Давление в газах имеет тепловое происхождение: оно связано с передачей импульса находящимися в тепловом движении молекулами (при их столкновениях). В конденсированных фазах (жидкостях, твёрдых телах) различают упругую и тепловую составляющие Д. в. Первая, называемая «холодным» давлением ( p x) ,связана с упругим взаимодействием частиц при уменьшении объёма тела, а вторая - с их тепловым движением, обусловленным повышением температуры при сжатии. При статическом сжатии тепловая составляющая много меньше упругой, при сжатии в сильной ударной волне обе составляющие сравнимы по величине, их сумму называют «горячим» давлением ( p r) .

 Уменьшение межатомных (межмолекулярных) расстояний при сжатии приводит в конечном счёте к деформации молекул и внешних электронных оболочек атомов, к изменению характера межатомных взаимодействий, что неизбежно сказывается на физических и химических свойствах вещества. Например, при статическом сжатии в пределах нескольких кбарили первых десятков кбаризменяются условия взаимной растворимости газов (см. Растворы ) ;плотность газов сравнивается с плотностью жидкостей, жидкости затвердевают (при комнатной температуре и давлении до 30-50 кбар) ;многие кристаллические вещества испытывают превращения с образованием новых кристаллических форм (полиморфные превращения); наблюдаются переходы твёрдых диэлектриков и полупроводников в металлическое состояние и т. д.

  Когда плотность вещества становится в 10 и более раз выше плотности твёрдых тел при нормальных условиях, что соответствует давлению ~ 10 12 кбар,зависимость плотности r от «холодного» давления приближается к предельной и для всех веществ оказывается одинаковой: r 5/3 ~p x.В принципе, при столь высоких давлениях ядра полностью ионизованных атомов могут сближаться и, преодолев потенциальный барьер,вступать в ядерные реакции.

 При достаточно высоких давлениях, но температурах ниже температуры вырождения вещество переходит в вырожденное состояние, при котором энергия и давление не зависят от температуры (см. Вырожденный газ, Вырождения температура).

 Ниже описываются некоторые свойства газов, жидкостей и твёрдых тел в экспериментально доступном диапазоне Д. в. При Д. в. до 30-50 кбарисследуются вещества во всех агрегатных состояниях. При больших Д. в. главным объектом физических исследований является твёрдое тело.

  Физические свойства индивидуального вещества в твёрдом состоянии могут быть разделены на три основные группы. К 1-й группе относят свойства, связанные с т. н. явлениями на молекулярном уровне: движением атомов (молекул), точечных дефектов в кристаллах, дислокацийи т. д. Этими явлениями определяются, например, диффузия, фазовые переходы,разрушение под действием механических нагрузок и ряд др. физических свойств твёрдого тела. Ко 2-й группе относят свойства, определяемые характером основного (невозбуждённого - см. Твёрдое тело ) состояния кристалла, т. е. взаимным расположением атомов, средним расстоянием между ними и колебаниями кристаллической решётки при абсолютном нуле температуры: упругость, сжимаемость, электропроводностьметаллов, ферромагнетизм.К 3-й группе - свойства, связанные в первую очередь с видом возникающих в твёрдом теле элементарных возбуждений - квазичастиц ( фононов, экситонови др.) и их взаимодействием (например, зависимость сжимаемости, электропроводности, магнитных эффектов от температуры, магнитного поля, электромагнитного излучения и др. внешних параметров). Теоретическое описание последней группы свойств возможно лишь для тел, имеющих температуру, близкую к абсолютному нулю, поэтому большое значение имеют опыты при Д. в. и сверхнизких температурах. Микроскопическая теория влияния Д. в. на первые две группы свойств развита недостаточно, но имеется довольно обширный экспериментальный материал.

