Страница:
Предвижу недоумение: при чём тут графология или графометрия? Разве не существует иных способов узнать характер, и наклонности человека? Что ж, существует. И даже немало. Но, во-первых, для этого нужно очное- и подчас многолетнее знакомство с испытуемым. Во-вторых, человек может сам не знать своих задатков, чтобы найти возможность проявить их. Ошибётся он сам, ошибутся педагоги, составляющие характеристику. Как выразился Стефан Цвейг: «…человек может солгать, притвориться, отречься, портрет может его изменить и сделать красивее, может лгать книга, письмо. Но в одном всё же человек неотделим от своей истинной сущности — в почерке».
Впрочем, дело даже не в этом. Разве откажется психолог, невропатолог, педагог, криминалист, литературовед, искусствовед, историк, этнограф, социолог заполучить лишний — способ разведки в потаённых глубинах человеческой натуры? Способ простейший из простейших — сличением автографа с графометрическими таблицами, которые рано или поздно будут разработаны настолько же детально, как и таблицы типографских шрифтов…
Наступит и такой день, когда за анализ почерков примутся электронно-вычислительные машины, эти непревзойдённые виртуозы комбинаторики, способные молниеносно перебрать миллионы вариантов, чтобы выискать самый подходящий.
Созданием машины, опознающей буквы и цифры, независимо от того, как они написаны, вот уже несколько лет подряд усиленно занимаются учёные и инженеры всех стран. Над проблемой без особого успеха работали американцы Оливер Селфридж и Фрэнк Розенблат, а один из пионеров кибернетики, Уолтер Питтс, выразил глубокое сомнение в том, что её вообще можно построить. И надо сказать, его опасения были отнюдь не безосновательны.
Сотни лет исследуются глаза и мозг — как ин виво (в живом теле), так и ин витро (в стекле — то есть извлечённые из умершего организма лабораторные препараты этих органов). Но до сих пор никто не в состоянии объяснить, как мы узнаём одну и ту же букву, когда она написана совершенно несхожими почерками. И как отличаем друг от друга разные буквы, которые имеют близкое начертание, — к примеру, рукописные «ч» и «г», «н» и «и». Мы не ошибёмся, если увидим любой незнакомый, пусть даже «дикий», как у Чернышевского, почерк в первый раз.
Спроецированные хрусталиком на сетчатку изображения одного и того же символа выглядят то долговязыми и сухопарыми, как Дон-Кихот, то округлыми и массивными, как Санчо Панса, то изощрёнными и фантастическими, как грёзы рыцаря печального образа, то грубоватыми и незатейливыми, как чаяния его верного оруженосца, А мозг — его не проведёшь! — он сразу видит: это одна и та же фигура. Что при этом происходит? Как? Почему? Психофизиологи пока не представляют. Во всяком случае, досконально. Но даже если бы они до конца познали всю эту хитрую механику, поведать о ней машине было бы нелегко. Электронный мозг оперирует только последовательностью электрических импульсов и пауз, обозначаемых «1» и «О». Такой двоичной арифметикой можно выразить любые понятия лишь в случае, когда они передаются строгим математическим языком. А как описать миллиарды почерков?
Однако выход нашёлся.
7 февраля 1962 года общее собрание Академии наук заслушало доклад директора Института автоматики и телемеханики академика В. А. Трапезникова о работах молодого советского математика Э. М. Бравермана, открывших новый этап в развитии кибернетики.
Когда ребёнок осваивает азбуку, ему достаточно показать два-три образца одной буквы или цифры, чтобы он потом узнавал и десятки различных её начертаний, разных по форме и величине, — на витринах, в газетах, в записных книжках. В его головке возник обобщённый образ. А нельзя ли машину тоже заставить обобщать саму? Показать ей, скажем, цифру «6» — сперва изящную, округлую, как её печатают в типографии, а потом корявую, угловатую, очень похожую на букву «Б», какой она может получиться при записи на ходу. И втолковать машине, что все штриховые сочетания, похожие на продемонстрированную типографскую литеру, какими бы кривыми и уродливыми они ни были, суть цифры «6». Однако сходство кончается там, где шестёрка приобретает несвойственную ей чересчур сильную угловатость буквы «Б». Ту же самую информацию придётся сообщить электронному мозгу и о букве «Б». Допустимы любые её рукописные искажения. Даже такие, где полукруг не замкнут внизу вертикальной палочкой. Но до какого-то предела. Как только вместо знака «Б» появится нечто, больше похожее на «5», это уже будет границей, за которой кончается буква и начинается цифра. У пятёрки, конечно, тоже немало начертаний, но обобщённый образ опять-таки один.
Самым сложным было объяснить это машине на единственном лексиконе, понятном ей, — математическом. И добиться, чтобы она в математических же терминах сама переходила от нескольких конкретных образцов начертания символа, показанных ей, к обобщённому образу этого символа. Чтобы в дальнейшем, буде ей встретится совершенно новый, невиданный ею раньше вензель, она опознавала его именно как «Б», а не как «6» и не как «5».
Строгую математическую интерпретацию расплывчатого психологического понятия «образ» Браверман предложил, исходя из своей «гипотезы компактности».
Уразуметь идею компактности поможет нам один древний парадокс. Вообразим, что перед нами горка зерна. Удалите одно зёрнышко. Затем второе, третье, ещё и ещё. Сколько зёрен должно остаться, чтобы куча перестала быть кучей?
Нечто подобное встречаем мы при распознавании образов.
Сколько зёрнышек фотоэмульсии необходимо, чтобы буква «Б» оставалась буквой «Б»? И основная идея «компактности» заключается в следующем: существуют некие граничные фигуры (буквы, цифры) — малейшее изменение этой предельной фигуры сделает её принадлежащей к какому-то иному классу. Всех возможных изображений буквы — миллиарды. Подавляющее большинство их лежит внутри данной области. Изменение одной какой-нибудь детали не вычеркнет букву из нашей области, как удаление одного зерна оставит горку горкой. Иначе обстоит дело с буквами, лежащими на границе множества: любое, самое незначительное изменение штриха или кружочка способно сделать нашу букву уже совершенно чужеродной фигурой, относящейся к иному множеству.
