, собственно, привязываться только к известным нам пяти чувствам?» Как только мы расшифруем алгоритм коры головного мозга и создадим науку сигналов, то сможем применять ее к любой системе, которую захотим наделить разумом. Причем одно из наиболее замечательных свойств заложенной в мозге обратной связи состоит в том, что нам не нужно быть исключительно умными, чтобы ее программировать. Подобно тому как слуховая зона хорька «переходит» в зрительную, как зрительная часть коры находит себе альтернативное применения у незрячих людей, система, работающая на основе алгоритма коры головного мозга, будет мыслящей независимо от того, сигналы какого типа буду в нее поступать. Конечно, нам нужно быть достаточно сведущими, чтобы задать параметры системы, а также чтобы обучить ее. Но во всем остальном миллиарды нейронов, дающие мозгу способность генерировать сложные творческие мысли, позаботятся сами о себе, точно так же как они делают это в организме человека. Когда я сижу в комнате вместе со своими друзьями, откуда я знаю, что они здесь или что они реальны? Мой мозг получает набор сигналов, подобных тем, которые получал в прошлом. Сигналы соотносятся со знакомыми мне людьми, их лицами, голосами, их привычным поведением и всевозможными фактами из их жизни. Я лишь считываю определенные комбинации сигналов.
Все наши знания – это модель, построенная на сигналах. Уверены ли мы, что мир существует? Наверняка, этот вопрос показался вам странным. Но им задавались некоторые авторы фантастических фильмов и книг. Речь не о том, что люди или объекты окружающего мира не существуют. Они существуют, но наша уверенность в существовании мира полностью построена на сигналах и том, как мы их интерпретируем. Иллюзорно лишь непосредственное восприятие. Как вы помните, мозг – это темный звуконепроницаемый ящик, которому неведомо ничего, кроме переменных входящих сигналов. Ваше восприятие мира создается исключительно на основе этих сигналов.
Тогда возникает вопрос о связи галлюцинаций и реальности. Если у вас возникают галлюцинационные ощущения от искусственной руки и вы можете «видеть» через точечную стимуляцию языка, то, может, вас так же дурачат, когда вы чувствуете собственной рукой или видите своими глазами? Можем ли мы верить в реальность того мира, который ощущаем? Да. Мир действительно существует в абсолютной форме, очень приближенной к той, которую мы воспринимаем. Однако наш мозг не в состоянии познать этот мир непосредственно.
Ощущения, призванные сканировать какие-то срезы, отдельные аспекты абсолютного мира, сворачиваются в сигналы, поступающие в кору головного мозга, а в результате переработки стандартным алгоритмом они создают модель мира. И хотя письменный и разговорный язык воспринимаются органами чувств совершенно по-разному, на уровне неокортекса они работают почти одинаково. Точно так же модель мира Элен Келлер была очень близка к нашей с вами, хотя она располагала значительно меньшим набором ощущений. Благодаря сигналам кора головного мозга создает модель, очень близкую к реальному миру, а потом эту модель фиксирует в памяти. Запоминание – вот что происходит с сигналами после их попадания в кору головного мозга. Это и станет темой нашей следующей главы.
4. Память
На этих сигналах и основано ваше восприятие и знание мира. В вашей голове нет света. Там темно. Звук не попадает в ваш мозг. Там тихо. В действительности мозг – это единственная часть вашего тела, не обладающая чувствительностью. В нем нет болевых рецепторов. Хирург мог бы засунуть палец вам в мозг, и вы бы даже не почувствовали этого. Вся информация, поступающая в ваш мозг, попадает туда в виде пространственных или временных сигналов и передается по аксонам.
Что я подразумеваю под пространственными и временными сигналами? Рассмотрим поочередно каждое из наших основных ощущений. Зрительное восприятие включает как пространственную, так и временную информацию. Пространственные сигналы – это сигналы, совпадающие по времени. Они возникают, когда несколько рецепторов одного органа чувств стимулируются одновременно. Для зрительного восприятия органом чувств является сетчатка глаза, в которой формируется пространственный сигнал. Через зрительный нерв и проводящие пути центральной нервной системы этот сигнал передается в зрительные центры головного мозга, где возникает зрительное ощущение. Люди склонны считать, что в зрительные зоны попадает немного искаженная картинка мира, но на самом деле это совсем не так. Нет никакой картинки и нет никакого изображения. Есть только электрические разряды, вспыхивающие в сигналах. Визуальные качества быстро исчезают, как только кора головного мозга начинает перерабатывать полученную информацию, передавая сигналы вверх-вниз от зоны к зоне, фильтруя и просеивая их.