  На рис. 3-6 приведены зависимости от давления объёма (плотности) веществ в газообразном, жидком и твёрдом состояниях. После снятия Д. в. первоначальный объём газов, жидкостей и твёрдых тел (не содержащих пор и посторонних включений) восстанавливается. Свойство тел обратимо изменять свой объём под давлением называется сжимаемостью или объёмной упругостью. Сжимаемость обусловлена действием межатомных сил и поэтому является важнейшей характеристикой вещества. Наибольшей сжимаемостью обладают газы. Плотность газов под Д. в. в 10 кбарувеличивается в сотни раз (при комнатной температуре), жидкостей в среднем на 20-30%, твёрдых тел - на 0,5-2%. С ростом давления сжимаемость уменьшается - кривые на графиках становятся более пологими. При 30-50 кбарсжимаемость большинства исследованных жидкостей различается не более чем на 10% и приближается (при не очень высоких температурах) к сжимаемости твёрдой фазы. Наименее сжимаемы вещества с наиболее сильной межатомной связью (например, алмаз, а из металлов - тугоплавкие иридий и рений) ( рис. 5, 6 ). При наибольшем достигнутом динамическом Д. в. ( ~3( 10 4кбар) плотность железа и свинца увеличивается соответственно в 2,5 и 3,3 раза. Простые вещества (химические элементы), имеющие больший атомный объём, имеют и большую сжимаемость. Атомный объём является периодической функцией атомного номера Z элемента (см. Атом ) .Поэтому с ростом давления периодичность зависимости атомного объёма (и сжимаемости) от Z сглаживается ( рис. 7 ), что отражает изменение строения внешних электронных оболочек атомов и свидетельствует об изменении физических и химических свойств элементов под Д. в.

  Увеличение плотности и уменьшение сжимаемости вещества под Д. в. приводит к росту скорости упругих волн (скорости звука): у металлов, ионных кристаллов при 10 кбар -на несколько процентов, у газов - в несколько раз. При динамическом Д. в. в несколько тыс. кбарскорость упругих волн в металлах возрастает примерно в 2 раза. С увеличением плотности газов и жидкостей растет их вязкость. В отличие от большинства др. свойств, зависимость вязкости от давления имеет положительную производную: при последовательном росте Д. в. на определённую величину увеличение вязкости возрастает ( рис. 8 ).

  У кристаллических тел Д. в. увеличивает пластичность: при одноосном растяжении (сжатии) разрушение наступает, как правило, после большей деформации, чем при атмосферном давлении. Характер излома малопластичных металлов под Д. в. меняется от хрупкого к вязкому ( рис. 9 ), несколько увеличивается и прочность. Это объясняется тем, что Д. в. способствует залечиванию дефектов строения (микротрещин и др.) в процессе пластического деформирования кристаллических тел. При сдвиге под Д. в. у металлов и ионных кристаллов с ростом давления наблюдается рост сопротивления сдвигу (например, y NaCI в интервале 10-50 кбарпримерно в 3,3 раза), а у горных пород и стекол наблюдаются разупрочнение, потеря сплошности и др. явления.

  Резкое изменение физических свойств, например плотности ( рис. 10 ) или электрического сопротивления ( рис. 11 ), наблюдается у твёрдых тел при фазовых переходах под Д. в. (полиморфных превращениях, плавлении).

  Из двух кристаллических модификаций одного и того же вещества большей плотностью обладает модификация, устойчивая при более высоком давлении. Разница в плотности двух модификаций может достигать 30-40%, но в большинстве случаев она меньше. В отличие от плотности, электрическое сопротивление металлов при полиморфных переходах может как уменьшаться, так и возрастать. Скачки электрического сопротивления некоторых металлов (например, Bi и Ba, см. рис. 11 ) при полиморфных переходах используются для градуировки аппаратуры Д. в. (см. ниже). Обычно при снижении Д. в. происходит обратное превращение и вещество возвращается в менее плотную модификацию. Методом рентгеновского структурного анализа установлено, что, как правило, под Д. в. образуются структуры, известные для др. элементов и соединений при нормальных условиях. Многие полиморфные превращения осуществляются при совместном воздействии Д. в. и высоких температур. В этих случаях более плотную модификацию часто удаётся сохранить в нормальных условиях, применив закалку под Д. в. Для этого сначала резко снижают температуру, а затем давление (до атмосферного). Закалкой пользуются, в частности, при синтезе алмаза, боразона, многих минералов.