Теперь начинается самое главное. Вы пишете несколько раз одну и ту же букву и все эти образцы вашего почерка предъявляете машине. Она смотрит фотоэлектронным глазом. Тотчас же в многомерном пространстве появляется несколько точек, а в запоминающем устройстве — их координаты. Машина запомнила образцы. По конкретным примерам у неё создалось нехитрое представление об абстрактном образе буквы «Б». Теперь, какую бы красивую или уродливую, чёткую или расплывчатую букву «Б» ей вы ни показали, она должна сообразить, что новая точка относится именно к этому, а не иному множеству.
Должна… Ничего бы она не делала, никаких приказов не выполняла, не составь Э. М. Браверман специальную программу (читатель может ознакомиться с подробностями по книге А. Г. Аркадьева и Э. М. Бравермана «Обучение машины распознаванию образов», вышедшей в 1964 году). Это было нелёгким делом. Но ещё предстоял эксперимент, который мог не подтвердить идеи молодого математика.
Машине одну за другой показали двести карточек и объяснили (на языке двоичного кода, конечно), что обозначают нанесённые на них изображения. Потом начался экзамен. Перед фотоэлектронным глазом стали появляться знаки таких форм, какие машина ещё не видывала. И она их правильно опознала! Ошибка была допущена лишь в четырёх случаях из восьмисот. Вот он, заслуженный успех!
Да, машина, как и ребёнок, способна учиться обобщениям.
Надо сказать, однако, что возможны и другие подходы к электронному ученику. Например, вовсе не обязательно вводить в машину, как это делал Браверман, заранее разработанную систему основополагающих признаков, с тем чтобы дальнейший процесс обучения только уточнял их. Многие склонны думать, что машина, анализируя группы образов, должна самостоятельно вырабатывать систему характерных признаков, чтобы затем с помощью этих критериев классифицировать показанные ей объекты. (Кстати, цель работы любого графометриста — именно классификация почерков по определённому комплексу признаков.) И машина должна уметь решать множество разнообразных задач в меняющейся обстановке, приспосабливаясь каждый раз к новым ситуациям. Ведь программисту не всегда под силу заранее определить, какие признаки окажутся наиболее существенными, а какими можно пренебречь. Возникающие при этом трудности наглядно иллюстрирует одна восточная притча (со слов журналиста А. М. Кондратова).
Мудрецам показали две группы рисунков: первая состояла из маленьких геометрических фигур (эллипсов, кругов), а вторая — из крупных (но уже не эллипсов и кругов, а прямоугольников). Затем мудрецам предъявили большой овал и спросили: к какой группе фигур его следует отнести?
— К обеим, — ответил мудрец по имени Ага-Ага.
— Только к первой, — высказался другой, которого звали Ага-Ни. — Ибо перед нами овал.
— Позвольте, но ведь фигура-то большая! — возразил Ни-Ага.
— Её надлежит включить во вторую группу.
— Неверно! — подал голос мудрец Ни-Ни. — Новая фигура не имеет отношения ни к первой, ни ко второй группе.
Спор мудрейших должен, был разрешить суд.
— Все четверо правы, — молвил первый судья.
— Все четверо ошибаются! — отрицательно качнул головой второй судья. — Ни у кого не было достаточных оснований, чётких критериев, чтобы решить задачу однозначно.
И все судьи тоже разошлись во мнениях..
Очевидно, здесь допустимы различные варианты. Всё зависит от того, какой признак считать существенным при размещении нового объекта: размеры ли, округлость или угловатость. Но все возможные классификации машина должна выработать и запомнить самостоятельно при рассматривании картинок обеих групп ещё до начала экзамена — до предъявления карточки с большим овалом.
Программу подобного типа удалось составить кандидату физико-математических наук М. М. Бонгарду. Правда, машине показывали не рисунки, а числовые таблицы. Они содержали по три числа в каждой строке. Скажем, 2, 5, и — 30 в первой. А во второй 7, 3 и 84. И так далее. Для всех строчек соблюдался один и тот же, математический, закон: произведение первых двух чисел, умноженное на их разность, равнялось третьему числу. Вторая таблица строилась по другому правилу и, следовательно, принадлежала к иному классу.
Машине предъявляли разные таблицы. При этом не сообщали, каким уравнением описывается взаимосвязь чисел. Электронному следователю вменялось в обязанность самому расшифровать эту закономерность. Наконец, ему предъявили таблицу, которой он ещё не видел. Цифры в ней были совсем другие, но зависимость была знакомой. И машина безошибочно отнесла новую таблицу к своему классу.
Можно держать пари, что учёные, занимающиеся распознаванием образов, меньше всего думают о применении кибернетики в графометрии. Но если машина сегодня опознаёт цифры и буквы, то почему бы ей завтра не научиться различать тончайшие нюансы в их начертаниях, соотнося обнаруженные особенности почерка с характерологическими классификациями личностей?
Однако фантазировать покамест преждевременно. Ибо ни графология, ни графометрия не признаны официальной наукой. Золушка продолжает прозябать на задворках, мечтая о своём замешкавшемся принце, и, видимо, с горечью вспоминает слова Гюго: отбрасывать какое-либо явление, со смехом отворачиваться от него — это значит содействовать банкротству истины.
Письмо и личность… Их взаимосвязь несомненна. Её доказывает хотя бы «существование и огромная практическая ценность почерковедения, успешно применяемого криминалистами, литературоведами, искусствоведами, историками. Болезненные отклонения в почерке помогают психиатрам при диагностике душевных заболеваний. Накоплен огромный опыт. Исследования продолжаются. Родилась и постепенно обретает всё большую самостоятельность обширная и важная область знания — наука о почерке. И один из её интереснейших разделов — графология. Глубокая научная вспашка с привлечением всего арсенала современной техники сможет окончательно показать, насколько плодородна или бесплодна эта неподнятая целина…
Принца всё нет. Принц, где ты?
Движенья… нет?!
Впрочем, дело даже не в этом. Разве откажется психолог, невропатолог, педагог, криминалист, литературовед, искусствовед, историк, этнограф, социолог заполучить лишний — способ разведки в потаённых глубинах человеческой натуры? Способ простейший из простейших — сличением автографа с графометрическими таблицами, которые рано или поздно будут разработаны настолько же детально, как и таблицы типографских шрифтов…
Наступит и такой день, когда за анализ почерков примутся электронно-вычислительные машины, эти непревзойдённые виртуозы комбинаторики, способные молниеносно перебрать миллионы вариантов, чтобы выискать самый подходящий.