Не следует забывать, что визуальные сигналы постоянно меняются. Если пространственный аспект зрительного восприятия интуитивно понятен, то разобраться в его временном аспекте немного труднее. Порядка трех раз в секунду ваши глаза делают быстрое скачкообразное движение – саккаду[9]. При каждой саккаде изображение на сетчатке ваших глаз меняется. В свою очередь, это означает, что сигналы, поступающие в ваш мозг, полностью меняются при каждом скачкообразном движении глаз. Даже когда вы полагаете, что недвижимо сидите и наблюдаете одну и ту же сцену, ваше тело пребывает в непрерывном движении, а внешняя среда вокруг вас тоже постоянно меняется. В вашем сознании существует впечатление, что мир неизменен, а уследить за людьми и объектами, находящимися вокруг вас, не так уж и сложно. Однако такое впечатление возникает только благодаря тому, что ваш мозг обладает поразительной способностью обрабатывать стремительный поток поступающих из органа зрения изображений, сигналы о которых практически никогда не повторяются. Естественное зрительное восприятие, передаваемое как поток сигналов в мозг, напоминает реку. Можно также провести аналогию с песней, но не картиной.
Скачкообразные движения, совершаемые глазами, мало интересу-' ют исследователей зрительного восприятия. Зато весьма популярны эксперименты над животными, которых подвергают наркозу, а затем изучают особенности зрительного восприятия при фиксации на одной точке. Так устраняется переменная времени. Разумеется, исключение переменных положено в основу большинства научных исследований. Однако в описанном случае не принимается в расчет главный компонент зрительного восприятия, собственно то, из чего оно и состоит. Временной фактор должен занимать центральное место в нейробиологических исследованиях зрительного восприятия.
Что касается способности слышать, то мы привыкли рассматривать ее во временных рамках. Очевидно, что любые звуки, будь то разговорная речь или музыка, меняются с течением времени. Так, песня «существует» определенный промежуток времени, но воспринимать ее как набор пространственных сигналов мы не привыкли. Этот пример является обратным ситуации со зрительным восприятием – акцент ставится на временной аспект. Но в способности слушать трудно найти пространственный компонент.
У звукового восприятия тоже есть пространственный компонент. Звуки превращаются в нервные импульсы, проходя через улитку, или переднюю часть ушного лабиринта. Крошечная светонепроницаемая спиралевидная улитка, помещенная в наиболее твердую кость человеческого тела, была открыта более полусотни лет тому назад венгерским физиком Джорджем ван Бекси. Создавая модели внутренней части уха, исследователь выявил, что разные типы воспринимаемых человеком звуков продуцируют колебания разных частей улитки. Высокочастотные звуки вызывают вибрацию твердой основы улитки, а низкочастотные – вибрацию в более гибкой и широкой наружной части. Звуки средней частоты вызывают вибрацию промежуточных сегментов улитки. Каждая часть улитки буквально усеяна нейронами, которые активизируются при колебаниях. В повседневной жизни, когда вы непрерывно подвергаетесь одновременному действию самых различных частот, улитка пребывает в постоянном движении. Таким образом, по всей длине улитки постоянно возникают сигналы стимуляции иного типа, а именно – пространственные. Каждую секунду в зрительный нерв поступает новый пространственный сигнал. Итак, мы снова убедились, что сенсорная информация передается пространственно-временными сигналами.