  По экспериментальным данным о давлении фазовых переходов при различных температурах строят т. н. фазовые диаграммы, изображающие области стабильности кристаллических модификаций и расплава индивидуальных веществ ( рис. 12 ). температура плавления ( Т пл) большинства веществ возрастает с давлением ( рис. 13 ). У NaCI и KCl, которые при атмосферном давлении плавятся при температуре около 800°C, при динамическом сжатии плавление наблюдалось при 3200°C (540 кбар) и 3500°C (330 кбар) соответственно. Весьма значительно повышение температуры плавления с давлением у органических веществ; у бензола, например, при атмосферном давлении Т пл=5°С, а при 11 кбар Т пл=200°C. Известны т. н. аномальные вещества (H 2O, Bi, Ga, Ge, Si и др.), у которых Т плв определённом интервале Д. в. понижается с ростом давления, т. к. жидкая фаза у этих веществ плотнее соответствующей ей кристаллической модификации. После полиморфного перехода с образованием более плотной кристаллической модификации ход кривой плавления этих веществ становится нормальным (у воды, например, выше 2 кбар,у Bi ~ 18 кбар) .

 Электрическое сопротивление ряда металлов под Д. в. уменьшается (у Со, Ag, A1 и др. на 15-20% при 100 кбар,см. рис. 14 ). Качественно это объясняется уменьшением амплитуды колебаний атомов в кристаллической решётке и соответствующим уменьшением рассеяния решёткой электронов проводимости. У щелочных, щёлочноземельных, редкоземельных металлов зависимость электрического сопротивления от Д. в. сложнее (см. рис. 11 ), что обусловлено изменением под действием давления формы Ферми поверхности и перекрытием энергетических зон твёрдого тела. У полупроводников и диэлектриков при Д. в. появляется характерная для металлов высокая электропроводность (электроны благодаря перекрытию энергетических зон переходят из т. н. валентной зоны в зону проводимости). Изменение типа проводимости может носить как постепенный (под при 160-240 кбар) ,так и резкий характер (селен около 130 кбар) .Тенденция к переходу в металлическое состояние является, по-видимому, общей для всех веществ при достаточно высоких давлениях. Например, у серы переход в металлическое состояние наблюдается при 200 кбар,для водорода вычисленное значение Д. в. появления металлической проводимости составляет ~(1-2)·10 3 кбар,для гидрида лития ~(25-30)·10 4 кбар,гелия ~9·10 4 кбар.Иногда смещение энергетических зон в определённом интервале давлений вызывает обратный эффект, например металлический иттербий в интервале 20-40 кбарведёт себя как полупроводник, а при дальнейшем повышении Д. в. испытывает полиморфный переход с образованием новой металлической модификации.

  Электронная структура твёрдых тел под Д. в. исследуется также оптическими метолами и методами, использующими ряд тонких физических эффектов (см. Холла эффект, Циклотронный резонанс, Мёссбауэра эффект) .Сведения об электронном строении металлов и взаимодействии электронов с фонолами под Д. в. дают также исследования сверхпроводимости. температура перехода металлов и сплавов в сверхпроводящее состояние под действием Д. в. изменяется: понижается у всех непереходных металлов (например, у Sn, In, AI, Cd, Zn) и повышается у ряда переходных металлов (Nb, V, Ta, La, U и др.) и некоторых сплавов. Некоторые простые вещества (Si, Ge, Te, Se, Р), не относящиеся к сверхпроводникам при атмосферном давлении, имеют при Д. в. сверхпроводящие модификации. Образование таких модификаций у Si, Ge, Te (полупроводников в нормальных условиях) происходит, соответственно, при 120, 115 и 45 кбар.К наиболее известным магнитным эффектам Д. в. относится сдвиг температуры превращения ферромагнетика в парамагнетик ( Кюри точки, рис. 15).

  Способы создания Д. в. Динамические Д. в. получают с помощью взрыва, искрового разряда, импульсного изменения магнитного поля и главным образом инерционных методов - торможения сжимаемым телом др. тела, летящего с большой скоростью.