Созданием машины, опознающей буквы и цифры, независимо от того, как они написаны, вот уже несколько лет подряд усиленно занимаются учёные и инженеры всех стран. Над проблемой без особого успеха работали американцы Оливер Селфридж и Фрэнк Розенблат, а один из пионеров кибернетики, Уолтер Питтс, выразил глубокое сомнение в том, что её вообще можно построить. И надо сказать, его опасения были отнюдь не безосновательны.
Сотни лет исследуются глаза и мозг — как ин виво (в живом теле), так и ин витро (в стекле — то есть извлечённые из умершего организма лабораторные препараты этих органов). Но до сих пор никто не в состоянии объяснить, как мы узнаём одну и ту же букву, когда она написана совершенно несхожими почерками. И как отличаем друг от друга разные буквы, которые имеют близкое начертание, — к примеру, рукописные «ч» и «г», «н» и «и». Мы не ошибёмся, если увидим любой незнакомый, пусть даже «дикий», как у Чернышевского, почерк в первый раз.
Спроецированные хрусталиком на сетчатку изображения одного и того же символа выглядят то долговязыми и сухопарыми, как Дон-Кихот, то округлыми и массивными, как Санчо Панса, то изощрёнными и фантастическими, как грёзы рыцаря печального образа, то грубоватыми и незатейливыми, как чаяния его верного оруженосца, А мозг — его не проведёшь! — он сразу видит: это одна и та же фигура. Что при этом происходит? Как? Почему? Психофизиологи пока не представляют. Во всяком случае, досконально. Но даже если бы они до конца познали всю эту хитрую механику, поведать о ней машине было бы нелегко. Электронный мозг оперирует только последовательностью электрических импульсов и пауз, обозначаемых «1» и «О». Такой двоичной арифметикой можно выразить любые понятия лишь в случае, когда они передаются строгим математическим языком. А как описать миллиарды почерков?
Однако выход нашёлся.
7 февраля 1962 года общее собрание Академии наук заслушало доклад директора Института автоматики и телемеханики академика В. А. Трапезникова о работах молодого советского математика Э. М. Бравермана, открывших новый этап в развитии кибернетики.
Когда ребёнок осваивает азбуку, ему достаточно показать два-три образца одной буквы или цифры, чтобы он потом узнавал и десятки различных её начертаний, разных по форме и величине, — на витринах, в газетах, в записных книжках. В его головке возник обобщённый образ. А нельзя ли машину тоже заставить обобщать саму? Показать ей, скажем, цифру «6» — сперва изящную, округлую, как её печатают в типографии, а потом корявую, угловатую, очень похожую на букву «Б», какой она может получиться при записи на ходу. И втолковать машине, что все штриховые сочетания, похожие на продемонстрированную типографскую литеру, какими бы кривыми и уродливыми они ни были, суть цифры «6». Однако сходство кончается там, где шестёрка приобретает несвойственную ей чересчур сильную угловатость буквы «Б». Ту же самую информацию придётся сообщить электронному мозгу и о букве «Б». Допустимы любые её рукописные искажения. Даже такие, где полукруг не замкнут внизу вертикальной палочкой. Но до какого-то предела. Как только вместо знака «Б» появится нечто, больше похожее на «5», это уже будет границей, за которой кончается буква и начинается цифра. У пятёрки, конечно, тоже немало начертаний, но обобщённый образ опять-таки один.
Самым сложным было объяснить это машине на единственном лексиконе, понятном ей, — математическом. И добиться, чтобы она в математических же терминах сама переходила от нескольких конкретных образцов начертания символа, показанных ей, к обобщённому образу этого символа. Чтобы в дальнейшем, буде ей встретится совершенно новый, невиданный ею раньше вензель, она опознавала его именно как «Б», а не как «6» и не как «5».
Строгую математическую интерпретацию расплывчатого психологического понятия «образ» Браверман предложил, исходя из своей «гипотезы компактности».
Уразуметь идею компактности поможет нам один древний парадокс. Вообразим, что перед нами горка зерна. Удалите одно зёрнышко. Затем второе, третье, ещё и ещё. Сколько зёрен должно остаться, чтобы куча перестала быть кучей?
Нечто подобное встречаем мы при распознавании образов.
Сколько зёрнышек фотоэмульсии необходимо, чтобы буква «Б» оставалась буквой «Б»? И основная идея «компактности» заключается в следующем: существуют некие граничные фигуры (буквы, цифры) — малейшее изменение этой предельной фигуры сделает её принадлежащей к какому-то иному классу. Всех возможных изображений буквы — миллиарды. Подавляющее большинство их лежит внутри данной области. Изменение одной какой-нибудь детали не вычеркнет букву из нашей области, как удаление одного зерна оставит горку горкой. Иначе обстоит дело с буквами, лежащими на границе множества: любое, самое незначительное изменение штриха или кружочка способно сделать нашу букву уже совершенно чужеродной фигурой, относящейся к иному множеству.
Теперь начинается самое главное. Вы пишете несколько раз одну и ту же букву и все эти образцы вашего почерка предъявляете машине. Она смотрит фотоэлектронным глазом. Тотчас же в многомерном пространстве появляется несколько точек, а в запоминающем устройстве — их координаты. Машина запомнила образцы. По конкретным примерам у неё создалось нехитрое представление об абстрактном образе буквы «Б». Теперь, какую бы красивую или уродливую, чёткую или расплывчатую букву «Б» ей вы ни показали, она должна сообразить, что новая точка относится именно к этому, а не иному множеству.
Должна… Ничего бы она не делала, никаких приказов не выполняла, не составь Э. М. Браверман специальную программу (читатель может ознакомиться с подробностями по книге А. Г. Аркадьева и Э. М. Бравермана «Обучение машины распознаванию образов», вышедшей в 1964 году). Это было нелёгким делом. Но ещё предстоял эксперимент, который мог не подтвердить идеи молодого математика.