Мы не привыкли считать осязание временным феноменом, тем не менее и это сенсорное ощущение включает как пространственный, так и временной компонент. Чтобы убедится в этом, проведите простой опыт. Попросите своего друга протянуть руку вперед (ладонью кверху) и закрыть глаза. Положите ему на ладонь какой-нибудь небольшой предмет (например, кольцо или ластик) и попросите опознать его, не шевеля при этом ни одной частью руки. Располагая лишь приблизительной информацией о массе и размере предмета, ваш друг, скорее всего, не сможет дать правильный ответ. Но предложите ему, не открывая глаз, провести пальцем по предмету, и он тотчас его опознает! Разрешив шевелить пальцами, вы добавили составляющую времени к сенсорному восприятию осязания. Чувствительность клетчатки сравнима с чувствительностью подушечек пальцев. Значит, осязание тоже подобно песне. Постоянно меняющиеся во времени сигналы обретают особое значение в случаях, когда не обойтись без тонкого осязания (например, при застегивании рубашки или открывании двери в потемках).
Детей учат тому, что у человека есть пять органов чувств: зрение, слух, осязание, обоняние и вкус. Но их подвидов намного больше. Зрение, например, состоит из трех компонентов – восприятия движения объектов, их цвета и контрастности. Осязание включает регистрацию корой головного мозга давления, температуры, вибрации и боли. У нас также имеется целая сенсорная система, контролирующая положение тела, – проприоцептивная система[10]. Чувствительные окончания органов проприоцептивной системы рассеяны повсеместно в составе мышечных пучков, в сухожилиях и суставных сумках. Эти рецепторы сигнализируют мозгу о положениях звеньев тела, о суставных углах, о напряжениях в тех или иных мышцах и т. д. У нас также есть вестибулярная система. Расположенная во внутренней части уха, она обеспечивает нам ощущение равновесия.
Есть ощущения более или менее яркие, неуловимые или очевидные, но все они передвигаются по аксонам нейронов и попадают в мозг в виде потоков временно-пространственных сигналов. Кора головного мозга не познает и не чувствует окружающий мир непосредственно. Единственное, чем она оперирует, – это сигналы, передвигающиеся по входным и выходным аксонам. Ваше видение мира и себя возникает на основе сигналов.
Нейробиологи, изучавшие закономерности формирования образа тела, выявили, что наше восприятие самих себя является куда более гибким, чем это может показаться на первый взгляд. Например, я вам дам маленькую кочергу, чтобы вы использовали ее для хватательных функций вместо руки. Вскоре вы почувствуете, что кочерга словно стала частью вашего тела. Мозг приспособился к новым входным сигналам тактильного ощущения. Кочерга фактически стала частью образа вашего тела.
Гипотеза о том, что сигналы, поступающие в головной мозг от разных органов чувств, по сути одинаковы, конечно, очень неожиданна. Чтобы обосновать ее, приведу еще несколько примеров. Первый эксперимент вы сможете провести в домашних условиях с помощью друга. Вам понадобятся картонный экран и искусственная рука. Для первого раза будет неплохо, если вы сможете достать резиновую искусственную руку вроде тех, которые продают на Хэллоуин. Если такой нет, тогда обведите контур своей руки на чистом листе бумаги. Свою настоящую руку вытяните на некоторое расстояние, причем так, чтобы она повторяла положение искусственной руки (кончики пальцев должны смотреть в одном и том же направления, ладонь в обоих случаях повернута вверх либо вниз). Затем поставьте между ними картонный экран так, чтобы вы могли видеть только искусственную руку. Итак, вы смотрите на искусственную руку, а задача вашего друга состоит в том, чтобы одновременно поглаживать/прикасаться к обеим рукам в одинаковых местах. Некоторое время спустя зоны мозга, в которых встречаются зрительные и соматосенсорные сигналы, – ассоциативные зоны, о которых мы упоминали ранее, – придут в замешательство. Вы ощутите искусственную руку как свою собственную.
Другой, не менее захватывающий пример такой «сигнальной эквивалентности», называется сенсорным замещением. Это может полностью перевернуть жизнь людей, которые потеряли зрение в детском возрасте, и даже незрячих от рождения. Возможно, он поможет создать технологии нового машинного интерфейса для всех остальных, зрячих.
Понимая, что работа мозга по сути своей не что иное как передача сигналов, Пол Бачирита, профессор, специалист в области биомедицинских инженерных технологий университета штата Висконсин, задумался над тем, нельзя ли транслировать на новые участки коры головного мозга сигнал, допустим, с видеокамеры, чтобы человек, потерявший зрение, вновь начал видеть?