  При резком и значительном смещении поверхности тела, вызванном одним из этих способов, возникает ударная волна. Ударное сжатие сопровождается значительным разогревом вещества: температура поваренной соли и свинца, сжатых до 1000 кбар,составляет -~9·10 3°C, а меди и вольфрама, соответственно, 1500 и 750°C. При неограниченном возрастании давления степень сжатия за фронтом ударной волны не превосходит некоторого предельного значения (для металлов 5-7 в зависимости от температуры). Это обусловлено ростом давления в основном за счёт его «тепловой» составляющей. В изотермическом и изоэнтропийном процессах этого ограничения нет.

  Путём динамического сжатия можно достигать Д. в. в несколько десятков раз большего, чем статическими методами. Однако время действия динамических давлений ограничивается тысячными долями сек., тогда как в случае статического Д. в. его можно удерживать в течение часов и даже дней при заданном температурном режиме.

  Статические Д. в. получают механическими или тепловыми методами. В первых используют: а) насосы и компрессоры,которыми сжимаемое вещество (жидкость или газ) нагнетается в замкнутый объём или проточную систему; известны конструкции гидравлических компрессоров на давления до 16 кбар;б) аппараты, в которых масса сжимаемого вещества остаётся постоянной (или почти постоянной), а объём, занимаемый этой массой, уменьшается под действием внешних сил; аппараты этого типа позволяют получать максимальные (до ~ 2·10 3 кбар) статические давления, принцип их действия весьма прост: большая сила, создаваемая обычно гидравлическим прессом,сосредоточивается на малой площади, на которой и развивается Д. в. (см. рис. 16 ).

  В установках по схеме рис. 16 , а (типа «цилиндр - поршень») Д. в. создаётся в цилиндре, в который под действием внешней силы вдвигается поршень. В таких аппаратах для передачи Д. в. можно применять твёрдые тела, жидкости и газы. Предел применимости аппаратов типа, изображенного на рис. 16 , а ,ограничивается прочностью материала поршней из твёрдых сплавов и составляет ~50 кбар.

 Д. в., превосходящее предел прочности конструкционных материалов, достигается применением ряда способов усиления конструкций: 1) поддержкой всей установки или наиболее нагруженных её элементов сжатым пластичным веществом или жидкостью; 2) созданием системы напряжений сжатия в поршнях за счёт упругой деформации сосуда, который в свою очередь скрепляется набором напрессованных снаружи колец; 3) уменьшением напряжений в стенках сосуда делением их на секторы (многопуансонные установки, в которых подвижные пуансоны являются одновременно стенками камеры, рис. 16 , б - е) .Комбинация способов 1) и 2) позволяет повысить Д. в. в аппаратах с цилиндрическими поршнями до 70- 100 кбар.

 В аппаратах с коническими или пирамидальными пуансонами реализуются все три способа. Д. в. создаётся в них сближением 2,3,4,6 и более пуансонов, которые смыкаются под углом к направлению действия силы. В этих аппаратах для передачи давления используют известняк, тальк, бор и др. твёрдые вещества. На установках такого типа проводились измерения оптического поглощения (через алмазные пуансоны) до 160-170 кбар,эффекта Мёссбауэра до ~ 250 кбар,сжимаемости (рентгеноструктурным методом) и электропроводности до 500 кбар.В двухступенчатых многопуансонных аппаратах было получено статическое давление около 2•10 3 кбар,при котором исследовались необратимые изменения плотности стекол.

  В камерах с твёрдой сжимаемой средой Д. в. определяется либо расчётным путём (в камерах по схеме 16 , а), либо с помощью градуировки (в более сложных камерах). Градуировка заключается в установлении зависимости давления в сжатой среде от усилия, приложенного к пуансонам. Градуировка может, например, производиться по скачкам электрического сопротивления, сопровождающим полиморфные переходы в некоторых металлах. Задача градуировки камер пока полностью не решена.

  В твёрдой среде температуры до +1500-3000°C в стационарном режиме и более высокие - в импульсном режиме создаются с помощью внутренних электрических нагревателей (сопротивления). Для получения температур от - 196 до 400 °С применяются наружные нагреватели и холодильники, а в случае более низких температур - криогенная техника.