Машине одну за другой показали двести карточек и объяснили (на языке двоичного кода, конечно), что обозначают нанесённые на них изображения. Потом начался экзамен. Перед фотоэлектронным глазом стали появляться знаки таких форм, какие машина ещё не видывала. И она их правильно опознала! Ошибка была допущена лишь в четырёх случаях из восьмисот. Вот он, заслуженный успех!
Да, машина, как и ребёнок, способна учиться обобщениям.
Надо сказать, однако, что возможны и другие подходы к электронному ученику. Например, вовсе не обязательно вводить в машину, как это делал Браверман, заранее разработанную систему основополагающих признаков, с тем чтобы дальнейший процесс обучения только уточнял их. Многие склонны думать, что машина, анализируя группы образов, должна самостоятельно вырабатывать систему характерных признаков, чтобы затем с помощью этих критериев классифицировать показанные ей объекты. (Кстати, цель работы любого графометриста — именно классификация почерков по определённому комплексу признаков.) И машина должна уметь решать множество разнообразных задач в меняющейся обстановке, приспосабливаясь каждый раз к новым ситуациям. Ведь программисту не всегда под силу заранее определить, какие признаки окажутся наиболее существенными, а какими можно пренебречь. Возникающие при этом трудности наглядно иллюстрирует одна восточная притча (со слов журналиста А. М. Кондратова).
Мудрецам показали две группы рисунков: первая состояла из маленьких геометрических фигур (эллипсов, кругов), а вторая — из крупных (но уже не эллипсов и кругов, а прямоугольников). Затем мудрецам предъявили большой овал и спросили: к какой группе фигур его следует отнести?
— К обеим, — ответил мудрец по имени Ага-Ага.
— Только к первой, — высказался другой, которого звали Ага-Ни. — Ибо перед нами овал.
— Позвольте, но ведь фигура-то большая! — возразил Ни-Ага.
— Её надлежит включить во вторую группу.
— Неверно! — подал голос мудрец Ни-Ни. — Новая фигура не имеет отношения ни к первой, ни ко второй группе.
Спор мудрейших должен, был разрешить суд.
— Все четверо правы, — молвил первый судья.
— Все четверо ошибаются! — отрицательно качнул головой второй судья. — Ни у кого не было достаточных оснований, чётких критериев, чтобы решить задачу однозначно.
И все судьи тоже разошлись во мнениях..
Очевидно, здесь допустимы различные варианты. Всё зависит от того, какой признак считать существенным при размещении нового объекта: размеры ли, округлость или угловатость. Но все возможные классификации машина должна выработать и запомнить самостоятельно при рассматривании картинок обеих групп ещё до начала экзамена — до предъявления карточки с большим овалом.
Программу подобного типа удалось составить кандидату физико-математических наук М. М. Бонгарду. Правда, машине показывали не рисунки, а числовые таблицы. Они содержали по три числа в каждой строке. Скажем, 2, 5, и — 30 в первой. А во второй 7, 3 и 84. И так далее. Для всех строчек соблюдался один и тот же, математический, закон: произведение первых двух чисел, умноженное на их разность, равнялось третьему числу. Вторая таблица строилась по другому правилу и, следовательно, принадлежала к иному классу.
Машине предъявляли разные таблицы. При этом не сообщали, каким уравнением описывается взаимосвязь чисел. Электронному следователю вменялось в обязанность самому расшифровать эту закономерность. Наконец, ему предъявили таблицу, которой он ещё не видел. Цифры в ней были совсем другие, но зависимость была знакомой. И машина безошибочно отнесла новую таблицу к своему классу.
Можно держать пари, что учёные, занимающиеся распознаванием образов, меньше всего думают о применении кибернетики в графометрии. Но если машина сегодня опознаёт цифры и буквы, то почему бы ей завтра не научиться различать тончайшие нюансы в их начертаниях, соотнося обнаруженные особенности почерка с характерологическими классификациями личностей?
Однако фантазировать покамест преждевременно. Ибо ни графология, ни графометрия не признаны официальной наукой. Золушка продолжает прозябать на задворках, мечтая о своём замешкавшемся принце, и, видимо, с горечью вспоминает слова Гюго: отбрасывать какое-либо явление, со смехом отворачиваться от него — это значит содействовать банкротству истины.
Письмо и личность… Их взаимосвязь несомненна. Её доказывает хотя бы «существование и огромная практическая ценность почерковедения, успешно применяемого криминалистами, литературоведами, искусствоведами, историками. Болезненные отклонения в почерке помогают психиатрам при диагностике душевных заболеваний. Накоплен огромный опыт. Исследования продолжаются. Родилась и постепенно обретает всё большую самостоятельность обширная и важная область знания — наука о почерке. И один из её интереснейших разделов — графология. Глубокая научная вспашка с привлечением всего арсенала современной техники сможет окончательно показать, насколько плодородна или бесплодна эта неподнятая целина…
Принца всё нет. Принц, где ты?
Движенья… нет?!
— Машины-переводчики, машины-шахматисты, думающие машины, машины-творцы — всё это миф!
— ?!!
— Давным-давно пора прекратить болтовню о необыкновенных способностях машин! Это плод досужей фантазии популяризаторов.
— Но как можно отрицать успехи кибернетики! Это верх несправедливости. Они поистине грандиозны. То ли ещё ждёт нас впереди!
— Заблуждение! Вот говорят: в каждом знании ровно столько науки, сколько в нём математики. Математика пронизывает всю кибернетику. И не только её. Математизация знаний стала поветрием, модой. Между тем современная математика, эта царица наук, переживает самый настоящий кризис. Её логические устои шатки, её аппарат несовершенен, она полна неразрешимых противоречий, из которых не может выпутаться вот уже третье тысячелетие. Да и возможности человеческого разума ограничены…
— Человеческого разума?! Ну, это уж слишком! Так могут рассуждать либо невежды, либо сумасшедшие!..
Где кончается здравый скептицизм и начинается голый нигилизм? Где вера во всесилие человеческого разума переходит в излишнюю самоуверенность, игнорирующую трудности?
Читатель, должно быть, помнит курьёзный эпизод из романа Сервантеса «Дон-Кихот». Не успел Санчо Панса освоиться со своим губернаторским положением, как ему учинили хитроумное испытание.