Теперь Бачирита знает ответ. Он воплощён в виде комплекта электроники, именуемой «Машинно-мозговой интерфейс», а конечным узлом комплекса является «языковой дисплей» (Tongue Display Unit, сокращенно TDU). Это устройство с десятками электродов, создающих слабое покалывание на языке сообразно яркости пикселей на картинке, снимаемой видеокамерой. При помощи «Языкового дисплея» незрячий человек учится «видеть» через ощущения языка.
Дисплей функционирует следующим образом.
На лоб испытуемому помещают небольшую видеокамеру. Зрительные образы попиксельно транслируются как точки давления на язык. Зрительная сцена, которая отображается сотней пикселей на телеэкране, превращается в сигналы сотен крошечных точек давления на языке человека. Мозг быстро учится правильно интерпретировать сигналы.
Эрик Вайенмайер, атлет мирового уровня, одним из первых надел «языковое устройство». Он ослеп в возрасте тринадцати лет и часто выступал с лекциями о том, что слепота не должна лишать человека полноценной жизни. В 2002 году он совершил восхождение на гору Эверест, став единственным незрячим альпинистом, взявшимся за подобное дело.
В 2003 году Вайенмайер испробовал устройство Бачириты и впервые за долгие годы увидел изображение. Он смог совершить перехват мяча, катающегося по полу, взять со стола бутылку лимонада, сыграть в игру «Камень-ножницы-бумага». Затем он спустился вниз по лестнице, прошел сквозь дверной проем, рассмотрел дверь и ее раму и заметил, что на ней висит какая-то табличка. Изображения, по сути бывшие ощущениями на языке, в скором времени стали восприниматься как пространственные.
Эти примеры еще раз показывают, что мозг очень пластичен, а входящая информация, которая поступает в него, является не чем иным, как сигналами.
Все приведенные примеры подтверждают, что на самом фундаментальном уровне работа мозга описывается языком сигналов. Независимо от того, насколько отличаются друг от друга функции зон коры головного мозга, базовый алгоритм остается одним и тем же. Коре головного мозга безразлично, какой из органов чувств посылает сигналы. Для нее не имеет никакого значения, поступают сигналы от одного органа чувств или от четырех. Ничего не изменилось бы, воспринимай вы мир через звуковые, радарные или магнитные поля, если бы у вас были щупальца вместо рук, или даже если бы вы существовали не в трехмерном, а в четырехмерном пространстве.
Все перечисленное означает, что базовой основой интеллекта не являются сенсорные каналы взаимодействия или их комбинации. Элен Келлер не могла видеть и слышать, тем не менее она выучила язык и стала знаменитой писательницей, что не под силу большинству зрячих и хорошо слышащих людей[11]. Невероятная гибкость мозга позволила Элен, лишенной двух из основных функций, обеспечивающих восприятие окружающего мира, жить такой же полноценной жизнью, как и обычные люди.
Именно эта поразительная гибкость человеческого мозга питает во мне очень большие надежды на создание искусственного интеллекта. Задумываясь о создании разумных компьютеров, я задаю себе вопрос: «А зачем, собственно, привязываться только к известным нам пяти чувствам?» Как только мы расшифруем алгоритм коры головного мозга и создадим науку сигналов, то сможем применять ее к любой системе, которую захотим наделить разумом. Причем одно из наиболее замечательных свойств заложенной в мозге обратной связи состоит в том, что нам не нужно быть исключительно умными, чтобы ее программировать. Подобно тому как слуховая зона хорька «переходит» в зрительную, как зрительная часть коры находит себе альтернативное применения у незрячих людей, система, работающая на основе алгоритма коры головного мозга, будет мыслящей независимо от того, сигналы какого типа буду в нее поступать. Конечно, нам нужно быть достаточно сведущими, чтобы задать параметры системы, а также чтобы обучить ее. Но во всем остальном миллиарды нейронов, дающие мозгу способность генерировать сложные творческие мысли, позаботятся сами о себе, точно так же как они делают это в организме человека. Когда я сижу в комнате вместе со своими друзьями, откуда я знаю, что они здесь или что они реальны? Мой мозг получает набор сигналов, подобных тем, которые получал в прошлом. Сигналы соотносятся со знакомыми мне людьми, их лицами, голосами, их привычным поведением и всевозможными фактами из их жизни. Я лишь считываю определенные комбинации сигналов.