 Оптические исследования осуществляют через окна, изготовленные из материалов, прозрачных в определённой части спектра: алмаза, сапфира, хлористого натрия - в оптическом диапазоне; алмаза, бериллия - в рентгеновской области. Рентгеновское и гамма-излучение может быть пропущено (в камерах по схеме 16, б) также через зазоры между пуансонами.

  В аппаратах, основанных на тепловых методах, Д. в. создаётся либо повышением давления в газах или жидкостях при их нагревании в замкнутом сосуде (в отдельных установках достигнуты Д. в. в газах до 30-40 кбар) ,либо в результате расширения «аномальных» (см. выше) жидкостей при затвердевании. Сжимаемое тело окружают жидкостью, охладив которую до затвердевания в замкнутом объёме, получают фиксированное Д. в. (в случае воды, например, около 2 кбар) .

  Лит.:Бриджмен П. В., Физика высоких давлений, пер. с англ., М. - Л., 1935; его же. Новейшие работы в области высоких давлений, пер. с англ., М., 1948; его же, Исследования больших пластических деформаций и разрыва, пер. с англ., М., 1955; Верещагин Л. Ф., Физика высоких давлений и искусственные алмазы, в сборнике: Октябрь и научный прогресс, кн. 1, М., 1967, с. 509; Верещагин Л. Ф., Ицкевич Е. С. и Яковлев Е. Н., Физика высоких давлений, в сборнике: Развитие физики в СССР, кн. 1, М., 1967, с. 430: Дремин А. Н., Бреусов О. Н., Процессы, протекающие в твёрдых телах под действием сильных ударных волн, «Успехи химии», 1968, т. 37, в. 5; Альтшулер Л. В., Баканова А. А., Электронная структура и сжимаемость металлов при высоких давлениях. там же, 1968, т. 96, в. 2; Циклис Д.С., Техника физико-химических исследований при высоких давлениях, 2 изд., М., 1958; Рябинин Ю. Н., Газы при больших плотностях и высоких температурах, М., 1959; Гоникберг М. Г., Высокие и сверхвысокие давления в химии, 2 изд., М., 1968; Современная техника сверхвысоких давлений, пер. с англ., М., 1964; Пол В., Варшауэр Д. [ред.]. Твердые тела под высоким давлением, пер. с англ., М., 1966;

  Бранд Н. Б., Гинзбург Н. И., Сверхпроводимость при высоких давлениях, «Успехи физических наук», 1969, т. 98, в. 1; Жарков В. Н., Калинин В. А., Уравнения состояния твёрдых тел при высоких давлениях и температурах, М., 1968; Кормер С. Б., Оптические исследования свойств ударносжатых конденсированных диэлектриков, «Успехи физических наук», 1968, т. 94, в. 4.

  Л. Д. Лившиц.

Рис. 14. Зависимость относительного электрического сопротивления R/R 0металлов от давления. Значения R/R 0отложены по вертикальной оси (R 0- электрическое сопротивление при нормальном давлении, R - при высоком давлении).

Рис. 3. Зависимость относительной плотности (d = r/r 0) газообразного азота от давления р, где r 0- плотность при 1 amи 0°С.

Рис. 5. Зависимость относительного объёма твёрдых тел от давления.

Рис. 1. Границы областей существования некоторых минералов. Над чертой даны названия фаз высокого давления, под чертой - фаз низкого давления. М - поверхность Мохоровичича под континентами.

Рис. 8. Зависимость вязкости жидкостей от давления при комнатной температуре.

Рис. 13. Зависимость температуры плавления металлов от давления.

Рис. 9. Фотографии образцов стали, разорванных при осевом растяжении в условиях различных гидростатических давлений в жидкости, окружающей образец (а - атмосферное давление; б - 8,5 кбар; в - 16,5 кбар). Уменьшающаяся от ак вплощадь поверхности разрыва указывает на увеличение пластичности стали с ростом давления.

Рис. 6. Изменение плотности некоторых металлов при ударном сжатии.