Некое поместье делится на две половины многоводною рекою. Через реку переброшен мост, а поблизости зловеще возвышается виселица. Закон гласит: «Всяк проходящий по мосту через сию реку долженствует объявить под присягою, куда и зачем он идёт; кто скажет правду, тех пропускать беспрепятственно, а кто солжёт, тех без всякого снисхождения казнить через повешение».
И надо же было так случиться, что однажды некий человек, приведённый к присяге, заявил: он-де клянётся, что пришёл сюда, дабы его… вздёрнули на эту вот самую виселицу и ни за чем другим. Стоило видеть недоумение судей! В самом деле, если позволить чудаку-незнакомцу следовать дальше, то это будет означать, что он нарушил присягу и согласно закону подлежит казни. С другой стороны, как его повесить? Ведь он клялся, будто только затем и пришёл, чтобы его повесили, — стало быть, присяга его не ложна, и на основании этого же самого закона надлежит пропустить его неприкосновенным.
Бедняга Санчо не мог похвастать мудростью библейского царя Соломона. Однако он безропотно взялся за нелёгкое дело и ничтоже сумняшеся рассудил так: «Ту половину человека, которая сказала правду, пусть пропустят, а ту, что соврала, пусть повесят». «Но, сеньор губернатор, — возразил ошеломлённый оппонент, — если разрезать человека на части, то он непременно умрёт, и тогда ни та, ни другая статья закона не будет исполнена. Между тем закон требует, чтобы его соблюли во всей полноте!» Сеньор губернатор, окончательно поставленный в тупик, по доброте душевной, посоветовал просто-напросто отпустить странного просителя на все четыре стороны.
Итак, закон был нарушен. Но что мог поделать добрый простак Санчо, который не умел даже расписаться под своим решением? Ну, а мы, читатели Сервантеса, находясь во всеоружии логики и математики, можем ли мы спустя 400 лет справиться с подобными головоломками?
Чтобы разобраться в этом вопросе, нам придётся заглянуть в удивительный мир парадоксов, побывать по ту сторону здравого смысла.
Парадоксы известны с незапамятных времён.
Знаменитому критскому философу Эпимениду, жившему в VI веке до нашей эры, приписывается довольно нелестный отзыв о своих соотечественниках: «Все критяне — лжецы». Только вот беда: сам Эпименид тоже критянин! Получается, что если Эпименид говорит правду, то он лжец, значит, он возводит напраслину на своих земляков и на себя самого, то есть говорит неправду. Как же всё-таки: ложно или истинно высказывание, порочащее обитателей острова — колыбели человеческой культуры?
Парадокс Эпименида, известный иначе как «парадокс лжеца», встречается ещё и в менее афористической, зато более сильной форме: «я лгу», или «высказывание, которое я сейчас произношу, ложно». Стоящее в кавычках выражение, очевидно, не может быть без противоречия ни истинным, ни ложным. Этот вариант парадокса принадлежит Эвбулиду (IV век до н. э.).
В 1913 году английский математик Джордан добавил в копилку парадоксов такой. На одной стороне карточки начертано: Утверждение на обороте этой карточки истинно.
Что же это за утверждение? Перевернув карточку, вы читаете: Утверждение на обороте этой карточки ложно.
Вот и поди разберись, что к чему. Если верить первому сообщению, то второе правильно. Но ежели правильно второе, то неверно первое! И наоборот.
В античной «дилемме крокодила» ситуация столь же трагикомична и нелепа, что и у Сервантеса. Крокодил похищает ребёнка. Чудовище обещает родителям вернуть дитя, если отец угадает, отдаст ему крокодил ребёнка или нет. Что делать бедному чудовищу, если отец вдруг скажет, что крокодил не возвратит ему ребёнка?
Мы часто прибегаем в спорах к услугам аргумента «нет правил без исключений», забывая, что это выражение само есть правило и, выходит, тоже должно иметь исключения. Парадокс? Несомненно. И он возник потому, что санкции, декларируемые законом, мы применили к самому закону. Так что будьте осторожны с подобными аргументами: они чреваты логическими подвохами!
Любопытен изящный логический парадокс, сформулированный в 1908 году немецким математиком Куртом Греллингом. Чтобы войти в курс дела, разберём определение автологичного (самоприменимого) имени прилагательного. Большинство прилагательных не обладает качеством, которое оно обозначает. Скажем, слово «красный» само по себе не имеет красного цвета, слово «ароматный» не пахнет. Зато прилагательное «русский» — действительно русское, «трёхсложный» — трехсложно, «абстрактный» — абстрактно и т. д. Каждое из этих прилагательных, по терминологии Греллинга, автологично, то есть имеет силу применительно к самому себе, обладая тем же качеством, которым оно наделяет другие понятия. Иное дело — гетерологичные, то есть несамоприменимые прилагательные. Скажем, слово «трёхсложная» — само по себе вовсе не трехсложно, «бесконечный» имеет конечные размеры, «конкретный» — по смыслу абстрактно.
Парадокс Греллинга возникает из вопроса: к какому классу отнести прилагательное «несамоприменимый»? Самоприменимо оно или же нет? Допустим, что прилагательное «несамоприменимый» несамоприменимо. Тогда оно (согласно приведённому определению Греллиига) самоприменимо! А раз оно самоприменимо, то на каком же основании оно названо нами несамоприменимым?!
Вот ещё один логический сюрприз. Рассмотрим выражение: «Наименьшее натуральное число, которое нельзя определить посредством меньше чем тридцати шести слогов». Между тем только что написанное предложение при помощи тридцати пяти слогов (посчитайте и убедитесь сами!) определяет не что иное, как число, которое, по определению, нельзя определить меньше чем набором из тридцати шести слогов!
Подобными несуразицами изобилует история логики. Читатель может испробовать свои силы, пытаясь выбраться из перечисленных смысловых лабиринтов. (С тех пор как возникла эта проблема, не было найдено ни одного решения, с которым бы безоговорочно согласились учёные.)
Впрочем, правильно ли сказано: «смысловых лабиринтов»?