Все наши знания – это модель, построенная на сигналах. Уверены ли мы, что мир существует? Наверняка, этот вопрос показался вам странным. Но им задавались некоторые авторы фантастических фильмов и книг. Речь не о том, что люди или объекты окружающего мира не существуют. Они существуют, но наша уверенность в существовании мира полностью построена на сигналах и том, как мы их интерпретируем. Иллюзорно лишь непосредственное восприятие. Как вы помните, мозг – это темный звуконепроницаемый ящик, которому неведомо ничего, кроме переменных входящих сигналов. Ваше восприятие мира создается исключительно на основе этих сигналов.
Тогда возникает вопрос о связи галлюцинаций и реальности. Если у вас возникают галлюцинационные ощущения от искусственной руки и вы можете «видеть» через точечную стимуляцию языка, то, может, вас так же дурачат, когда вы чувствуете собственной рукой или видите своими глазами? Можем ли мы верить в реальность того мира, который ощущаем? Да. Мир действительно существует в абсолютной форме, очень приближенной к той, которую мы воспринимаем. Однако наш мозг не в состоянии познать этот мир непосредственно.
Ощущения, призванные сканировать какие-то срезы, отдельные аспекты абсолютного мира, сворачиваются в сигналы, поступающие в кору головного мозга, а в результате переработки стандартным алгоритмом они создают модель мира. И хотя письменный и разговорный язык воспринимаются органами чувств совершенно по-разному, на уровне неокортекса они работают почти одинаково. Точно так же модель мира Элен Келлер была очень близка к нашей с вами, хотя она располагала значительно меньшим набором ощущений. Благодаря сигналам кора головного мозга создает модель, очень близкую к реальному миру, а потом эту модель фиксирует в памяти. Запоминание – вот что происходит с сигналами после их попадания в кору головного мозга. Это и станет темой нашей следующей главы.
4. Память
Когда вы читаете книгу, идете по улице, заполненной прохожими, слушаете симфонию, утешаете плачущего ребенка, все органы чувств посылают в ваш головной мозг пространственно-временные сигналы. Окружающий мир – это океан постоянно меняющихся сигналов. Что же происходит с ними при попадании в кору головного мозга?
Еще на заре индустриальной революции ученые рассматривали мозг как своего рода биологический механизм, или программируемый компьютер. Разумеется, никто не сомневался в отсутствии гаек и шурупов в голове человека, но данная метафора представлялась большинству исследователей самой точной.
Как мы отмечали в главе 1, этой позиции придерживались и разработчики искусственного интеллекта. Считалось, что неспособность создать искусственный интеллект напрямую связана с тем, что компьютеры слишком малы и медленны по сравнению с человеческим мозгом. Современный компьютер может считаться эквивалентом мозга букашки, говорили изобретатели, а вот когда мы создадим более быстрые и объемные машины, они будут такими же умными, как человек.
Аналогия между живым мозгом и вычислительной машиной некорректна. По сравнению с транзисторами нейроны головного мозга действуют гораздо медленнее. Нейрон собирает из синапсов входные сигналы, объединяет их и принимает решение. Он либо генерирует импульс – потенциал действия, который будет восприниматься синапсами соседних нейронов, – либо воздерживается от этого. Обычный нейрон может осуществить подобную операцию и вернуться в исходное состояние за пять миллисекунд, т. е. 1/200 секунды. Современный компьютер на кремниевой основе может осуществлять миллиард операций в секунду. Значит, основная компьютерная операция осуществляется в 5 миллионов раз быстрее, чем базовая операция в человеческом мозге! Каким же образом, вопреки столь существенной разнице, мозг способен действовать быстрее, чем наиболее быстрые цифровые компьютеры? «Да это же очевидно, – скажут сторонники идеи создания вычислительных и управляющих систем по образу и подобию мозга, – мозг – это параллельный компьютер. У него миллиарды клеток, занимающихся одновременным вычислением. Этот параллельный процесс во много раз увеличивает мощность биологического мозга».