Рис. 16. Схемы аппаратов высокого давления: а - аппарат «цилиндр - поршень»; б - «наковальни» Бриджмена; в - установка с коническими пуансонами; г - «наковальни», погруженные в пластичную среду, сжатую до меньшего давления; д и е - «тетраэдрическая» и «кубическая» установки (пуансон, обращенный к зрителю, не изображен); отдельно показана форма сжимаемого тела; 1 - пуансон (поршень); 2 - сосуд высокого давления; 3 - сжимаемый образец; 4 - среда, передающая давление. Стрелками показаны направления действия сил.

Рис. 4. Зависимость относительного объёма жидкости от давления.

Рис. 2. Экспериментально освоенный диапазон давлений и температур: I - прессование в промышленности; II - гидро-термальные процессы; III - гидростатические давления (в газах и жидкостях); IV - диапазон давлений, освоенный к 1950-м гг. (Бриджмен); V - статические давления (до 200 кбар) при высоких температурах (к 1970-м годам); VI - статические давления (до 300 кбар) при сверхнизких температурах; VII - давления, создаваемые ударными волнами (до ~ 104 кбарпри температурах свыше 3000° С); VIII - cтатические давления (до ~ 500 кбар) при комнатной температуре.

Рис. 12. Фазовая диаграмма железа. Показаны области существования кристаллических модификаций железа (a,d,g и e) и строение соответствующих элементарных ячеек.

Рис. 10. Изменение объёма (плотности) некоторых простых веществ при полиморфных переходах. Величина вертикальной ступеньки на каждой кривой соответствует изменению объёма при переходе.

Рис. 7. Зависимость атомных объёмов V элементов (в см 3/ г-атом) от порядкового номера Z: а - при нормальных условиях; б - при давлении 1 Мбар; в - вычисленные данные для 10 Мбар.

Рис. 15. Изменение температуры Кюри под давлением у различных магнитных материалов: 1 - (MnZn)Fe 2O 4, 2 - La 0, 75Sr 0, 25MnO 3, 3 - Ni, 4 - сплав Ni-Cu (67%Ni), 5 - алюмель (94%Ni), 6 - Cd, 7 - сплав Fe - Ni(64%Fe), 8 - сплав Fe - Ni(70%Fe).

Рис. 11. Изменение относительного электрического сопротивления металлов, испытывающих полиморфные переходы при высоких давлениях. Шкала 0-2,0 - для Bi, Pb; шкала 0-5 - для Ba, Fe; шкала 0-100 - для Rb, Ca, Cs.

Давление горное

Давле'ние го'рное,см. Горное давление.

Давление звука

Давле'ние зву'ка,давление звукового излучения, радиационное давление, постоянное давление, испытываемое телом, находящимся в стационарном звуковом поле. Д. з. не следует смешивать со звуковым давлением,представляющим собой периодически меняющееся давление в среде, в которой распространяется звуковая волна. Д. з. пропорционально плотности звуковой энергии и, следовательно, квадрату звукового давления. Оно мало по сравнению со звуковым давлением; так, например, в звуковом поле в воздухе, в котором звуковое давление равно 10 2н/м 2,при нормальном падении звуковой волны на полностью отражающее звук препятствие Д. з. приблизительно равно 0,1 н/м 2.Измерение Д. з. производится радиометром.Зная величину Д. з., можно определить абсолютное значение интенсивности звука в данной среде.

  Лит.:Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Морз Ф., Колебания и звук, пер. с англ., М. - Л., 1949.

Давление света

Давле'ние све'та,давление, производимое светом на отражающие или поглощающие тела. Д. с. впервые было экспериментально открыто и измерено П. Н. Лебедевым (1899). Величина Д. с. даже для самых сильных источников света (Солнце, электрическая дуга) ничтожно мала и маскируется в земных условиях побочными явлениями (конвекционными токами, радиометрическими силами, см. Радиометрический эффект ) ,которые могут превышать в тысячи раз величину Д. с. Для обнаружения Д. с. Лебедев изготовил специальные приборы и проделал опыты, представляющие замечательный пример искусства эксперимента. Основной частью прибора Лебедева служили плоские лёгкие крылышки (диаметром 5 мм) из различных металлов (платина, алюминий, никель) и слюды ( рис. 1 ). Крылышки подвешивались на тонкой стеклянной нити и помещались внутри стеклянного сосуда G (