У каждого лабиринта, каким бы запутанным он ни был, есть выход. И если посетители знаменитого Критского лабиринта чересчур долго блуждали по хитросплетениям его ходов, неизменно попадая в лапы Минотавра, то виноваты в этом были они сами. Отмечай люди простейшими приёмами путь, то, даже не обладая развитой способностью ориентироваться, они получили бы не менее надёжное средство спасения, чем пресловутая нить Ариадны. Иными словами, в подобных случаях нас подводит лишь пренебрежение законами логики и геометрии. Другое дело парадоксы. Их формулировки настолько просты, настолько прозрачны, что и блуждать-то, собственно, негде: нет лабиринта как такового! Но сколь бы изощрённы ни были наши познания в области логики и математики, никакой, даже самый отточенный, меч разума не в силах разрубить этот логический гордиев узел.
И ещё одно уточнение. Под парадоксом обычно понимают нечто противоречащее нашей интуиции, нашему повседневному опыту, нашим непосредственным ощущениям. Парадоксальным в этом смысле казалось откровение астрономов-гелиоцентристов: не Солнце вращается вокруг Земли, а Земля вокруг Солнца. Но как бы ни бунтовала наша интуиция, логика научного мышления неумолимо подводит нас к такому заключению. Между тем существуют парадоксы иного рода. Используя тот же логический аппарат, те же приёмы рассуждения — а ведь они шлифовались тысячелетиями и на них основаны все наши знания! — мы неизбежно приходим к неразрешимому противоречию. Значит, речь идёт о несовершенстве, об изъянах, глубоко коренящихся в самой логической системе нашего мышления.
Правда, у читателя может возникнуть вопрос: кому нужна вся эта казуистика? Да и нужна ли она вообще?
Приведённые смысловые нелепости не просто забавные трюки логики. Не раз парадоксы были связаны с перестройкой основ мышления.
Особенно поучительна эпопея знаменитых апорий (парадоксов) Зенона, которые двадцать пять, столетий назад оказались самой настоящей сенсацией. Впрочем, не просто сенсацией, которая ненадолго травмирует психику обывателя, а потом бесследно улетучивается из головы. Они оказали заметное влияние на прогресс математики. И до сих пор не сходят со страниц серьёзнейших математических, логических, философских работ, где учёные ломают копья и головы: преодолены или нет трудности, порождённые этими ужасными апориями?
…Кто из читавших гомеровскую «Илиаду» не помнит сцену погони грозного Ахилла за «шлемоблещущим», но порядком струхнувшим Гектором?
Сильный бежал впереди, но преследовал много сильнейший.„
Правда, гонка вокруг Трои всё-таки закончилась поражением Гектора. Но не в беге! В смертельной схватке. А перед поединком Ахиллу пришлось остановиться, так и не догнав врага. Что ж, супостат был ловок и быстроног. А если бы он был неуклюж и тихоходен?.
Да, грациозен и быстроног могучий Ахилл, сын Пелея, герой Троянской войны, воспетый Гомером. И как неуклюжа, как тихоходна черепаха, повсюду слывущая эталоном медлительности и нерасторопности! Ей ли тягаться в скорости с легендарным бегуном? А вот античный мудрец Зенон считал, что Ахиллу ни за что не догнать черепаху. Убеждение философа основывалось на том, что когда преследующий достигнет места, где находился преследуемый в момент старта, догоняемый бегун продвинется, хотя и немного, дальше. Значит, на новом небольшом участочке пути Ахиллу снова придётся догонять черепаху. Но пока преследователь добежит до этого второго пункта, беглянка снова переместится вперёд. И так далее до бесконечности. Если же это будет длиться без конца и края, то как Ахиллу удастся обогнать черепаху?
С другой стороны, из собственного повседневного опыта каждый школьник знает, что он, отнюдь не будучи Ахиллом, способен запросто обогнать не только черепаху, но, чего доброго, и самого учителя — стоит только прозвучать звонку, возвещающему конец урока.
А нет ли «ахиллесовой пяты» у самих рассуждений Зенона?
В классическом курсе логики, написанном Минто, прославленный бегун легко опережает свою недостойную соперницу, хотя даёт ей фору не только в расстоянии — 100 саженей (здесь употреблены старинные русские, а не древнегреческие меры длины, однако это не имеет значения), но и в скорости: он двигается не в полную силу — всего в десять раз резвее черепахи. То есть, по существу, шагает себе не торопясь, уверенный в победе. Правда, добравшись до места, откуда тронулась в путь-дорогу нерасторопная ставленница Зенона, Пелеев сын увидит, что та успела переползти ещё на 10 саженей вперёд. Пока Ахилл преодолеет эти 10 саженей, черепаха уйдёт ещё на сажень. Что ж, быстроногому ничего не стоит покрыть какую-то там сажень. А неуклюжая тем временем переместится — пусть на одну десятую сажени, но всё-таки вперёд, прочь от преследователя! С каждым шагом расстояние сокращается. Таких шагов будет, очевидно, бесчисленное множество. Не беда: современная математика научилась суммировать бесконечные последовательности. И Минто строит бесконечный ряд:
100 + 10 + 1 + 0,1 + 0,01 + 0,001 +…
Перед нами убывающая геометрическая прогрессия. Её сумму запросто подсчитает любой теперешний школьник, если, конечно, он уже прошёл алгебру по учебнику, кажется, для восьмого класса; эта сумма равна 111 1/ 9. Проделав, нехитрый подсчёт, Минто заключает: «Софист хочет доказать, что Ахилл никогда не догонит черепаху, а на самом деле доказывает лишь то, что Ахилл перегоняет её между 111-й и 112-й саженями на их пути».
Вроде бы правильно. Вроде бы логично. Увы, торжествующий опровергатель не ответил посрамлённому софисту, ибо вопрос ставился иначе: не когда, а как возможна подобная встреча…
— ?!!
— Давным-давно пора прекратить болтовню о необыкновенных способностях машин! Это плод досужей фантазии популяризаторов.
— Но как можно отрицать успехи кибернетики! Это верх несправедливости. Они поистине грандиозны. То ли ещё ждёт нас впереди!
— Заблуждение! Вот говорят: в каждом знании ровно столько науки, сколько в нём математики. Математика пронизывает всю кибернетику. И не только её. Математизация знаний стала поветрием, модой. Между тем современная математика, эта царица наук, переживает самый настоящий кризис. Её логические устои шатки, её аппарат несовершенен, она полна неразрешимых противоречий, из которых не может выпутаться вот уже третье тысячелетие. Да и возможности человеческого разума ограничены…
— Человеческого разума?! Ну, это уж слишком! Так могут рассуждать либо невежды, либо сумасшедшие!..