Я считаю данный аргумент заблуждением и готов опровергнуть его при помощи простого эксперимента, так называемого «правила ста шагов». Человек способен выполнять существенные задания за намного меньший промежуток времени, чем одна секунда. Например, я мог бы показать вам фотографию и спросить, есть ли на снимке кошка. Если вы увидите кошку, а не медведя или луковицу, то должны будете нажать кнопку. Для современного компьютера такая задача является очень сложной или вообще невыполнимой, а человек даст правильный ответ за полсекунды или даже быстрее. Но, поскольку нейроны малоподвижны, это значит, что за полсекунды информация, поступившая в ваш мозг, может пройти цепочку не более чем из сотни нейронов. То есть мозг «вычисляет» ответ за сто шагов или даже меньше, независимо от того, какое количество нейронов вовлечено в процесс передачи информации. С момента, когда ваши глаза фиксируют изображение, и до момента, когда вы нажимаете кнопку, сигналы прошли цепочку из ста нейронов. Цифровой компьютер для решения той же задачи использует около миллиарда шагов. Сотни шагов для компьютера будет недостаточно даже для того, чтобы передвинуть один знак на дисплее, не говоря о более сложных задачах.
Но разве миллионы одновременно работающих нейронов не похожи на параллельный компьютер? Не совсем. Принцип параллельности используется и мозгом, и компьютером, но это все, что их роднит. Параллельные компьютеры объединяют значительное количество быстродействующих компьютеров для выполнения сложных задач, таких как составление прогноза погоды. Чтобы предвидеть погоду, нужно просчитать физические условия во многих частях планеты одновременно. Каждый компьютер может работать над одной задачей. Но даже если сотни или тысячи машин объединить в параллельную систему, отдельному компьютеру для обработки информации и выполнения своей задачи понадобятся миллиарды или миллионы шагов. Какой большой параллельный компьютер мы бы ни собрали, каким бы быстродействующим он ни был, он не сможет сделать ничего полезного за сто шагов.
Приведу пример: представьте, что я попросил вас перенести сотню каменных глыб через пустыню. За один раз вы можете перенести только один камень, а чтобы пересечь пустыню, вам нужно сделать миллион шагов. Понимая, что справиться с заданием в одиночку будет непросто, вы нанимаете сто рабочих для параллельного выполнения задачи. Дело станет продвигаться в сто раз быстрее, однако тот факт, что для пересечения пустыни нужно пройти миллион шагов, остался неизменным. Наем новых работников, даже тысячи, ничего изменить не может. Независимо от количества нанятых работников задание может быть выполнено только за миллион шагов. То же самое справедливо и для параллельных компьютеров. Добавление дополнительных процессоров не меняет дела. Независимо от количества и мощности процессоров и быстродействия компьютер не может решить сложную задачу за сто шагов.
Но как же мозгу удается решать сложные задачи за сто шагов, в то время как даже самый большой параллельный компьютер ничего подобного сделать не в состоянии за миллион или миллиард шагов? Дело в том, что мозг на самом деле не «вычисляет» решения задач, он извлекает их из памяти, представляющей, по сути, хранилище готовых решений. Соответственно, для того чтобы их извлечь, нужно всего несколько шагов. Медленных нейронов для этого более чем достаточно, ведь они сами и составляют память. Можно утверждать, что мозг, точнее, неокортекс, который является «интеллектуальной» частью мозга, – это единое запоминающее устройство, а вовсе не компьютер.
Еще на заре индустриальной революции ученые рассматривали мозг как своего рода биологический механизм, или программируемый компьютер. Разумеется, никто не сомневался в отсутствии гаек и шурупов в голове человека, но данная метафора представлялась большинству исследователей самой точной.
Как мы отмечали в главе 1, этой позиции придерживались и разработчики искусственного интеллекта. Считалось, что неспособность создать искусственный интеллект напрямую связана с тем, что компьютеры слишком малы и медленны по сравнению с человеческим мозгом. Современный компьютер может считаться эквивалентом мозга букашки, говорили изобретатели, а вот когда мы создадим более быстрые и объемные машины, они будут такими же умными, как человек.