Где кончается здравый скептицизм и начинается голый нигилизм? Где вера во всесилие человеческого разума переходит в излишнюю самоуверенность, игнорирующую трудности?
Читатель, должно быть, помнит курьёзный эпизод из романа Сервантеса «Дон-Кихот». Не успел Санчо Панса освоиться со своим губернаторским положением, как ему учинили хитроумное испытание.
Некое поместье делится на две половины многоводною рекою. Через реку переброшен мост, а поблизости зловеще возвышается виселица. Закон гласит: «Всяк проходящий по мосту через сию реку долженствует объявить под присягою, куда и зачем он идёт; кто скажет правду, тех пропускать беспрепятственно, а кто солжёт, тех без всякого снисхождения казнить через повешение».
И надо же было так случиться, что однажды некий человек, приведённый к присяге, заявил: он-де клянётся, что пришёл сюда, дабы его… вздёрнули на эту вот самую виселицу и ни за чем другим. Стоило видеть недоумение судей! В самом деле, если позволить чудаку-незнакомцу следовать дальше, то это будет означать, что он нарушил присягу и согласно закону подлежит казни. С другой стороны, как его повесить? Ведь он клялся, будто только затем и пришёл, чтобы его повесили, — стало быть, присяга его не ложна, и на основании этого же самого закона надлежит пропустить его неприкосновенным.
Бедняга Санчо не мог похвастать мудростью библейского царя Соломона. Однако он безропотно взялся за нелёгкое дело и ничтоже сумняшеся рассудил так: «Ту половину человека, которая сказала правду, пусть пропустят, а ту, что соврала, пусть повесят». «Но, сеньор губернатор, — возразил ошеломлённый оппонент, — если разрезать человека на части, то он непременно умрёт, и тогда ни та, ни другая статья закона не будет исполнена. Между тем закон требует, чтобы его соблюли во всей полноте!» Сеньор губернатор, окончательно поставленный в тупик, по доброте душевной, посоветовал просто-напросто отпустить странного просителя на все четыре стороны.
Итак, закон был нарушен. Но что мог поделать добрый простак Санчо, который не умел даже расписаться под своим решением? Ну, а мы, читатели Сервантеса, находясь во всеоружии логики и математики, можем ли мы спустя 400 лет справиться с подобными головоломками?
Чтобы разобраться в этом вопросе, нам придётся заглянуть в удивительный мир парадоксов, побывать по ту сторону здравого смысла.
Парадоксы известны с незапамятных времён.
Знаменитому критскому философу Эпимениду, жившему в VI веке до нашей эры, приписывается довольно нелестный отзыв о своих соотечественниках: «Все критяне — лжецы». Только вот беда: сам Эпименид тоже критянин! Получается, что если Эпименид говорит правду, то он лжец, значит, он возводит напраслину на своих земляков и на себя самого, то есть говорит неправду. Как же всё-таки: ложно или истинно высказывание, порочащее обитателей острова — колыбели человеческой культуры?
Парадокс Эпименида, известный иначе как «парадокс лжеца», встречается ещё и в менее афористической, зато более сильной форме: «я лгу», или «высказывание, которое я сейчас произношу, ложно». Стоящее в кавычках выражение, очевидно, не может быть без противоречия ни истинным, ни ложным. Этот вариант парадокса принадлежит Эвбулиду (IV век до н. э.).
В 1913 году английский математик Джордан добавил в копилку парадоксов такой. На одной стороне карточки начертано: Утверждение на обороте этой карточки истинно.
Что же это за утверждение? Перевернув карточку, вы читаете: Утверждение на обороте этой карточки ложно.
Вот и поди разберись, что к чему. Если верить первому сообщению, то второе правильно. Но ежели правильно второе, то неверно первое! И наоборот.
В античной «дилемме крокодила» ситуация столь же трагикомична и нелепа, что и у Сервантеса. Крокодил похищает ребёнка. Чудовище обещает родителям вернуть дитя, если отец угадает, отдаст ему крокодил ребёнка или нет. Что делать бедному чудовищу, если отец вдруг скажет, что крокодил не возвратит ему ребёнка?
Мы часто прибегаем в спорах к услугам аргумента «нет правил без исключений», забывая, что это выражение само есть правило и, выходит, тоже должно иметь исключения. Парадокс? Несомненно. И он возник потому, что санкции, декларируемые законом, мы применили к самому закону. Так что будьте осторожны с подобными аргументами: они чреваты логическими подвохами!
Любопытен изящный логический парадокс, сформулированный в 1908 году немецким математиком Куртом Греллингом. Чтобы войти в курс дела, разберём определение автологичного (самоприменимого) имени прилагательного. Большинство прилагательных не обладает качеством, которое оно обозначает. Скажем, слово «красный» само по себе не имеет красного цвета, слово «ароматный» не пахнет. Зато прилагательное «русский» — действительно русское, «трёхсложный» — трехсложно, «абстрактный» — абстрактно и т. д. Каждое из этих прилагательных, по терминологии Греллинга, автологично, то есть имеет силу применительно к самому себе, обладая тем же качеством, которым оно наделяет другие понятия. Иное дело — гетерологичные, то есть несамоприменимые прилагательные. Скажем, слово «трёхсложная» — само по себе вовсе не трехсложно, «бесконечный» имеет конечные размеры, «конкретный» — по смыслу абстрактно.
Парадокс Греллинга возникает из вопроса: к какому классу отнести прилагательное «несамоприменимый»? Самоприменимо оно или же нет? Допустим, что прилагательное «несамоприменимый» несамоприменимо. Тогда оно (согласно приведённому определению Греллиига) самоприменимо! А раз оно самоприменимо, то на каком же основании оно названо нами несамоприменимым?!
Вот ещё один логический сюрприз. Рассмотрим выражение: «Наименьшее натуральное число, которое нельзя определить посредством меньше чем тридцати шести слогов». Между тем только что написанное предложение при помощи тридцати пяти слогов (посчитайте и убедитесь сами!) определяет не что иное, как число, которое, по определению, нельзя определить меньше чем набором из тридцати шести слогов!
Подобными несуразицами изобилует история логики. Читатель может испробовать свои силы, пытаясь выбраться из перечисленных смысловых лабиринтов. (С тех пор как возникла эта проблема, не было найдено ни одного решения, с которым бы безоговорочно согласились учёные.)
Впрочем, правильно ли сказано: «смысловых лабиринтов»?
У каждого лабиринта, каким бы запутанным он ни был, есть выход. И если посетители знаменитого Критского лабиринта чересчур долго блуждали по хитросплетениям его ходов, неизменно попадая в лапы Минотавра, то виноваты в этом были они сами. Отмечай люди простейшими приёмами путь, то, даже не обладая развитой способностью ориентироваться, они получили бы не менее надёжное средство спасения, чем пресловутая нить Ариадны. Иными словами, в подобных случаях нас подводит лишь пренебрежение законами логики и геометрии. Другое дело парадоксы. Их формулировки настолько просты, настолько прозрачны, что и блуждать-то, собственно, негде: нет лабиринта как такового! Но сколь бы изощрённы ни были наши познания в области логики и математики, никакой, даже самый отточенный, меч разума не в силах разрубить этот логический гордиев узел.
И ещё одно уточнение. Под парадоксом обычно понимают нечто противоречащее нашей интуиции, нашему повседневному опыту, нашим непосредственным ощущениям. Парадоксальным в этом смысле казалось откровение астрономов-гелиоцентристов: не Солнце вращается вокруг Земли, а Земля вокруг Солнца. Но как бы ни бунтовала наша интуиция, логика научного мышления неумолимо подводит нас к такому заключению. Между тем существуют парадоксы иного рода. Используя тот же логический аппарат, те же приёмы рассуждения — а ведь они шлифовались тысячелетиями и на них основаны все наши знания! — мы неизбежно приходим к неразрешимому противоречию. Значит, речь идёт о несовершенстве, об изъянах, глубоко коренящихся в самой логической системе нашего мышления.
Правда, у читателя может возникнуть вопрос: кому нужна вся эта казуистика? Да и нужна ли она вообще?
Приведённые смысловые нелепости не просто забавные трюки логики. Не раз парадоксы были связаны с перестройкой основ мышления.
Особенно поучительна эпопея знаменитых апорий (парадоксов) Зенона, которые двадцать пять, столетий назад оказались самой настоящей сенсацией. Впрочем, не просто сенсацией, которая ненадолго травмирует психику обывателя, а потом бесследно улетучивается из головы. Они оказали заметное влияние на прогресс математики. И до сих пор не сходят со страниц серьёзнейших математических, логических, философских работ, где учёные ломают копья и головы: преодолены или нет трудности, порождённые этими ужасными апориями?
…Кто из читавших гомеровскую «Илиаду» не помнит сцену погони грозного Ахилла за «шлемоблещущим», но порядком струхнувшим Гектором?
Сильный бежал впереди, но преследовал много сильнейший.„
Правда, гонка вокруг Трои всё-таки закончилась поражением Гектора. Но не в беге! В смертельной схватке. А перед поединком Ахиллу пришлось остановиться, так и не догнав врага. Что ж, супостат был ловок и быстроног. А если бы он был неуклюж и тихоходен?.
Да, грациозен и быстроног могучий Ахилл, сын Пелея, герой Троянской войны, воспетый Гомером. И как неуклюжа, как тихоходна черепаха, повсюду слывущая эталоном медлительности и нерасторопности! Ей ли тягаться в скорости с легендарным бегуном? А вот античный мудрец Зенон считал, что Ахиллу ни за что не догнать черепаху. Убеждение философа основывалось на том, что когда преследующий достигнет места, где находился преследуемый в момент старта, догоняемый бегун продвинется, хотя и немного, дальше. Значит, на новом небольшом участочке пути Ахиллу снова придётся догонять черепаху. Но пока преследователь добежит до этого второго пункта, беглянка снова переместится вперёд. И так далее до бесконечности. Если же это будет длиться без конца и края, то как Ахиллу удастся обогнать черепаху?
С другой стороны, из собственного повседневного опыта каждый школьник знает, что он, отнюдь не будучи Ахиллом, способен запросто обогнать не только черепаху, но, чего доброго, и самого учителя — стоит только прозвучать звонку, возвещающему конец урока.
А нет ли «ахиллесовой пяты» у самих рассуждений Зенона?
В классическом курсе логики, написанном Минто, прославленный бегун легко опережает свою недостойную соперницу, хотя даёт ей фору не только в расстоянии — 100 саженей (здесь употреблены старинные русские, а не древнегреческие меры длины, однако это не имеет значения), но и в скорости: он двигается не в полную силу — всего в десять раз резвее черепахи. То есть, по существу, шагает себе не торопясь, уверенный в победе. Правда, добравшись до места, откуда тронулась в путь-дорогу нерасторопная ставленница Зенона, Пелеев сын увидит, что та успела переползти ещё на 10 саженей вперёд. Пока Ахилл преодолеет эти 10 саженей, черепаха уйдёт ещё на сажень. Что ж, быстроногому ничего не стоит покрыть какую-то там сажень. А неуклюжая тем временем переместится — пусть на одну десятую сажени, но всё-таки вперёд, прочь от преследователя! С каждым шагом расстояние сокращается. Таких шагов будет, очевидно, бесчисленное множество. Не беда: современная математика научилась суммировать бесконечные последовательности. И Минто строит бесконечный ряд:
100 + 10 + 1 + 0,1 + 0,01 + 0,001 +…
Перед нами убывающая геометрическая прогрессия. Её сумму запросто подсчитает любой теперешний школьник, если, конечно, он уже прошёл алгебру по учебнику, кажется, для восьмого класса; эта сумма равна 111 1/ 9. Проделав, нехитрый подсчёт, Минто заключает: «Софист хочет доказать, что Ахилл никогда не догонит черепаху, а на самом деле доказывает лишь то, что Ахилл перегоняет её между 111-й и 112-й саженями на их пути».
Вроде бы правильно. Вроде бы логично. Увы, торжествующий опровергатель не ответил посрамлённому софисту, ибо вопрос ставился иначе: не когда, а как возможна подобная встреча…