Аналогия между живым мозгом и вычислительной машиной некорректна. По сравнению с транзисторами нейроны головного мозга действуют гораздо медленнее. Нейрон собирает из синапсов входные сигналы, объединяет их и принимает решение. Он либо генерирует импульс – потенциал действия, который будет восприниматься синапсами соседних нейронов, – либо воздерживается от этого. Обычный нейрон может осуществить подобную операцию и вернуться в исходное состояние за пять миллисекунд, т. е. 1/200 секунды. Современный компьютер на кремниевой основе может осуществлять миллиард операций в секунду. Значит, основная компьютерная операция осуществляется в 5 миллионов раз быстрее, чем базовая операция в человеческом мозге! Каким же образом, вопреки столь существенной разнице, мозг способен действовать быстрее, чем наиболее быстрые цифровые компьютеры? «Да это же очевидно, – скажут сторонники идеи создания вычислительных и управляющих систем по образу и подобию мозга, – мозг – это параллельный компьютер. У него миллиарды клеток, занимающихся одновременным вычислением. Этот параллельный процесс во много раз увеличивает мощность биологического мозга».
Я считаю данный аргумент заблуждением и готов опровергнуть его при помощи простого эксперимента, так называемого «правила ста шагов». Человек способен выполнять существенные задания за намного меньший промежуток времени, чем одна секунда. Например, я мог бы показать вам фотографию и спросить, есть ли на снимке кошка. Если вы увидите кошку, а не медведя или луковицу, то должны будете нажать кнопку. Для современного компьютера такая задача является очень сложной или вообще невыполнимой, а человек даст правильный ответ за полсекунды или даже быстрее. Но, поскольку нейроны малоподвижны, это значит, что за полсекунды информация, поступившая в ваш мозг, может пройти цепочку не более чем из сотни нейронов. То есть мозг «вычисляет» ответ за сто шагов или даже меньше, независимо от того, какое количество нейронов вовлечено в процесс передачи информации. С момента, когда ваши глаза фиксируют изображение, и до момента, когда вы нажимаете кнопку, сигналы прошли цепочку из ста нейронов. Цифровой компьютер для решения той же задачи использует около миллиарда шагов. Сотни шагов для компьютера будет недостаточно даже для того, чтобы передвинуть один знак на дисплее, не говоря о более сложных задачах.
Но разве миллионы одновременно работающих нейронов не похожи на параллельный компьютер? Не совсем. Принцип параллельности используется и мозгом, и компьютером, но это все, что их роднит. Параллельные компьютеры объединяют значительное количество быстродействующих компьютеров для выполнения сложных задач, таких как составление прогноза погоды. Чтобы предвидеть погоду, нужно просчитать физические условия во многих частях планеты одновременно. Каждый компьютер может работать над одной задачей. Но даже если сотни или тысячи машин объединить в параллельную систему, отдельному компьютеру для обработки информации и выполнения своей задачи понадобятся миллиарды или миллионы шагов. Какой большой параллельный компьютер мы бы ни собрали, каким бы быстродействующим он ни был, он не сможет сделать ничего полезного за сто шагов.
Приведу пример: представьте, что я попросил вас перенести сотню каменных глыб через пустыню. За один раз вы можете перенести только один камень, а чтобы пересечь пустыню, вам нужно сделать миллион шагов. Понимая, что справиться с заданием в одиночку будет непросто, вы нанимаете сто рабочих для параллельного выполнения задачи. Дело станет продвигаться в сто раз быстрее, однако тот факт, что для пересечения пустыни нужно пройти миллион шагов, остался неизменным. Наем новых работников, даже тысячи, ничего изменить не может. Независимо от количества нанятых работников задание может быть выполнено только за миллион шагов. То же самое справедливо и для параллельных компьютеров. Добавление дополнительных процессоров не меняет дела. Независимо от количества и мощности процессоров и быстродействия компьютер не может решить сложную задачу за сто шагов.
Но как же мозгу удается решать сложные задачи за сто шагов, в то время как даже самый большой параллельный компьютер ничего подобного сделать не в состоянии за миллион или миллиард шагов? Дело в том, что мозг на самом деле не «вычисляет» решения задач, он извлекает их из памяти, представляющей, по сути, хранилище готовых решений. Соответственно, для того чтобы их извлечь, нужно всего несколько шагов. Медленных нейронов для этого более чем достаточно, ведь они сами и составляют память. Можно утверждать, что мозг, точнее, неокортекс, который является «интеллектуальной» частью мозга, – это единое запоминающее устройство, а вовсе не компьютер.